Homework 4

April 27, 2023

1. Suppose $\mathbf{v}_1, ..., \mathbf{v}_m$ is a list of vectors in V. Define $T \in \mathcal{L}(\mathbb{R}^m, V)$ by

$$T(\mathbf{x}) = x_1 \mathbf{v}_1 + \dots + x_m \mathbf{v}_m,$$

for $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} \in \mathbb{R}^m$. (Injective or Surjective.)

- (a) What property of T corresponds to $\mathbf{v}_1, ..., \mathbf{v}_m$ spanning V? Why?
- (b) What property of T corresponds to $v_1, ..., v_m$ being linearly independent? Why?
- 2. (a) Suppose $T \in \mathcal{L}(V, W)$ is injective and $\mathbf{v}_1, ..., \mathbf{v}_n$ is linearly independent in V. Prove that $T(\mathbf{v}_1), ...T(\mathbf{v}_n)$ is linearly independent in W.
 - (b) Suppose V is finite-dimensional and that $T \in \mathcal{L}(V, W)$. Prove that there exists a subspace U of V such that $U \cap \text{null } T = \{0\}$ and T(V) = T(U). Find a basis.
- (a) Suppose V and W are both finite-dimensional. Prove that there exists an surjective linear transfomation from V onto W if and only if dim V ≥ dim W.
 - (b) Suppose V and W are finite-dimensional and that U is a subspace of V. Prove that there exists $T \in \mathcal{L}(V, W)$ such that $\operatorname{null} T = U$ if and only if $\dim U \ge \dim V \dim W$
- 4. (a) Suppose $T \in \mathcal{L}(\mathbb{R}^4, \mathbb{R}^2)$ and null $T = \{x = [x_1, x_2, x_3, x_4]^T \in \mathbb{R}^4 | x_1 = 2x_2 \text{ and } x_3 = 5x_4\}$. Prove that T is surjective.
 - (b) Prove that there does not exist a linear transformation from \mathbb{R}^5 to \mathbb{R}^2 whose null space equals $\{x = [x_1, x_2, x_3, x_4, x_5]^T \in \mathbb{R}^4 | x_1 = 2x_2 \text{ and } x_3 = x_4 = x_5\}.$
- 5. Find the standard matrices of the following linear transformations.

(a)
$$T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$$
 with $T(x) = \begin{bmatrix} 2x_1 - x_2 \\ -x_1 + x_2 \\ x_2 \end{bmatrix}$ for $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

- (b) $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$ is a vertical shear transformatin that leaves \mathbf{e}_2 unchanged and maps \mathbf{e}_1 into $2\mathbf{e}_2 + \mathbf{e}_1$.
- (c) $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$ first performs a horizontal shear transformatin that leaves \mathbf{e}_1 unchanged and maps \mathbf{e}_2 into $-2\mathbf{e}_1 + \mathbf{e}_2$ and then reflects points through the line $x_2 = -x_1$.
- 6. Let

$$\mathbf{b}_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \mathbf{b}_3 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$$

and let L be the linear transformation from \mathbb{R}^2 into \mathbb{R}^3 define by

 $L(\mathbf{x}) = (x_1 - x_2)\mathbf{b}_1 + x_2\mathbf{b}_2 + (x_1 + x_2)\mathbf{b}_3,$

find the matrix A representing L with respect to the ordered bases $\{e_1, e_2\}$ and $\{b_1, b_2, b_3\}$.