Homework 3

April 24, 2023

1. Consider two ordered bases $E=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $F=\left\{w_{1}, w_{2}, w_{3}\right\}$ for a vector space V, and suppose

$$
v_{1}=-w_{1}+w_{2}+w_{3}, \quad v_{2}=w_{2}+3 w_{3}, \quad v_{3}=4 w_{1}-2 w_{2}
$$

(a) Find the transition matrix S from E to F.
(b) Compute the coordinate vector $[v]_{F}$ for $v=2 v_{1}+1 v_{2}-v_{3}$.
2. Let $A \in \mathbb{R}^{4 \times 5}$ be

$$
A=\left[\begin{array}{ccccc}
1 & -2 & 1 & 1 & 2 \\
-1 & 3 & 2 & 0 & -2 \\
0 & 1 & 3 & 1 & 4 \\
1 & 2 & 13 & 5 & 5
\end{array}\right]
$$

(a) Find the four subspaces of the matrix $\left(C(A), C\left(A^{T}\right), N(A)\right.$, and $N\left(A^{T}\right)$, determine their bases and dimensions).
(b) Write down the fundamental theorem of linear algebra: Part 1 and Part 2. And verify them by the answers in (a).
3. Let $A \in \mathbb{R}^{4 \times 5}$ and let R be the reduced row echelon form of A. If the first and fourth columns of A are

$$
a_{1}=\left[\begin{array}{c}
4 \\
1 \\
-2 \\
0
\end{array}\right], \quad a_{4}=\left[\begin{array}{c}
-3 \\
-3 \\
-1 \\
-5
\end{array}\right]
$$

and

$$
R=\left[\begin{array}{ccccc}
1 & 0 & -1 & 0 & 1 \\
0 & 1 & -2 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

(a) find a basis for $N(A)$.
(b) given that x_{0} is a solution to $A x=b$, where

$$
b=\left[\begin{array}{c}
-2 \\
-3 \\
0 \\
1
\end{array}\right], \quad x_{0}=\left[\begin{array}{c}
0 \\
3 \\
1 \\
-1 \\
0
\end{array}\right]
$$

determine the remaining column vectors of A.
4. Let x and y be linearly independent vectors in \mathbb{R}^{n} and let $S=\operatorname{Span}(x, y)$. We can use x and y to define a matrix A be setting

$$
A=x y^{T}+y x^{T}
$$

(a) Show that $N(A)=S^{\perp}$.
(b) Show that $\operatorname{dim} C(A)=2$ (the rank of A must be 2).

