## Homework 1

April 6, 2023

1. Let $V$ be a vector space and let $\mathbf{x}, \mathbf{y} \in V$. Show that
(a) $\beta \mathbf{0}=\mathbf{0}$ for each scalar $\beta$.
(b) $\mathbf{x}+\mathbf{y}=\mathbf{0}$ implies that $\mathbf{y}=-\mathbf{x}$.
(c) $(-1) \mathrm{x}=-\mathrm{x}$.
2. Let $V$ be the set of all ordered pairs of real numbers with addition defined by

$$
\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)
$$

and scalar multiplication defined by

$$
\alpha \circ\left(x_{1}, x_{2}\right)=\left(\alpha x_{1}, x_{2}\right)
$$

Scalar multipliacation for this system is defined in an unusual way, and consequently we use the symbol o to avoid confusion with the ordinary scalar multiplication of row vectors. Is $V$ a vector space with these operations? Justify your answer.
3. Let $R^{+}$denote the set of positive real numbers. Define the operation of scalar multiplication, denoted o, by

$$
\alpha \circ x=x^{\alpha}
$$

for each $x \in R^{+}$and for any real number $\alpha$. Define the operation of addition, denoted $\oplus$, by

$$
x \oplus y=x \cdot y \quad \text { for all } \quad x, y \in R^{+}
$$

Thus, for this system, the scalar product of -3 times $\frac{1}{2}$ is given by

$$
-3 \circ \frac{1}{2}=\left(\frac{1}{2}\right)^{-3}=8
$$

and the sum of 2 and 5 is given by

$$
2 \oplus 5=2 \cdot 5=10
$$

Is $R^{+}$a vector space with these operations? Prove your answer.
4. Suppose $\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}$ and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{q}$ are vectors in a vector space $V$, and let $H=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right)$ and $K=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{q}\right)$.
(a) Show that $H \bigcap K$ is a subspace of $V$.
(b) Show that $H$ and $K$ are subspaces of $H+K$.
(c) Show that $H+K=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{q}\right)$.
5. Let $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}$ be a spanning set for a vector space $V$.
(a) If we add another vector, $\mathrm{x}_{k+1}$, to the set, will we still have a spanning set? Explain.
(b) If we delete one of the vectors,say, $\mathrm{x}_{k}$, from the set, will we still have a spanning set? Explain.

