Homework 2

April 14, 2023

1. Suppose $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}$ spans V. Prove that the list

$$
\mathbf{x}_{1}-\mathbf{x}_{2}, \mathbf{x}_{2}-\mathbf{x}_{3}, \mathbf{x}_{3}-\mathbf{x}_{4}, \mathbf{x}_{4}
$$

also spans V.
2. Suppose $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}$ is linearly independent in V. Prove that the list

$$
\mathbf{x}_{1}-\mathbf{x}_{2}, \mathbf{x}_{2}-\mathbf{x}_{3}, \mathbf{x}_{3}-\mathbf{x}_{4}, \mathbf{x}_{4}
$$

is also linearly independent.
3. Suppose

$$
U=\left\{(x, 3 x, y, 7 y) \in \mathbb{R}^{4}: x, y \in \mathbb{R}\right\}
$$

Find a basis of U and a subspace W of \mathbb{R}^{4} such that $\mathbb{R}^{4}=U \oplus W$.
4. For each subspace in (a)-(d), (1) find a basis, and (2) state the dimension.
(a)

$$
\left\{\left[\begin{array}{c}
x+2 y \\
2 x-3 y \\
-x
\end{array}\right]: x, y \text { in } \mathbb{R}\right\}
$$

(b)

$$
\left\{\left[\begin{array}{c}
x+3 y-z \\
4 x+5 y+3 z \\
3 x+6 z \\
-x+7 y-9 z
\end{array}\right]: x, y, z \text { in } \mathbb{R}\right\}
$$

(c)

$$
\{(x, y, z, w): x-4 y+3 w=0\}
$$

5. Let

$$
\mathbf{x}_{1}=\left[\begin{array}{l}
2 \\
-1 \\
1 \\
2
\end{array}\right], \quad \mathbf{x}_{2}=\left[\begin{array}{r}
1 \\
-1 \\
0 \\
2
\end{array}\right], \quad \mathbf{x}_{3}=\left[\begin{array}{l}
4 \\
-3 \\
1 \\
a
\end{array}\right]
$$

If $\operatorname{dim}\left(\operatorname{Span}\left(x_{1}, x_{2}, x_{3}\right)\right)=2$, compute a.
6. V is a nonzero finite-dimensional vector space, and the vectors listed belong to V. Mark each statement True or False. Justify each answer (Prove it if True or give an anti-example if False).
a. If $\operatorname{dim} V=p$ and S is a linearly independent set in V, then S is a basis for V.
b. If there exists a linearly independent set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in V, then $\operatorname{dim} V \geq$ p.
c. If there exists a set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ that spans V, then $\operatorname{dim} V \leq p$.
d. If every set of p elements in V fails to span V, then $\operatorname{dim} V>p$.
e. If there exists a linearly dependent set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in V, then $\operatorname{dim} V \leq$ p.
7. Show that if U and V are subspaces of \mathbb{R}^{n} and $U \bigcap V=\{\mathbf{0}\}$, then

$$
\operatorname{dim}(U+V)=\operatorname{dim} U+\operatorname{dim} V
$$

8. Consider two ordered bases $E=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $F=\left\{w_{1}, w_{2}, w_{3}\right\}$ for \mathbb{R}^{3}, where

$$
\begin{gathered}
v_{1}=\left[\begin{array}{l}
4 \\
6 \\
7
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right] \\
w_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad w_{2}=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right], \quad w_{3}=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]
\end{gathered}
$$

(a) Find the transition matrix S_{1} from E to F.
(b) Find the transition matrix S_{2} from F to E.
(c) Verify that $S_{1} S_{2}=S_{2} S_{1}=I_{3}$.
(d) If $[v]_{E}=\left[\begin{array}{c}2 \\ 3 \\ -4\end{array}\right]$, compute $[v]_{F}$ and use S_{1} or S_{2} (decide by yourself) to verify your answer.

