
Teacher: Yanjie Li Assignment Number: 3

Course: Linear Algebra in Control Theory Disclosure date: June 9, 2023

Problem 1

In R4, let
U = span((1, 1, 0, 0), (1, 1, 1, 2)).

Find u ∈ U such that ‖u− (1, 2, 3, 4)‖ is as small as possible.

Problem 2

Find p ∈ P3(R) such that p(0) = 0, p′(0) = 0, and∫ 1

0

|2 + 3x− p(x)|2dx

is as small as possible.

Problem 3

Suppose T ∈ L(V ) and U is a subspace of V .
(a) Prove that if U ⊂ null T , then U is invariant under T .
(b) Prove that if range T ⊂ U , then U is invariant under T .

Problem 4

Suppose S, T ∈ L(V ) are such that ST = TS. Prove that range S is invariant under T .
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Problem 5

Suppose S, T ∈ L(V ) are such that ST = TS. Prove that null S is invariant under T .

Problem 6

Define T ∈ L (F3) by
T (z1, z2, z3) = (2z2, 0, 5z3)

Find all eigenvalues and eigenvectors of T .

Problem 7

Define T : P(R)→ P(R) by Tp = p′. Find all eigenvalues and eigenvectors of T .

Problem 8

Suppose T ∈ L(V ). Suppose S ∈ L(V ) is invertible. (a) Prove that T and S−1TS have the same
eigenvalues. (b) What is the relationship between the eigenvectors of T and the eigenvectors
of S−1TS?

Problem 9

Find all eigenvalues and eigenvectors of the backward shift operator T ∈ L (F∞) defined by

T (z1, z2, z3, . . .) = (z2, z3, . . .) .

Problem 10

If A is a matrix with m×n dimension, please show that ATA and AAT have the same nonzero
eigenvalues.

Pay Attention

a) Mark your class number, student number and name on the homework.
b) Try to write your homework on A4 size paper.
c) Please hand in your homework to your TA before class next Thursday (June 15). If you
really cannot hand in your homework by the time mentioned above, please bring it to office
A415 by yourself.
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