

Teacher: Yanjie Li Course: Linear Algebra in Control Theory Assignment Number: 1 Disclosure date: May 18, 2023

#### Problem 1

Show that the function that takes  $((x_1, x_2), (y_1, y_2)) \in \mathbb{R}^2 \times \mathbb{R}^2$  to  $|x_1y_1| + |x_2y_2|$  is not an inner product on  $\mathbb{R}^2$ .

## Problem 2

Suppose V is a real inner product space, show that: a) the inner product  $\langle u + v, u - v \rangle = ||u||^2 - ||v||^2$  for every  $u, v \in V$ . b) if  $u, v \in V$  have the same norm, then u + v is orthogonal to u - v. c) use part(b) to show that the diagonals of a rhombus are perpendicular to each other.

## Problem 3

Suppose  $u, v \in V$ , prove that the inner product  $\langle u, v \rangle = 0$  if and only if  $||u|| \leq ||u + av||$  for all  $a \in F$ .

## Problem 4

Suppose  $u, v \in V$ , prove that ||au + bv|| = ||bu + av|| for all  $a, b \in R$  if and only if ||u|| = ||v||.

## Problem 5

Suppose  $u, v \in V$ , ||u|| = ||v|| = 1 and  $\langle u, v \rangle = 1$ , prove that u = v.

#### Problem 6

Find vectors  $u, v \in \mathbb{R}^2$  such that u is a scalar multiple of (1,3), v is orthogonal to (1,3), and (1,2) = u + v.

## Problem 7

Prove that  $(x_1 + \cdots + x_n)^2 \leq n (x_1^2 + \cdots + x_n^2)$  for all positive integers n and all real numbers  $x_1, \dots, x_n$ .

## Problem 8

Suppose V is a real inner product space, prove that

$$\langle u, v \rangle = \frac{\|u+v\|^2 - \|u-v\|^2}{4}$$

for all  $u, v \in V$ .

## Pay Attention

a) Mark your class number, name and student number on the homework.

b) Please hand in your homework to your TA before class next Friday (May 25).

# References

- [1] Axler, S. (1997). Linear algebra done right. Springer Science & Business Media.
- [2] Lay, D. C. . Linear algebra and its applications. Academic Press.

3