Homework

- 1. Show that the function that takes $((x_1, x_2), (y_1, y_2)) \in \mathbb{R}^2 \times \mathbb{R}^2$ to $|x_1y_1| + |x_2y_2|$ is not an inner product on \mathbb{R}^2 .
- 2. Suppose V is a real inner product space, show that
 - (a) Show that the inner product $\langle u+v,u-v\rangle = ||u||^2 ||v||^2$ for every $u,v \in V$.
 - (b) Show that if $u, v \in V$ have the same norm, then u + v is orthogonal to u v.
 - (c) Use part(b) to show that the diagonals of a rhombus are perpendicular to each other.
- 3. Suppose $u, v \in V$. Prove that the inner product $\langle u, v \rangle = 0$ if and only if $||u|| \le ||u + av||$ for all $a \in R$.
- 4. Suppose n is a positive integer. Prove that $\frac{1}{\sqrt{2\pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\cos 2x}{\sqrt{\pi}}, \cdots, \frac{\cos nx}{\sqrt{\pi}}, \frac{\sin x}{\sqrt{\pi}}, \frac{\sin 2x}{\sqrt{\pi}}, \cdots, \frac{\sin nx}{\sqrt{\pi}}$ is an orthonormal list of vectors in $C[-\pi, \pi]$, the linear space of continuous real-valued functions on $[-\pi, \pi]$ with inner product $\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x)dx$.
- 5. On $P^2[x]$, the linear space of polynomial functions of degree ≤ 2 , consider the inner product given by $\langle p,q \rangle = \int_0^1 p(x)q(x)dx$. Apply the Gram–Schmidt Procedure to the basis $1, x, x^2$ to produce an orthonormal basis of $P^2[x]$
- 6. Find a polynomial $q \in P^2[x]$ such that $p\left(\frac{1}{2}\right) = \int_0^1 p(x)q(x)dx$ for every $p(x) \in P^2[x]$.
- 7. Suppose U is the subspace of R^4 defined by U = span((1,2,3,-4),(-5,4,3,2))Find an orthonormal basis of U and an orthonormal basis of its orthogonal complement U^{\perp}
- 8. In R^4 , let U = span((1,1,0,0), (1,1,1,2)). Find $u \in U$ such that $||u (1,2,3,4)||_2$ is as small as possible.