Homework of Linear mapping

- Let F: R² → R² be the map defined by F([x]y] = [2x/3y] for any [x/y] ∈ R². Describe the image by F of the points lying on the unit circle centered at 0, i.e. {[x/y] ∈ R² | x² + y² = 1}.
 Let F: R² → R² be the map defined by F([x/y]) = [xy/y] for any [x/y] ∈ R². Describe the image by F of the line {[x/y] ∈ R² | x = 2}.
- 3. Let V be a linear space of dimension n, and let $\{v_1, v_2, \dots, v_n\}$ be a basis for V. Let F be a linear map from V into itself. Show that F is uniquely defined if one knows $F(v_j)$ for $j \in \{1, 2, \dots, n\}$. Is it also true if F is an arbitrary map from om V into itself?
- 4. Let V, W be two linear space over the same field, and let $T: V \to W$ be a linear mapping. Show that the following set is a subspace of V.

$$\{x \in V \mid T(x) = 0\}$$

5. Let $T: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ be the map defined for any $n \times n$ dimensional matrix $A \in \mathbb{R}^{n \times n}$ by

$$T(A) = \frac{1}{2}(A + A^T)$$

where A^{T} denotes the transpose of matrix A.

- 1) Show that T is a linear mapping.
- 2) Show that the kernel of T consists in the linear space of all skew-

symmetric matrices.

- 3) Show that the range of T consists in the linear space of all symmetric matrices.
- 4) What is the dimension of the linear space of all symmetric matrices, and the dimension of the vector space of all skew-symmetric matrices?

6. Consider the mapping
$$F\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x \\ x-y \\ x-z \\ x-y-z \end{bmatrix}$$

- 1) Determine the kernel of F.
- 2) Determine the range of F.
- 7. Let $T: R^3 \rightarrow R^3$ be a linear mapping which associated matrix has the form
 - $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ with respect to the canonical basis of R^3

 $(e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$). What is the matrix associated with T in the

basis generated by the three vectors $v_1 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix}, v_2 = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}.$