Homework

1. Show that the function that takes $\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \in \mathrm{R}^{2} \times R^{2}$ to $\left|x_{1} y_{1}\right|+\left|x_{2} y_{2}\right|$ is not an inner product on R^{2}.

Solution: $\left|x_{1} y_{1}\right|+\left|x_{2} y_{2}\right|$ is not a bilinear function. For example, for fixed $\left(y_{1}, y_{2}\right)$, $f(x)=\left|y_{1} x_{1}\right|+\left|y_{2} x_{2}\right|$ is a function of $x=\left(x_{1}, x_{2}\right)$ but is not a linear function. For any $a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right)$, we can find $f(a+b) \neq f(a)+f(b)$ since
$f(a+b)=\left|y_{1}\left(a_{1}+b_{1}\right)\right|+\left|y_{2}\left(a_{2}+b_{2}\right)\right|=\left|y_{1} a_{1}+y_{1} b_{1}\right|+\left|y_{2} a_{2}+y_{2} b_{2}\right|$
$f(a)+f(b)=\left|y_{1} a_{1}\right|+\left|y_{2} a_{2}\right|+\left|y_{1} b_{1}\right|+\left|y_{2} b_{2}\right|$
2. Suppose V is a real inner product space, show that
(a) Show that the inner product $\langle u+v, u-v\rangle=\|u\|^{2}-\|v\|^{2}$ for every $u, v \in V$.
(b) Show that if $u, v \in V$ have the same norm, then $u+v$ is orthogonal to $u-v$.
(c) Use part(b) to show that the diagonals of a rhombus are perpendicular to each other.

Solution: (a) $\langle u+v, u-v\rangle=\langle u, u\rangle+\langle v, u\rangle-\langle u, v\rangle-\langle v, v\rangle=\|u\|^{2}-\|v\|^{2}$
(b) If $u, v \in V$ have the same norm, we have $\langle u+v, u-v\rangle=\|u\|^{2}-\|v\|^{2}=0$, thus $u+v$ is orthogonal to $u-v$.
(c) For a rhombus, we can set up a coordinate in R^{2} as described in the following figure

Thus the conclusion that the diagonals of a rhombus are perpendicular can be obtained by part (b).
3. Suppose $u, v \in V$. Prove that the inner product $\langle u, v\rangle=0$ if and only if $\|u\| \leq\|u+a v\|$ for all $a \in R$.

Solution: First, we prove "only if": since $\langle u, v\rangle=0$,

$$
\begin{aligned}
\|u+a v\|^{2} & =\langle u+a v, u+a v\rangle=\|u\|^{2}+a\langle u, v\rangle+a^{2}\|v\|^{2} \\
& =\|u\|^{2}+a^{2}\|v\|^{2} \geq\|u\|^{2}
\end{aligned}
$$

Thus, we prove $\|u\| \leq\|u+a v\|$ by the square root.

Next we prove "if": If, $\|u\| \leq\|u+a v\|$, we prove that $\langle u, v\rangle=0$.
From $\quad\|u\| \leq\|u+a v\|$, we have $\|u\|^{2} \leq\|u+a v\|^{2}$, thus $a\langle u, v\rangle+a^{2}\|v\|^{2} \geq 0$. This means that quadratic function $f(a)=\|v\|^{2} a^{2}+\langle u, v\rangle a$ is always lager than zero. Since $\|v\|^{2} \geq 0$, the discriminant $\Delta=\langle u, v\rangle^{2} \leq 0$, thus we have $\langle u, v\rangle=0$
4. Suppose n is a positive integer. Prove that $\frac{1}{\sqrt{2 \pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\cos 2 x}{\sqrt{\pi}}, \cdots, \frac{\cos n x}{\sqrt{\pi}}, \frac{\sin x}{\sqrt{\pi}}, \frac{\sin 2 x}{\sqrt{\pi}}, \cdots, \frac{\sin n x}{\sqrt{\pi}}$ is an orthonormal list of vectors in $C[-\pi, \pi]$, the linear space of continuous real-valued functions on $[-\pi, \pi]$ with inner product $\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x$.

Solution: To prove the above functions is an orthonormal list, we need to do the following computations:
First, we prove they are orthogonal each other
$\left\langle\frac{1}{\sqrt{2 \pi}}, \frac{\cos n x}{\sqrt{\pi}}\right\rangle=\int_{-\pi}^{\pi} \frac{\cos n x}{\sqrt{2} \pi} d x=\frac{1}{\sqrt{2} \pi} \frac{1}{n}(2 \sin n \pi)=0$
$\left\langle\frac{1}{\sqrt{2 \pi}}, \frac{\sin n x}{\sqrt{\pi}}\right\rangle=\int_{-\pi}^{\pi} \frac{\sin n x}{\sqrt{2} \pi} d x=\left.\frac{1}{\sqrt{2} \pi}\left(-\frac{1}{n}\right)(\operatorname{cosn} \mathrm{x})\right|_{-\pi} ^{\pi}=0$

$$
\begin{aligned}
\left\langle\frac{\cos m x}{\sqrt{\pi}}, \frac{\sin n x}{\sqrt{\pi}}\right\rangle & =\int_{-\pi}^{\pi} \frac{\sin n x \cos m x}{\pi} d x=\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2}[\sin (n+m) x+\sin (n-m) x] d x \\
& =\frac{1}{2 \pi}\left[\left.\left(-\frac{1}{n+m}\right) \cos (n+m) x\right|_{-\pi} ^{\pi}+\left.\left(-\frac{1}{n-m}\right) \cos (n-m) x\right|_{-\pi} ^{\pi}=0\right.
\end{aligned}
$$

Then we prove they are normalized.

$$
\begin{aligned}
\left\langle\frac{1}{\sqrt{2 \pi}}, \frac{1}{\sqrt{2 \pi}}\right\rangle & =\int_{-\pi}^{\pi} \frac{1}{2 \pi} d x=1 \\
\left\langle\frac{\cos n x}{\sqrt{\pi}}, \frac{\cos n x}{\sqrt{\pi}}\right\rangle & =\int_{-\pi}^{\pi} \frac{\cos ^{2} n x}{\pi} d x=\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2}[1+\cos (2 n x)] d x \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}[1+\cos (2 n x)] d x=1+\int_{-\pi}^{\pi} \cos (2 n x) d x=1 \\
\left\langle\frac{\sin n x}{\sqrt{\pi}}, \frac{\sin n x}{\sqrt{\pi}}\right\rangle & =\int_{-\pi}^{\pi} \frac{\sin ^{2} n x}{\pi} d x=\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2}[1-\cos (2 n x)] d x \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}[1-\cos (2 n x)] d x=1-\int_{-\pi}^{\pi} \cos (2 n x) d x=1
\end{aligned}
$$

5. On $P^{2}[x]$, the linear space of polynomial functions of degree ≤ 2, consider the inner product given by $\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x$. Apply the Gram-Schmidt Procedure to the basis $1, x, x^{2}$ to produce an orthonormal basis of $P^{2}[x]$

Solution:

Let $u_{1}=1,\left\langle u_{1}, u_{1}\right\rangle=\int_{0}^{1} 1 d x=1$, thus we obtain the first orthonormal vector $v_{1}=1$ According to the Gram - Schmidt Procedure, $\left\langle x, v_{1}\right\rangle=\int_{0}^{1} x d x=\frac{1}{2} \quad$ let $u_{2}=x-\left(x, v_{1}\right) v_{1}=x-\frac{1}{2}$ $\left\langle u_{2}, u_{2}\right\rangle=\int_{0}^{1}\left(x-\frac{1}{2}\right)^{2} d x=\int_{0}^{1}\left(x^{2}-x+\frac{1}{4}\right) d x=\left.\left(\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+\frac{1}{4} x\right)\right|_{0} ^{1}=\frac{1}{12}$ thus, we obtain the second orthonormal vector $v_{2}=\sqrt{12}\left(x-\frac{1}{2}\right)=2 \sqrt{3}\left(x-\frac{1}{2}\right)$

$$
\begin{aligned}
\left\langle x^{2}, v_{1}\right\rangle=\int_{0}^{1} x^{2} d x=\frac{1}{3}, \quad\left\langle x^{2}, v_{2}\right\rangle & =2 \sqrt{3} \int_{0}^{1} x^{2}\left(x-\frac{1}{2}\right) d x \\
& =2 \sqrt{3} \int_{0}^{1}\left(x^{3}-\frac{1}{2} x^{2}\right) d x=\left.2 \sqrt{3}\left(\frac{1}{4} x^{4}-\frac{1}{6} x^{3}\right)\right|_{0} ^{1}=\frac{1}{\sqrt{12}}
\end{aligned}
$$

Let $u_{3}=x^{2}-\left(x^{2}, v_{1}\right) v_{1}-\left(x^{2}, v_{2}\right) v_{2}=x^{2}-x+\frac{1}{6}$,

$$
\left\langle u_{3}, u_{3}\right\rangle=\int_{0}^{1}\left(x^{2}-x+\frac{1}{6}\right)^{2} d x=\frac{1}{180} \text {,thus } v_{3}=6 \sqrt{5}\left(x^{2}-x+\frac{1}{6}\right)
$$

6. Find a polynomial $q \in P^{2}[x]$ such that $p\left(\frac{1}{2}\right)=\int_{0}^{1} p(x) q(x) d x \quad$ for every $p(x) \in P^{2}[x]$.

Solution: From problem 5, there is an orthonormal basis v_{1}, v_{2}, v_{3} for $P^{2}[x]$, thus $p(x), q(x)$ can be written as $p(x)=p_{1} v_{1}+p_{2} v_{2}+p_{3} v_{3}, q(x)=q_{1} v_{1}+q_{2} v_{2}+q_{3} v_{3}$. Since $p(x)$ is an arbitrary polynomial, p_{1}, p_{2}, p_{3} may be any real numbers.
leftside $=p\left(\frac{1}{2}\right)=p_{1}+p_{2}\left[2 \sqrt{3}\left(\frac{1}{2}-\frac{1}{2}\right)\right]+p_{3}\left[6 \sqrt{5}\left(\frac{1}{4}-\frac{1}{2}+\frac{1}{6}\right)\right]=\mathrm{p}_{1}-\frac{\sqrt{5}}{2} p_{3}$
rightside $=\langle p, q\rangle=p_{1} q_{1}+p_{2} q_{2}+p_{3} q_{3}$
Considering the arbitrary property of p_{1}, p_{2}, p_{3}, we have $q_{1}=1, q_{2}=0, q_{3}=-\frac{\sqrt{5}}{2}$
Thus, $q(x)=1-\frac{\sqrt{5}}{2} 6 \sqrt{5}\left(x^{2}-x+\frac{1}{6}\right)=-15 x^{2}+15 x-\frac{3}{2}$
7. Suppose U is the subspace of R^{4} defined by $U=\operatorname{span}((1,2,3,-4),(-5,4,3,2))$ Find an orthonormal basis of U and an orthonormal basis of its orthogonal complement U^{\perp}

Solution: $\quad u_{1}=(1,2,3,-4) \quad, \quad\left\|u_{1}\right\|^{2}=1+2 * 2+3 * 3+4 * 4=30,\left\|u_{1}\right\|=\sqrt{30} \quad$,then
$v_{1}=\frac{1}{\sqrt{30}}(1,2,3,-4)$.
$u_{2}=(-5,4,3,2)-\frac{2}{15}(1,2,3,-4)=\frac{1}{15}(-77,56,39,38)$
$\left\|u_{2}\right\|^{2}=\left(\frac{-77}{15}\right)^{2}+\left(\frac{56}{15}\right)^{2}+\left(\frac{39}{15}\right)^{2}+\left(\frac{38}{15}\right)^{2},\left\|u_{2}\right\| \approx 7.3 \quad v_{2}=\frac{u_{2}}{\left\|u_{2}\right\|}$
Let $v=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{T} \in U^{\perp}$, then we have

$$
\begin{aligned}
& x_{1}+2 x_{2}+3 x_{3}-4 x_{4}=0 \\
& -5 x_{1}+4 x_{2}+3 x_{3}+2 x_{4}=0
\end{aligned}
$$

By using the RREF form, we have

$$
\begin{aligned}
& x_{1}=-\frac{3}{7} x_{3}+\frac{10}{7} x_{4} \\
& x_{2}=-\frac{9}{7} x_{3}+\frac{9}{7} x_{4}
\end{aligned}
$$

This is to say,

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-\frac{3}{7} \\
-\frac{9}{7} \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
\frac{10}{7} \\
\frac{9}{7} \\
0 \\
1
\end{array}\right]
$$

So, $U^{\perp}=\operatorname{span}\left\{\left[\begin{array}{c}-\frac{3}{7} \\ -\frac{9}{7} \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}\frac{10}{7} \\ \frac{9}{7} \\ 0 \\ 1\end{array}\right]\right\}$, we repeat the above process to obtain the orthonormal
basis of the orthogonal complement U^{\perp}
8. In R^{4}, let $U=\operatorname{span}((1,1,0,0),(1,1,1,2))$. Find $u \in U$ such that $\|u-(1,2,3,4)\|_{2}$ is as small as possible.

Solution: First, we obtain the projection matrix

$$
P_{U}=C\left(C^{T} C\right)^{-1} C^{T}
$$

Where $C=\left[\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 0 & 1 \\ 0 & 2\end{array}\right]$. Then $P_{U}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 0 & 1 \\ 0 & 2\end{array}\right] \frac{1}{10}\left[\begin{array}{cc}7 & -2 \\ -2 & 2\end{array}\right]\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 2\end{array}\right]=\frac{1}{10}\left[\begin{array}{llll}5 & 5 & 0 & 0 \\ 5 & 5 & 0 & 0 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 4 & 8\end{array}\right]$
Then $u=\frac{1}{10}\left[\begin{array}{llll}5 & 5 & 0 & 0 \\ 5 & 5 & 0 & 0 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 4 & 8\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]=\left[\begin{array}{c}3 / 2 \\ 3 / 2 \\ 11 / 5 \\ 22 / 5\end{array}\right]$

