## Homework

1. Show that the zero of vector addition is unique.

Proof: If there are two zero 0 and $O$, since 0 is a zero, we have

$$
\begin{equation*}
\mathrm{O}=0+\mathrm{O} \tag{1}
\end{equation*}
$$

Moreover, since O is also zero, we have

$$
\begin{equation*}
0=0+\mathrm{O} \tag{2}
\end{equation*}
$$

From (1) and (2), we obtain $\mathrm{O}=0+\mathrm{O}=0$.
2. Show the axiom $0 x=0$ by using other seven axioms in the definition of linear space.

Proof: For arbitrary $x$ in the set $X$, we have

$$
\begin{equation*}
x+0 x=(1+0) x=1 x=x \tag{3}
\end{equation*}
$$

Adding the negative of x on the both side of (3), $\mathrm{x}+(-\mathrm{x})+0 \mathrm{x}=\mathrm{x}+(-\mathrm{x})=0$. Thus $0 \mathrm{x}=0$.
3. Suppose that the set $X$ is the set of positive real numbers(i.e. ${ }^{x>0)}$, if the addition and scalar multiplication with the field R of real numbers are defined as follows

$$
x+y=x y, \quad c x=x^{c}
$$

Show this set under this addition and scalar multiplication is a linear space.
Proof:
First, we prove the closeness of addition and scalar multiplication. For any $x, y, z \in X$ and $c \in R$, then $x>0, \mathrm{y}>0, z>0$, Thus we have $x+y=x y>0$ and $c x=x^{c}>0$. The closeness is proved.

Next, we prove the following results.

1. $x+y=x y=y x=y+x$
2. $(x+y)+z=x y+z=x y z=x+y z=x+(y+z)$
3. $x+1=x 1=x$, so 1 is the zero element.
4. $x+1 / x=x(1 / x)=1, \quad$ so $1 / x$ is the negative element of x .

For any $k, h \in R$,we have
5. $k(h x)=k x^{h}=x^{k h}=(k h) x$
6. $k(x+y)=k(x y)=(x y)^{k}=x^{k} y^{k}=k x+k y$
7. $(k+h) x=x^{k+h}=x^{k} x^{h}=k x+h x$

8．$\quad 1 x=x^{1}=x \quad$ Therefore，set $X$ with the field R of real numbers is a linear space．
4．Suppose that the set $X$ is 2－dimensional vector set of real numbers $\mathrm{R}^{2}$ with the following addition and scalar multiplication with the field R of real numbers

$$
\begin{gathered}
{\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] \oplus\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+x_{2} \\
y_{1}+y_{2}+x_{1} x_{2}
\end{array}\right]} \\
k \cdot\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]=\left[\begin{array}{c}
k x_{1} \\
k y_{1}+\frac{k(k-1)}{2} x_{1}^{2}
\end{array}\right]
\end{gathered}
$$

Show this set under this addition and scalar multiplication is a linear space．
证明：首先我们证明该集合关于加法和数乘运算的封闭性。对任意 $\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right],\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right],\left[\begin{array}{l}x_{3} \\ y_{3}\end{array}\right] \in X$ 和 $k \in R$ ，我们可以得到

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] \oplus\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+x_{2} \\
y_{1}+y_{2}+x_{1} x_{2}
\end{array}\right] \in X} \\
& k \bullet\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]=\left[\begin{array}{c}
k x_{1} \\
k y_{1}+\frac{k(k-1)}{2} x_{1}^{2}
\end{array}\right] \in X
\end{aligned}
$$

因而，该集合关于加法和数乘运算是封闭的。接下来，我们证明线性空间的另外 8 条。
1．$\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right] \oplus\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right]=\left[\begin{array}{c}x_{1}+x_{2} \\ y_{1}+y_{2}+x_{1} x_{2}\end{array}\right],\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right] \oplus\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]=\left[\begin{array}{c}x_{2}+x_{1} \\ y_{2}+y_{1}+x_{2} x_{1}\end{array}\right]$
因而，$\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right] \oplus\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right]=\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right] \oplus\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]$ ，交换律成立。
2．$\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right] \oplus\left(\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right] \oplus\left[\begin{array}{l}x_{3} \\ y_{3}\end{array}\right]\right)=\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right] \oplus\left[\begin{array}{c}x_{2}+x_{3} \\ y_{2}+y_{3}+x_{2} x_{3}\end{array}\right]=\left[\begin{array}{c}x_{1}+x_{2}+x_{3} \\ y_{1}+y_{2}+y_{3}+x_{2} x_{3}+x_{1} x_{2}+x_{1} x_{3}\end{array}\right]$
$\left(\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right] \oplus\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right]\right) \oplus\left[\begin{array}{l}x_{3} \\ y_{3}\end{array}\right]=\left[\begin{array}{c}x_{1}+x_{2} \\ y_{1}+y_{2}+x_{1} x_{2}\end{array}\right] \oplus\left[\begin{array}{l}x_{3} \\ y_{3}\end{array}\right]=\left[\begin{array}{c}x_{1}+x_{2}+x_{3} \\ y_{1}+y_{2}+y_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\end{array}\right]$
因而，$\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right] \oplus\left(\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right] \oplus\left[\begin{array}{l}x_{3} \\ y_{3}\end{array}\right]\right)=\left(\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right] \oplus\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right]\right) \oplus\left[\begin{array}{l}x_{3} \\ y_{3}\end{array}\right]$
3．$\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right] \oplus\left[\begin{array}{l}0 \\ 0\end{array}\right]=\left[\begin{array}{c}x_{1}+0 \\ y_{1}+0+0\end{array}\right]=\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]$ ，所以 $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ 是该线性空间的零元。

4．$\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right] \oplus\left[\begin{array}{c}-x_{1} \\ -y_{1}+x_{1}^{2}\end{array}\right]=\left[\begin{array}{c}x_{1}+\left(-\mathrm{x}_{1}\right) \\ y_{1}+\left(-y_{1}+x_{1}^{2}\right)+x_{1}\left(-x_{1}\right)\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ ，所以
该线性空间中 $\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]$ 的负元为 $\left[\begin{array}{c}-x_{1} \\ -y_{1}+x_{1}^{2}\end{array}\right]$ 。
对任意的数域 R 中的数 $k, h \in R$ ，我们有

$$
\text { (6) } \begin{aligned}
k(X+Y) & =k\left[\begin{array}{ll}
x_{1}+x_{2} & y_{1}+y_{2}+x_{1} x_{2}
\end{array}\right]^{\top} \\
& =\left[\begin{array}{ll}
k\left(x_{1}+x_{2}\right) & k\left(y_{1}+y_{2}+x_{1} x_{2}\right)+k(k-1) \\
& =\left[\begin{array}{ll}
k\left(x_{1}+x_{2}\right)^{2} / 2
\end{array}\right]^{\top} \\
\left.k X+k x_{2}\right) & k\left(y_{1}+y_{2}\right)+k^{2}\left(x_{1}+x_{2}\right)^{2} / 2-k\left(x_{1}^{2}+x_{2}^{2}\right) / 2
\end{array}\right]^{\top} \\
k & =\left[\begin{array}{lll}
k x_{1} & k y_{1}+k(k-1) x_{1}^{2} / 2
\end{array}\right]^{-1}+\left[\begin{array}{ll}
k x_{2} & k y_{2}+k(k-1) x_{2}^{2} / 2
\end{array}\right]^{\top} \\
& =\left[\begin{array}{ll}
k\left(x_{1}+x_{2}\right) & k\left(y_{1}+y_{2}\right)+k^{2}\left(x_{1}+x_{2}\right)^{2} / 2-k\left(x_{1}^{2}+x_{2}^{2}\right) / 2
\end{array}\right]^{\top}
\end{aligned}
$$

$$
\therefore \mathrm{k}(\mathrm{X}+\mathrm{Y})=\mathrm{kX}+\mathrm{kY}
$$

$$
(k+h) X=\left[(k+h) x_{1} \quad(k+h) y_{1}+(k+h)(k+h-1) x_{1}{ }^{2} / 2\right]^{\top}
$$

$$
=\left[(k+h) x_{1} \quad(k+h) y_{1}+(k+h)^{2} x_{1}^{2} / 2-(k+h) x_{1}^{2} / 2\right]^{\top}
$$

$$
k X+h X=\left[\begin{array}{lll}
k x_{1} & k y_{1}+k(k-1) x_{1}^{2} / 2
\end{array}\right]^{-1}+\left[\begin{array}{ll}
h x_{1} & h y_{1}+h(h-1) x_{1}^{2} / 2
\end{array}\right]^{\top}
$$

$$
=\left[(k+h) x_{1}(k+h) y_{1}+(k+h)^{2} x_{1}^{2} / 2-(k+h) x_{1}{ }^{2} / 2\right]^{\top}
$$

$$
\therefore(k+h) X=k X+h X
$$

$$
\text { (7) } 1 \mathrm{X}=\left[\begin{array}{ll}
1 \mathrm{x}_{1} & 1 \mathrm{y}_{1}+1(1-1) \mathrm{x}_{1}^{2} / 2
\end{array}\right]^{\top}
$$

$$
=\left[\begin{array}{ll}
x_{1} & y_{1}
\end{array}\right]^{\top}
$$

$$
=x
$$

$$
\begin{aligned}
& \text { 5. } k\left(h\left(\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]\right)\right)=k\left(\left[\begin{array}{c}
h x_{1} \\
h y_{1}+\frac{h(h-1)}{2} x_{1}^{2}
\end{array}\right]\right)=\left[k\left(h y_{1}+\frac{h(h-1)}{2} x_{1}^{2}\right)+\frac{k(k-1)}{2}\left(h x_{1}\right)^{2}\right] \\
& (k h)\left(\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]\right)=\left[\begin{array}{c}
k h x_{1} \\
k h y_{1}+\frac{k h(k h-1)}{2} x_{1}^{2}
\end{array}\right]=\left[\begin{array}{c}
k h x_{1} \\
k\left(h y_{1}+\frac{h(h-1)}{2} x_{1}^{2}\right)+\frac{k(k-1)}{2}\left(h x_{1}\right)^{2}
\end{array}\right] \\
& \text { 所以 } k\left(h\left(\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]\right)\right)=(k h)\left(\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]\right)
\end{aligned}
$$

Homework

1. Show that $R^{n}$ and $P^{n-1}$ over the same field R (the field of real numbers) are isomorphic.

Proof: Let $e_{1}, e_{2}, \cdots, e_{n}$ be a basis of $R^{n}$ and $v_{1}, v_{2}, \cdots, v_{n}$ be a basis of $P^{n-1}$. Generally,

$$
\begin{gathered}
e_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], e_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right], \cdots, e_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right] \\
v_{1}=1, v_{2}=t, \cdots, v_{n}=t^{n-1}
\end{gathered}
$$

Then, for any $x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right] \in R^{n}$ and 了䶣 ,we have $x=x_{1} e_{1}+x_{2} e_{2}+\cdots+x_{n} e_{n}$ and

$$
p(t)=a_{0} v_{1}+a_{1} v_{2}+\cdots+a_{n-1} v_{n}
$$

Define a mapping from $R^{n}$ to $P^{n-1}$ as following,

$$
T(x)=x_{1}+x_{2} t+\cdots+x_{n} t^{n-1}
$$

Next, we prove that this mapping is onto and one to one.
Onto: For any $p(t)=a_{0} v_{1}+a_{1} v_{2}+\cdots+a_{n-1} v_{n} \in P^{n-1}$, there exists such that $T(a)=p(t)$

One to one: for any $x, y \in R^{n}$, if $T(x)=T(y)$, that is,

$$
\begin{aligned}
& x_{1}+x_{2} t+\cdots+x_{n} t^{n-1}=y_{1}+y_{2} t+\cdots+y_{n} t^{n-1} \\
& \left(x_{1}-y_{1}\right)+\left(x_{2}-y_{2}\right) t+\cdots+\left(x_{n}-y_{n}\right) t^{n-1}=0
\end{aligned}
$$

Since $v_{1}=1, v_{2}=t, \cdots, v_{n}=t^{n-1}$ are linearly independent, we have $x=y$
Therefore we find the isomorphic mapping between $R^{n}$ and $P^{n-1}$.
2. Show that each finite-dimensional linear space X over field $K$ is isomorphic to $K^{n}, \mathrm{n}=\operatorname{dim}$ X. Show that this isomorphism is not unique.

Proof:

We assume that the dimension of linear space X is n . There exists a basis $v_{1}, v_{2}, \cdots, v_{n}$.

Then, for any element $x \in X, x=x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{n} v_{n}, x_{1}, x_{2}, \cdots x_{n} \in K$

Define a mapping from $X$ to $K^{n}$ as following

$$
T(x)=\left(\mathrm{x}_{1}, x_{2}, \cdots x_{n}\right)
$$

Next, we show that this mapping is isomorphic.
Onto: For any $\left(\mathrm{x}_{1}, x_{2}, \cdots x_{n}\right) \in K^{n}$, there exists $x=x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{n} v_{n} \in X$ such that

$$
T(\mathrm{x})=\left(\mathrm{x}_{1}, x_{2}, \cdots x_{n}\right)
$$

One to one: for any $x, y \in X$, where $y=y_{1} v_{1}+y_{2} v_{2}+\cdots+y_{n} v_{n}$, if $T(x)=T(y)$, that is,

$$
\left(x_{1}, x_{2}, \cdots x_{n}\right)=\left(y_{1}, y_{2}, \cdots, y_{n}\right)
$$

That means $x_{i}=y_{i}$, thus $x=y$

## Homework

1. Please determine whether the following set is a subspace of $R^{2}$. If yes, please show it. If no, please explain the reason.

$$
S=\left\{\left.\left[\begin{array}{l}
\omega_{1} \\
\omega_{2}
\end{array}\right] \in R^{2} \right\rvert\, \omega_{1}^{2}=\omega_{2}^{2}\right\}
$$

Answer: It is not a subspace. $\omega_{1}^{2}=\omega_{2}^{2}$ means $\omega_{1}=\omega_{2}$ or $\omega_{1}=-\omega_{2}$, which are two lines in the $R^{2}$ described as the following figure,

$(-2,2)+(1,1)=(-1,3),(-1,3)$ is not in the set $S$. Thus the set S is not closed under the addition. Therefore it is not a subsapace.
2. Please show that the subset $X=\{f(t): R \rightarrow R \mid f(t)=f(-t)\}$ of even functions is a subspace of real-valued functions.

Proof: For any $f(t), g(t) \in X$ and $k \in R$, we have

$$
\begin{gathered}
(f+g)(t)=f(t)+g(t)=f(-t)+g(-t)=(f+g)(-t) \\
(k f)(t)=k f(t)=k f(-t)=(k f)(-t)
\end{gathered}
$$

These show that the set X are closed the addition and scalar multiplication. Thus it is a subspace of real-valued functions.

## Homework

1. Please determine whether the following vectors are linear independent?

$$
\text { (1) } \quad a_{1}=(2,-1,0,3), \quad a_{2}=(1,2,5,-1), a_{3}=(7,-1,5,8)
$$

(2) $p_{1}(x)=1-x, \quad p_{2}(x)=5+3 x-2 x^{2}, \quad p_{3}(x)=1+3 x-2 x^{2}$

Answer:
(1) We consider the coefficients $c_{1}, c_{2}, c_{3}$ such that

$$
\begin{equation*}
c_{1} a_{1}+c_{2} a_{2}+c_{3} a_{3}=0 \tag{1}
\end{equation*}
$$

Putting $a_{1}, a_{2}, a_{3}$ into equation (1), we have

$$
\begin{align*}
& 2 c_{1}+c_{2}+7 c_{3}=0  \tag{2}\\
& -c_{1}+2 c_{2}-c_{3}=0 \\
& 5 c_{2}+5 c_{3}=0 \\
& 3 c_{1}-c_{2}+8 c_{3}=0
\end{align*} \quad\left[\begin{array}{ccc}
2 & 1 & 7 \\
-1 & 2 & -1 \\
0 & 5 & 5 \\
3 & -1 & 8
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The reduced Row Echelon Form (RREF) of coefficient matrix is

$$
\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

That is $, c_{1}=-3 c_{3}, c_{2}=-c_{3},\left[\begin{array}{c}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]=c_{3}\left[\begin{array}{c}-3 \\ -1 \\ 1\end{array}\right]$. Thus the system (2) of linear equations has nonzero solution
(3) We consider the coefficients $c_{1}, c_{2}, c_{3}$ such that

$$
\begin{equation*}
c_{1} p_{1}(x)+c_{2} p_{2}(x)+c_{3} p_{3}(x)=0 \tag{3}
\end{equation*}
$$

Putting $p_{1}(x), p_{2}(x), p_{3}(x)$ into equation (3), we have

$$
c_{1}(1-x)+c_{2}\left(5+3 x-2 x^{2}\right)+\mathrm{c}_{3}\left(1+3 x-2 x^{2}\right)=0
$$

Arranging this equation, we obtain

$$
\left(c_{1}+5 c_{2}+c_{3}\right)+\left(-c_{1}+3 c_{2}+3 c_{3}\right) x+\left(-2 c_{2}-2 c_{3}\right) x^{2}=0
$$

Thus

$$
\left[\begin{array}{ccc}
1 & 5 & 1 \\
-1 & 3 & 3 \\
0 & -2 & -2
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The reduced Row Echelon Form (RREF) of coefficient matrix is

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

This means that $c_{1}=c_{2}=c_{3}=0$. Therefore $p_{1}(x), p_{2}(x), p_{3}(x)$ are linearly independent.
2. Let V be a vector space over R and $\mathrm{n} \in \mathrm{N}$ be an odd number. If the vectors $x_{1}, x_{2}, \cdots, x_{n} \in \mathrm{~V}$ are linearly independent, then the same stands also for the vectors $x_{1}+x_{2}, x_{2}+x_{3}, \cdots, x_{n-1}+x_{n}, x_{n}+x_{1}$.

Answer: First, we find the coefficients $c_{1}, c_{2}, \cdots, c_{n}$ such that

$$
c_{1}\left(x_{1}+x_{2}\right)+\mathrm{c}_{2}\left(x_{2}+x_{3}\right)+\cdots+c_{n-1}\left(x_{n-1}+x_{n}\right)+\mathrm{c}_{n}\left(x_{n}+x_{1}\right)=0
$$

Arranging this equation, we obtain

$$
\left(c_{1}+c_{n}\right) x_{1}+\left(c_{1}+c_{2}\right) x_{2}+\cdots+\left(c_{n-1}+c_{n}\right) x_{n}=0
$$

From the linear independence of $x_{1}, x_{2}, \cdots, x_{n}$, we have

$$
c_{1}+c_{n}=0, c_{1}+c_{2}=0, \cdots, c_{n-1}+c_{n}=0
$$

Since n is an odd number, $\left(c_{1}+c_{n}\right)-\left(c_{1}+c_{2}\right)+\left(\mathrm{c}_{2}+c_{3}\right)-\ldots . .+\left(c_{n-1}+c_{n}\right)=2 c_{n}=0$.From $c_{n}=0$, we can obtain $c_{1}=c_{2}=\cdots=c_{n-1}=0$

1. Let $P^{n \times n}$ be a set of all $n \times n$ matrices,
(1) Please show that the set of all the matrices that are exchangeable with $A \in P^{n \times n}$ is a subspace of $P^{n \times n}$. If this subspace is denoted as $C(A)$. It means $C(A)=\left\{B \in P^{n \times n} \mid A B=B A, A \in P^{n \times n}\right\}$.
(2) When $A=\left[\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \cdots & 1\end{array}\right]$, please find $C(A)$.
(3) If $A=\left[\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 0 & 2 & \cdots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \cdots & n\end{array}\right]$, please find the dimension and a basis of $C(A)$.

Answer:
(1) For any $B, D \in C(A)$ and $k \in R$, we have

$$
\begin{gathered}
A(B+D)=A B+A D=B A+D A=(B+D) A \\
A(k B)=k A B=k B A=(k B) A
\end{gathered}
$$

Thus the addition and scalar multiplication are closed. The subset is a subspace of $P^{n \times n}$.
(2) When $A=/$, since for any matrix $B \in P^{n \times n}$, we have $B I=B=I B$. Thus $C(A)=P^{n \times n}$.
(3) When $A=\left[\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 0 & 2 & \cdots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \cdots & n\end{array}\right]$, we assume $B=\left[\begin{array}{cccc}b_{11} & b_{12} & \cdots & b_{1 n} \\ b_{21} & b_{22} & \cdots & b_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n 1} & b_{n 2} & \cdots & b_{n n}\end{array}\right]$.
$A B=B A$, the left side of equation is

$$
\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 2 & \cdots & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & \cdots & n
\end{array}\right]\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right]=\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
2 b_{21} & 2 b_{22} & \cdots & 2 b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
n b_{n 1} & n b_{n 2} & \cdots & n b_{n n}
\end{array}\right]
$$

and the right side of equation is

$$
\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 2 & \cdots & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & \cdots & n
\end{array}\right]=\left[\begin{array}{cccc}
b_{11} & 2 b_{12} & \cdots & n b_{1 n} \\
b_{21} & 2 b_{22} & \cdots & n b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & 2 b_{n 2} & \cdots & n b_{n n}
\end{array}\right]
$$

By the equality of matrix, we have

$$
i b_{i j}=j b_{i j} \text { when } i \neq j
$$

Thus $b_{i j}=0$ when $i \neq j$. This shows that all the matrices that are exchangeable with A are diagonal matrices. For the set of diagonal metrices $\mathrm{C}(\mathrm{A})$,

$$
\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right],\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right], \cdots \cdots \cdots \cdots\left[\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right] \text { is a basis of } \mathrm{C}(\mathrm{~A}) \text {. Thus its }
$$

dimension is $n$.
2. Please find a basis and the dimension of the solution space of the following system of linear equations

$$
\left\{\begin{array}{c}
3 x_{1}+2 x_{2}-5 x_{3}+4 x_{4}=0 \\
3 x_{1}-x_{2}+3 x_{3}-3 x_{4}=0 \\
3 x_{1}+5 x_{2}-13 x_{3}+11 x_{4}=0
\end{array}\right.
$$

Answer:

Transforming the system of linear equations into a matrix form, we have

$$
\left[\begin{array}{cccc}
3 & 2 & -5 & 4 \\
3 & -1 & 3 & -3 \\
3 & 5 & -13 & 11
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Applying the elementary row operations, we can obtain the Reduced Row Echelon Form,

$$
\left[\begin{array}{cccc}
1 & 0 & 1 / 9 & -2 / 9 \\
0 & 1 & -8 / 3 & 7 / 3 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=0
$$

This means

$$
\begin{aligned}
& x_{1}=-\frac{1}{9} x_{3}+\frac{2}{9} x_{4} \\
& x_{2}=\frac{8}{3} x_{3}-\frac{7}{3} x_{4} \\
& x_{3}=x_{3} \\
& x_{4}=x_{4}
\end{aligned}
$$

Therefore, all the solution can be presented as following

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-\frac{1}{9} \\
8 / 3 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
2 / 9 \\
-7 / 3 \\
0 \\
1
\end{array}\right]
$$

and a basis of solution space is $\left[\begin{array}{c}-\frac{1}{9} \\ 8 / 3 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}2 / 9 \\ -7 / 3 \\ 0 \\ 1\end{array}\right]$ and the dimension is 2 .

1. Let $X=\left\{x \mid\left(x_{1}, x_{2}\right) \in R^{2}\right\}$,for two fixed $c_{1}, c_{2}$,let $f(x)=c_{1} x_{1}+c_{2} x_{2}$,please show that $f(x)$ is a linear function defined on linear space $X$. Please show that set $X^{\prime}=\left\{f(x) \mid f(x)=c_{1} x_{1}+c_{2} x_{2}, c_{1} \in R, c_{2} \in R\right\}$ is a linear space and point out a basis of this space.

Proof: First we prove that $f(x)$ is a linear function.

For any $x=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), y=\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right) \in R^{2} \quad, \quad x+y=\left(x_{1}+y_{1}, x_{2}+y_{2}\right), k x=\left(k x_{1}, k x_{2}\right)$

$$
\begin{aligned}
& f(x+y)=c_{1}\left(x_{1}+y_{1}\right)+c_{2}\left(x_{2}+y_{2}\right)=c_{1} x_{1}+c_{2} x_{2}+c_{1} y_{1}+c_{2} y_{2}=f(x)+f(y) \\
& f(k x)=c_{1}\left(k x_{1}\right)+c_{2}\left(k x_{2}\right)=k\left(c_{1} x_{1}+c_{2} x_{2}\right)=k f(x)
\end{aligned}
$$

Thus $f(x)$ is a linear function on linear space $X$.
Second, we prove that $X^{\prime}$ is a linear space, where the addition and scalar multiplication are the addition and scalar multiplication of real-valued functions.

For any $f(x)=f_{1} \mathrm{x}_{1}+f_{2} \mathrm{x}_{2}, g(x)=g_{1} x_{1}+g_{2} x_{2} \in X^{\prime}, \mathrm{f}_{1}, f_{2} \in R, g_{1}, g_{2} \in R$,

$$
\begin{gathered}
f(x)+g(x)=f_{1} \mathrm{x}_{1}+f_{2} \mathrm{x}_{2}+g_{1} x_{1}+g_{2} x_{2}=\left(f_{1}+\mathrm{g}_{1}\right) \mathrm{x}_{1}+\left(f_{2}+g_{2}\right) x_{2} \in X^{\prime} \\
k f(x)=k f_{1} \mathrm{x}_{1}+k f_{2} \mathrm{x}_{2}=\left(k f_{1}\right) \mathrm{x}_{1}+\left(k f_{2}\right) \mathrm{x}_{2} \in X^{\prime}
\end{gathered}
$$

Thus the set is closed under addition and scalar multiplication. Next we prove the eight axioms:

1. $f(x)+g(x)=f_{1} x_{1}+f_{2} x_{2}+g_{1} x_{1}+g_{2} x_{2}=g_{1} x_{1}+g_{2} x_{2}+f_{1} x_{1}+f_{2} x_{2}=g(x)+f(x)$

$$
\begin{aligned}
f(x)+(g(x)+h(x)) & =f_{1} x_{1}+f_{2} x_{2}+\left(g_{1} x_{1}+g_{2} x_{2}+h_{1} x_{1}+h_{2} x_{2}\right) \\
& =\left(f_{1} x_{1}+f_{2} x_{2}+g_{1} x_{1}+g_{2} x_{2}\right)+h_{1} x_{1}+h_{2} x_{2} \\
& =(f(x)+g(x))+h(x)
\end{aligned}
$$

3. $f(x)+0(x)=f(x)$, where $0(x)=0 x_{1}+0 x_{2}$ is the zero element.
4. $f(x)+(-f(x))=0$, where $-f(x)=-f_{1} x_{1}-f_{2} x_{2}$
5. $k(l f(x))=k\left(l c_{1} x_{1}+l c_{2} x_{2}\right)=(k l)\left(c_{1} x_{1}+c_{2} x_{2}\right)=(k l) f(x)$

$$
\begin{align*}
k(f(x)+g(x)) & =k\left(f_{1} x_{1}+f_{2} x_{2}+g_{1} x_{2}+g_{2} x_{2}\right)=k f_{1} x_{1}+k f_{2} x_{2}+k g_{1} x_{2}+k g_{2} x_{2}  \tag{6.}\\
& =k\left(f_{1} x_{1}+f_{2} x_{2}\right)+k\left(g_{1} x_{2}+g_{2} x_{2}\right)=k f(x)+k g(x)
\end{align*}
$$

7. $(k+l) f(x)=(k+l)\left(f_{1} x_{1}+f_{2} x_{2}\right)=k f(x)+l f(x)$
8. $1 f(x)=f(x)$
9. Let $X=\{h(s) \mid h(s)$ is a continuous function defined on $[0,1], 0 \leq \mathrm{s} \leq 1\}$, for any point $s_{1}$ in $[0,1]$, please show that $f(h)=h\left(s_{1}\right)$ is a linear function defined on linear space $X$.

Proof: For any $h(s), g(s) \in X$,
$f(h(s)+g(s))=h\left(s_{1}\right)+g\left(s_{1}\right)=f(h(s))+f(g(s))$
$f(k h(s))=k h\left(s_{1}\right)=k f(h(s))$

Thus $f(h)=h\left(s_{1}\right)$ is a linear function.

## Homework of quotient space

Let $X=\left\{x \mid x=\left(x_{1}, x_{2}\right) \in R^{2}\right\}$. The vector $x, y$ in $X$ can be drawn as a vector in the following figure. $Y$ is a line though the origin as described in the figure. Then $Y$ is a subspace. Please draw the congruence class mod $Y$ of $x$ and $y$ and draw the sum of two congruence classes $\{x\}+\{y\}$.


呲 axGY
Answer:


