Teacher: Yanjie Li Assignment Number: 2

Course: Linear Algebra in Control Theory Disclosure date: May 30, 2023

Problem 1
Suppose eq, ..., €, is an orthonormal list of vectors in V. Let v € V. Prove that
2 2 2
[o]l" = [{v,en)|” + - - - + [{v, em)]

if and only if v € span(ey, ..., en).

Problem 2

Suppose n is a positive integer. Prove that
1 cosx cos2z cosnx sinx sin2x sin nx
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is an orthonormal list of vectors in C' [—, 7], the vector space of continuous real-valued functions
on [—m, 7| with inner product

™

(fro)= [ f(x)g(z)du.

—Tr

Problem 3
On P; (R), consider the inner product given by
1
(p,q) = / p(x)q(z)ds
0

Apply the Gram-Schmidt Procedure to the basis 1, x, 2% to produce an orthonormal basis of
P2 (R).



Problem 4
For each of the following, use the Gram-Schmidt process find an orthonormal basis for R (A):
-1 3
FEEE
2 5
24 = {1 10}

where R (A) is the linear space spanned by the columns of A.

Problem 5

Givenx; = 5 (1,1,1, ~1)" and x, = £(1,1,3, 5)", verify that these vectors form an orthonormal
set in R*. Extend this set to an orthonomal basis for R* by finding an orthonomal basis for the

null space of
111 -1
113 5
[Hint: First find a basis for the null space and then use the Gram-Schmidt process. |

Problem 6

Find a polynomial ¢ € P, (R) such that

p(3)= [ reratas

for every p € Py (R).

Problem 7

Find a polynomial ¢ € P, (R) such that

/Olp(:c) (cosmz)dx = /Olp(:c)q(a:) dx

for every p € Py (R).

Problem 8

Let
2 1 12
A=11 1| ,b= 6
2 1 18

(a) Use the Gram—Schmidt process to find an orthonormal basis for the column space of A.
(b) Factor A into a product QR, where () has an orthonormal set of column vectors and R is
upper triangular.

(c) Solve the least squares problem Ax = b.




Problem 9

Suppose vy, ..., U, € V. Prove that

{1, ..., v} = (span (v, ..., v)) "

Problem 10
Suppose U is the subspace of R* defined by
U =span((1,2,3,—4),(-5,4,3,2)).

Find an orthonormal basis of U and an orthonormal basis of U~.

Problem 11

Let U be an m-dimensional subspace of R" and let V' be a k-dimensional subspace of U, where
0<k<m.
(a) Show that any orthonormal basis

{Vla Vo, ..., Vk;}
for V' can be expanded to form an orthonormal basis {vy, Vs, ..., Vi, Vi1, ..., vy, } for U.

(b) Show that if W = Span{vyi1,..., vy}, then U=V @& W.

Pay Attention

a) Mark your class number, name and student number on the homework.
b) Please hand in your homework to your TA before class next Tuesday (Jun. 6).
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