Homework

1. Show that the function that takes $\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \in \mathrm{R}^{2} \times R^{2}$ to $\left|x_{1} y_{1}\right|+\left|x_{2} y_{2}\right|$ is not an inner product on R^{2}.
2. Suppose V is a real inner product space, show that
(a) Show that the inner product $\langle u+v, u-v\rangle=\|u\|^{2}-\|v\|^{2}$ for every $u, v \in V$.
(b) Show that if $u, v \in V$ have the same norm, then $u+v$ is orthogonal to $u-v$.
(c) Use part(b) to show that the diagonals of a rhombus are perpendicular to each other.
3. Suppose $u, v \in V$. Prove that the inner product $\langle u, v\rangle=0$ if and only if $\|u\| \leq\|u+a v\|$ for all $a \in R$.
4. Suppose n is a positive integer. Prove that $\frac{1}{\sqrt{2 \pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\cos 2 x}{\sqrt{\pi}}, \cdots, \frac{\cos n x}{\sqrt{\pi}}, \frac{\sin x}{\sqrt{\pi}}, \frac{\sin 2 x}{\sqrt{\pi}}, \cdots, \frac{\sin n x}{\sqrt{\pi}}$ is an orthonormal list of vectors in $C[-\pi, \pi]$, the linear space of continuous real-valued functions on $[-\pi, \pi]$ with inner product $\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x$.
5. On $P^{2}[x]$, the linear space of polynomial functions of degree ≤ 2, consider the inner product given by $\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x$. Apply the Gram-Schmidt Procedure to the basis $1, x, x^{2}$ to produce an orthonormal basis of $P^{2}[x]$
6. Find a polynomial $q \in P^{2}[x]$ such that $p\left(\frac{1}{2}\right)=\int_{0}^{1} p(x) q(x) d x \quad$ for every $p(x) \in P^{2}[x]$.
7. Suppose U is the subspace of R^{4} defined by $U=\operatorname{span}((1,2,3,-4),(-5,4,3,2))$ Find an orthonormal basis of U and an orthonormal basis of its orthogonal complement U^{\perp}
8. In R^{4}, let $U=\operatorname{span}((1,1,0,0),(1,1,1,2))$. Find $u \in U$ such that $\|u-(1,2,3,4)\|_{2}$ is as small as possible.
