

Teacher: Yanjie Li
Assignment Number: 1
Course: Linear Algebra in Control Theory

Problem 1

Show that the function that takes $\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \in R^{2} \times R^{2}$ to $\left|x_{1} y_{1}\right|+\left|x_{2} y_{2}\right|$ is not an inner product on R^{2}.

Problem 2

Suppose V is a real inner product space, show that:
a) the inner product $\langle u+v, u-v\rangle=\|u\|^{2}-\|v\|^{2}$ for every $u, v \in V$.
b) if $u, v \in V$ have the same norm, then $u+v$ is orthogonal to $u-v$.
c) use part(b) to show that the diagonals of a rhombus are perpendicular to each other.

Problem 3

Suppose $u, v \in V$, prove that the inner product $\langle u, v\rangle=0$ if and only if $\|u\| \leqslant\|u+a v\|$ for all $a \in F$.

Problem 4

Suppose $u, v \in V$, prove that $\|a u+b v\|=\|b u+a v\|$ for all $a, b \in R$ if and only if $\|u\|=\|v\|$.

Problem 5

Suppose $u, v \in V,\|u\|=\|v\|=1$ and $\langle u, v\rangle=1$, prove that $u=v$.

Problem 6

Find vectors $u, v \in R^{2}$ such that u is a scalar multiple of $(1,3), v$ is orthogonal to $(1,3)$, and $(1,2)=u+v$.

Problem 7

Prove that $\left(x_{1}+\cdots+x_{n}\right)^{2} \leqslant n\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)$ for all positive integers n and all real numbers x_{1}, \ldots, x_{n}.

Problem 8

Suppose V is a real inner product space, prove that

$$
\langle u, v\rangle=\frac{\|u+v\|^{2}-\|u-v\|^{2}}{4}
$$

for all $u, v \in V$.

Pay Attention

a) Mark your class number, name and student number on the homework.
b) Please hand in your homework to your TA before class next Friday (May 25).

References

[1] Axler, S. (1997). Linear algebra done right. Springer Science \& Business Media.
[2] Lay, D. C. . Linear algebra and its applications. Academic Press.

