Homework

1. Show that the zero of vector addition is unique.
2. Show the axiom $0 x=0$ by using other seven axioms in the definition of linear space
3. Suppose that the set X is the set of positive real numbers(i.e. ${ }^{x>0}$), if the addition and scalar multiplication with the field R of real numbers are defined as follows

$$
x+y=x y, \quad c x=x^{c},
$$

Show this set under this addition and scalar multiplication is a linear space.
4. Suppose that the set X is 2-dimensional vector set of real numbers R^{2} with the following addition and scalar multiplication with the field R of real numbers

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] \oplus\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+x_{2} \\
y_{1}+y_{2}+x_{1} x_{2}
\end{array}\right]} \\
& k \cdot\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]=\left[\begin{array}{c}
k x_{1} \\
k y_{1}+\frac{k(k-1)}{2} x_{1}^{2}
\end{array}\right]
\end{aligned}
$$

Show this set under this addition and scalar multiplication is a linear space.

