1. Let $P^{n \times n}$ be a set of all $n \times n$ matrices,
(1) Please show that the set of all the matrices that are exchangeable with $A \in P^{n \times n}$ is a subspace of $P^{n \times n}$. If this subspace is denoted as $C(A)$. It means $C(A)=\left\{B \in P^{n \times n} \mid A B=B A, A \in P^{n \times n}\right\}$.
(2) When $A=\left[\begin{array}{llll}1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \cdots & 1\end{array}\right]$, please find $C(A)$.
(3) If $A=\left[\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 0 & 2 & \cdots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \cdots & n\end{array}\right]$, please find the dimension and a basis of $C(A)$.
2. Please find a basis and the dimension of the solution space of the following system of linear equations

$$
\left\{\begin{array}{c}
3 x_{1}+2 x_{2}-5 x_{3}+4 x_{4}=0 \\
3 x_{1}-x_{2}+3 x_{3}-3 x_{4}=0 \\
3 x_{1}+5 x_{2}-13 x_{3}+11 x_{4}=0
\end{array}\right.
$$

