Homework 5

May 8, 2023

1. Let $E=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ and $F=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$, where

$$
\mathbf{u}_{1}=\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right), \mathbf{u}_{2}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right), \mathbf{u}_{2}=\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)
$$

and

$$
\mathbf{b}_{1}=(1,-1)^{T}, \quad \mathbf{b}_{2}=(2,-1)^{T}
$$

For each of the following linear transformations L from \mathbb{R}^{3} into \mathbb{R}^{2}, find the matrix representing L with respect to the ordered bases E and F :
(i) $L(\mathbf{x})=\binom{x_{1}+x_{2}}{x_{1}-x_{3}}$
(ii) $L(\mathbf{x})=\binom{2 x_{2}}{-x_{1}}$
2. Let D be the differentiation operator on $\mathbb{P}_{2}(\mathbb{R})$. Find the matrix B representing D with respect to $\left[1, x, x^{2}\right]$, the matrix A representing D with respect to $\left[2,4 x, 4 x^{2}-4\right]$, and the nonsingular matrix S such that $B=S^{-1} A S$.
3. Suppose V and W are finite-dimensional and $T \in \mathcal{L}(V, W)$. Prove that dim range $T=1$ if and only if there exist a basis of V and a basis of W such that with respect to these bases, all entries of the matrix representation $\mathcal{M}(T)$ equal 1.
4. For each of the following systems $A x=b$, find all the least squares solutions:
(i) $A=\left[\begin{array}{cc}1 & 2 \\ 2 & 1 \\ -1 & 1\end{array}\right], b=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$;
(ii) $A=\left[\begin{array}{cc}1 & 2 \\ 2 & 4 \\ -1 & -2\end{array}\right], b=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$.
5. (a) Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Prove that the following statements are equivalent:
(i) T is invertible;
(ii) T is injective;
(iii) T is surjective.
(b) Suppose V is finite-dimensional, U is a subspace of V, and $S \in \mathcal{L}(U, V)$. Prove there exists an invertible operator $T \in \mathcal{L}(V)$ such that $T(u)=S(u)$ for every $u \in U$ if and only if S is injective.
(c) Suppose V, W are finite-dimensional and $T_{1}, T_{2} \in \mathcal{L}(V, W)$. Prove that $\operatorname{null} T_{1}=\operatorname{null} T_{2}$ if and only if there exists an invertible operator $S \in \mathcal{L}(W)$ such that $T_{1}=S T_{2}$.
(d) Suppose V, W are finite-dimensional and $T_{1}, T_{2} \in \mathcal{L}(V, W)$. Prove that dim null $T_{1}=\operatorname{dim}$ null T_{2} if and only if there exists an invertible operators $R \in \mathcal{L}(V)$ and $S \in \mathcal{L}(W)$ such that $T_{1}=S T_{2} R$.

