Homework of Linear mapping

- 1. Let $F: R^2 \to R^2$ be the map defined by $F\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 2x \\ 3y \end{bmatrix}$ for any $\begin{bmatrix} x \\ y \end{bmatrix} \in R^2$. Describe the image by F of the points lying on the unit circle centered at 0, i.e. $\left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in R^2 | x^2 + y^2 = 1 \right\}$. Solution: Let $\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 2x \\ 3y \end{bmatrix}$, we have $x = \frac{u}{2}, y = \frac{v}{3}$. Putting them into the unit circle equation, we have $\frac{u^2}{4} + \frac{v^2}{9} = 1$. Thus, the image is $\{(u, v) | \frac{u^2}{4} + \frac{v^2}{9} = 1\}$.
- 2. Let $F: R^2 \to R^2$ be the map defined by $F\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} xy \\ y \end{bmatrix}$ for any $\begin{bmatrix} x \\ y \end{bmatrix} \in R^2$. Describe the image by F of the line $\left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in R^2 | x = 2 \right\}$. Solution: Let $\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} xy \\ y \end{bmatrix}$, since x = 2, we have $\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 2y \\ y \end{bmatrix}$, thus the image is $\{(u,v) | u = 2v\}$
- 3. Let V be a linear space of dimension n, and let $\{v_1, v_2, \dots, v_n\}$ be a basis for V. Let F be a linear map from V into itself. Show that F is uniquely defined if one knows $F(v_j)$ for $j \in \{1, 2, \dots, n\}$. Is it also true if F is an arbitrary map from om V into itself?

Solution: Let F' is another linear mapping and $F'(v_i) = F(v_i)$ or $j \in \{1, 2, \dots, n\}$. Because $\{v_1, v_2, \dots, v_n\}$ is a basis for V. We have $x = a_1v_1 + a_2v_2 + \dots + a_nv_n$, thus $F(x) = F(a_1v_1 + \dots + a_nv_n) = a_1F(v_1) + \dots + a_nF(v_n)$. and

$$F'(x) = F'(a_1v_1 + \dots + a_nv_n) = a_1F'(v_1) + \dots + a_nF'(v_n)$$

Since $F'(v_i) = F(v_i)$ for $j \in \{1, 2, \dots, n\}$, we have F(x) = F'(x)

Thus, F(x) is uniquely difined.

When the *F* is an arbitrary map, the answer is false. For example, Consider a nonlinear mapping $F(x) = (c_1x_1 + c_2x_2)^2$ defined on R^2 . Let $e_1 = (1,0), e_2 = (0,1)$ be a basis of R^2 . If $F(e_1) = 1, F(e_2) = 1$. we have $c_1^2 = 1$ and $c_2^2 = 1$, thus, c_1 and c_2 may be 1 or -1. Thus, the mapping $F(x) = (c_1x_1 + c_2x_2)^2$ cannot be defined when $F(e_1) = 1, F(e_2) = 1$ are known.

4. Let V,W be two linear space over the same field, and let $T:V \rightarrow W$ be a linear mapping. Show that the following set is a subspace of V.

$$\{x \in V \mid T(x) = 0\}$$

Prove: For any $x, y \in \{x \in V | T(x) = 0\}$, T(x + y) = T(x) + T(y) = 0

$$T(kx) = kT(x) = 0.$$

The set is closed under the addition and scalar multiplication. Thus it is a subspace.

5. Let $T: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ be the map defined for any $n \times n$ dimensional matrix $A \in \mathbb{R}^{n \times n}$ by

$$T(A) = \frac{1}{2}(A + A^T)$$

where A^{T} denotes the transpose of matrix A.

- 1) Show that T is a linear mapping.
- Show that the kernel of *T* consists in the linear space of all skewsymmetric matrices.
- Show that the range of T consists in the linear space of all symmetric matrices.
- 4) What is the dimension of the linear space of all symmetric matrices, and the dimension of the linear space of all skew-symmetric matrices?

Answer: (1) For $A, B \in \mathbb{R}^{n \times n}$, $k \in \mathbb{R}$

$$T(A+B) = \frac{1}{2} \Big[(A+B)^{T} + (A+B) \Big] = \frac{1}{2} \Big[A^{T} + B^{T} + A + B \Big] = \frac{1}{2} \Big[A^{T} + A + B^{T} + B \Big]$$

= T(A) + T(B)
$$T(kA) = \frac{1}{2} \Big[(kA)^{T} + kA \Big] = k \frac{1}{2} (A^{T} + A) = kT(A)$$

$$I(kA) = -\lfloor (kA) + kA \rfloor = k - (A + A) = kI$$

Therefore T is a linear map.

(2)The kernel is $\{A \in R^{n \times n} | T(A) = 0\}$, since $T(A) = \frac{1}{2}(A^T + A) = 0$, we have $A^T = -A$. Thus the kernel consists in the linear space of all skew-symmetric matrices.

(3) The range of T is $\{T(A) | A \in \mathbb{R}^{n \times n}\}$, since $T(A) = \frac{1}{2}(A^T + A)$ and $[T(A)]^T = \left[\frac{1}{2}(A^T + A)\right]^T = \frac{1}{2}(A + A^T) = T(A)$, thus the range of T consists in the

linear space of all symmetric matrices.

(4) Since
$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
,
$$\begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
,
$$\cdots \cdots \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
,
$$\cdots \cdots \begin{bmatrix} 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
,
$$\cdots \cdots \begin{bmatrix} 0 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 is a basis of the linear space of all symmetric matrices, , so its dimension is n+(n-1)+\dots+1=\frac{n(n+1)}{2}. Similarly, the dimension of the linear space of all skew-symmetric matrices is (n-1)+(n-2)+\dots+1=\frac{n(n-1)}{2}. Consider the mapping
$$F\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x \\ x-y \\ x-z \\ x-y-z \end{bmatrix}$$

1) Determine the kernel of F.

6.

To determine the kernel, we need to solve the linear equation

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

By the RREF form, we have
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \text{ only } \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \text{ can}$$

satisfy this equation. Thus, the kernel is
$$\left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right\}$$

2) Determine the range of F.

The range of F is the set
$$\begin{cases} \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in R^{3} \\ \text{. The range is the} \\ \text{space spanned by the column vectors of matrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \\ 1 & -1 & -1 \end{bmatrix} \\ \text{. The range is} \\ \text{the space spanned by} \begin{cases} 1 \\ 1 \\ 1 \\ 1 \end{cases}, \begin{bmatrix} 0 \\ -1 \\ 0 \\ -1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ -1 \\ -1 \end{bmatrix} \\ \text{. Since these vectors are linear} \end{cases}$$

independent, the dimension of range is 3.

- 7. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear mapping which associated matrix has the form
 - $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ with respect to the canonical basis of R^3 $(e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$). What is the matrix associated with T in the

basis generated by the three vectors $v_1 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix}, v_2 = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}.$

Solution:

According to the equivalence of matrices, we know that the matrix

associated with T in the basis generated by the three vectors v_1, v_2, v_3 is

B, which is equivalent to the matrix
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
 by the following equation

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & -1 \end{bmatrix} B$$

Therefore,

$$B = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 1/\sqrt{2} & 1/\sqrt{2} & 0\\ 0 & 0 & -1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 1/\sqrt{2} & 1/\sqrt{2} & 0\\ 0 & 0 & -1 \end{bmatrix}^{T} \begin{bmatrix} 1 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 1/\sqrt{2} & 1/\sqrt{2} & 0\\ 0 & 0 & -1 \end{bmatrix}^{T} \begin{bmatrix} 1 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 1/\sqrt{2} & 1/\sqrt{2} & 0\\ 0 & 0 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} 1/\sqrt{2} & \sqrt{2} & 0\\ -1/\sqrt{2} & \sqrt{2} & 0\\ 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 1/\sqrt{2} & 1/\sqrt{2} & 0\\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 3/2 & 1/2 & 0\\ 1/2 & 3/2 & 0\\ 0 & 0 & 3 \end{bmatrix}$$