Homework 4

April 27, 2023

1. Suppose $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ is a list of vectors in V. Define $T \in \mathcal{L}\left(\mathbb{R}^{m}, V\right)$ by

$$
T(\mathbf{x})=x_{1} \mathbf{v}_{1}+\ldots+x_{m} \mathbf{v}_{m},
$$

for $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{m}\end{array}\right] \in \mathbb{R}^{m}$. (Injective or Surjective.)
(a) What property of T corresponds to $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ spanning V ? Why?
(b) What property of T corresponds to $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ being linearly independent? Why?
2. (a) Suppose $T \in \mathcal{L}(V, W)$ is injective and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is linearly independent in V. Prove that $T\left(\mathbf{v}_{1}\right), \ldots T\left(\mathbf{v}_{n}\right)$ is linearly independent in W.
(b) Suppose V is finite-dimensional and that $T \in \mathcal{L}(V, W)$. Prove that there exists a subspace U of V such that $U \cap \operatorname{null} T=\{0\}$ and $T(V)=$ $T(U)$. Find a basis.
3. (a) Suppose V and W are both finite-dimensional. Prove that there exists an surjective linear transfomation from V onto W if and only if $\operatorname{dim} V \geq \operatorname{dim} W$.
(b) Suppose V and W are finite-dimensional and that U is a subspace of V. Prove that there exists $T \in \mathcal{L}(V, W)$ such that null $T=U$ if and only if $\operatorname{dim} U \geq \operatorname{dim} V-\operatorname{dim} W$
4. (a) Suppose $T \in \mathcal{L}\left(\mathbb{R}^{4}, \mathbb{R}^{2}\right)$ and null $T=\left\{x=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{\mathrm{T}} \in\right.$ $\mathbb{R}^{4} \mid x_{1}=2 x_{2}$ and $\left.x_{3}=5 x_{4}\right\}$. Prove that T is surjective.
(b) Prove that there does not exist a linear transformation from \mathbb{R}^{5} to \mathbb{R}^{2} whose null space equals $\left\{x=\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right]^{\mathrm{T}} \in \mathbb{R}^{4} \mid x_{1}=2 x_{2}\right.$ and $\left.x_{3}=x_{4}=x_{5}\right\}$.
5. Find the standard matrices of the following linear transformations.
(a) $T \in \mathcal{L}\left(\mathbb{R}^{2}, \mathbb{R}^{3}\right)$ with $T(x)=\left[\begin{array}{c}2 x_{1}-x_{2} \\ -x_{1}+x_{2} \\ x_{2}\end{array}\right]$ for $x=\left[\begin{array}{c}x_{1} \\ x_{2}\end{array}\right]$.
(b) $T \in \mathcal{L}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ is a vertical shear transformatin that leaves \mathbf{e}_{2} unchanged and maps \mathbf{e}_{1} into $2 \mathbf{e}_{2}+\mathbf{e}_{1}$.
(c) $T \in \mathcal{L}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ first performs a horizontal shear transformatin that leaves \mathbf{e}_{1} unchanged and maps \mathbf{e}_{2} into $-2 \mathbf{e}_{1}+\mathbf{e}_{2}$ and then reflects points through the line $x_{2}=-x_{1}$.
6. Let

$$
\mathbf{b}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \mathbf{b}_{3}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

and let L be the linear transformation from \mathbb{R}^{2} into \mathbb{R}^{3} define by

$$
L(\mathbf{x})=\left(x_{1}-x_{2}\right) \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}+\left(x_{1}+x_{2}\right) \mathbf{b}_{3}
$$

find the matrix A representing L with respect to the ordered bases $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ and $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$.

