

Teacher: Yanjie Li
Assignment Number: 2
Course: Linear Algebra in Control Theory

Problem 1

Suppose e_{1}, \ldots, e_{m} is an orthonormal list of vectors in V. Let $v \in V$. Prove that

$$
\|v\|^{2}=\left|\left\langle v, e_{1}\right\rangle\right|^{2}+\cdots+\left|\left\langle v, e_{m}\right\rangle\right|^{2}
$$

if and only if $v \in \operatorname{span}\left(e_{1}, \ldots, e_{m}\right)$.

Problem 2

Suppose n is a positive integer. Prove that

$$
\frac{1}{\sqrt{2 \pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\cos 2 x}{\sqrt{\pi}}, \ldots, \frac{\cos n x}{\sqrt{\pi}}, \frac{\sin x}{\sqrt{\pi}}, \frac{\sin 2 x}{\sqrt{\pi}}, \ldots, \frac{\sin n x}{\sqrt{\pi}}
$$

is an orthonormal list of vectors in $C[-\pi, \pi]$, the vector space of continuous real-valued functions on $[-\pi, \pi]$ with inner product

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x
$$

Problem 3

On $\mathcal{P}_{2}(\mathbf{R})$, consider the inner product given by

$$
\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x
$$

Apply the Gram-Schmidt Procedure to the basis $1, x, x^{2}$ to produce an orthonormal basis of $\mathcal{P}_{2}(\mathbf{R})$.

Problem 4

For each of the following, use the Gram-Schmidt process find an orthonormal basis for $R(A)$:

$$
\begin{aligned}
& \text { 1. } A=\left[\begin{array}{cc}
-1 & 3 \\
1 & 5
\end{array}\right] \\
& \text { 2. } A=\left[\begin{array}{cc}
2 & 5 \\
1 & 10
\end{array}\right]
\end{aligned}
$$

where $R(A)$ is the linear space spanned by the columns of A.

Problem 5

Given $\mathbf{x}_{1}=\frac{1}{2}(1,1,1,-1)^{T}$ and $\mathbf{x}_{2}=\frac{1}{6}(1,1,3,5)^{T}$, verify that these vectors form an orthonormal set in \mathbb{R}^{4}. Extend this set to an orthonomal basis for \mathbb{R}^{4} by finding an orthonomal basis for the null space of

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & -1 \\
1 & 1 & 3 & 5
\end{array}\right]
$$

[Hint: First find a basis for the null space and then use the Gram-Schmidt process.]

Problem 6

Find a polynomial $q \in \mathcal{P}_{2}(\mathbf{R})$ such that

$$
p\left(\frac{1}{2}\right)=\int_{0}^{1} p(x) q(x) d x
$$

for every $p \in \mathcal{P}_{2}(\mathbf{R})$.

Problem 7

Find a polynomial $q \in \mathcal{P}_{2}(\mathbf{R})$ such that

$$
\int_{0}^{1} p(x)(\cos \pi x) d x=\int_{0}^{1} p(x) q(x) d x
$$

for every $p \in \mathcal{P}_{2}(\mathbf{R})$.

Problem 8

Let

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
12 \\
6 \\
18
\end{array}\right]
$$

(a) Use the Gram-Schmidt process to find an orthonormal basis for the column space of A.
(b) Factor A into a product $Q R$, where Q has an orthonormal set of column vectors and R is upper triangular.
(c) Solve the least squares problem $A \mathbf{x}=\mathbf{b}$.

Problem 9

Suppose $v_{1}, \ldots, v_{m} \in V$. Prove that

$$
\left\{v_{1}, \ldots, v_{m}\right\}^{\perp}=\left(\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)\right)^{\perp}
$$

Problem 10

Suppose U is the subspace of \mathbf{R}^{4} defined by

$$
U=\operatorname{span}((1,2,3,-4),(-5,4,3,2))
$$

Find an orthonormal basis of U and an orthonormal basis of U^{\perp}.

Problem 11

Let U be an m-dimensional subspace of \mathbb{R}^{n} and let V be a k-dimensional subspace of U, where $0<k<m$.
(a) Show that any orthonormal basis

$$
\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}
$$

for V can be expanded to form an orthonormal basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_{m}\right\}$ for U.
(b) Show that if $W=\operatorname{Span}\left\{\mathbf{v}_{k+1}, \ldots, \mathbf{v}_{m}\right\}$, then $U=V \oplus W$.

Pay Attention

a) Mark your class number, name and student number on the homework.
b) Please hand in your homework to your TA before class next Tuesday (Jun. 6).

References

[1] Axler, S. (1997). Linear algebra done right. Springer Science \& Business Media.
[2] Lay, D. C. . Linear algebra and its applications. Academic Press.

