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Problem1

Show that the function that takes ((x1,x2), (y1,92)) € R* x R? to |z1y1| + |z2y2| is not an
inner product on R?.

6.3 Definition inner product

An inner product on V is a function that takes each ordered pair (u, v) of

elements of V' to a number (u,v) € F and has the following properties: <x+y,z>=|(x; + )z, |+|(x, + 3,)z,| = |0z + vz, | +|xz, + 1,2,
positiviey <X,z >+< Y,z >=|xz|+|%,2,|+|nz |+|.2,)|

(v,v) =0forallv e V;
definiteness | _ The above function does not satisfy

Wiv) = Oatgnc onlyal =0 the additivity. Thus it is not an inner product.
additivity in first slot In addition, it also does not satisfy the

(u+v,w) = (u,w) + (v.w) forallu,v,w € V; homogeneity.

homogeneity in first slot
(Au,v) = A{u,v) forallA e Fand all u,v € V;

conjugate symmetry
(u,v) = (v,u) forallu,ve V.
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Problem?2
Suppose V' is a real inner product space, show that:
a) the inner product (v 4 v,u —v) = ||ul|” — ||v||* for every u,v € V.

b) if u,v € V have the same norm, then u + v is orthogonal to u — v.
c¢) use part(b) to show that the diagonals of a rhombus are perpendicular to each other.

(a) Note that V is a real inner product space, we have (u, v) = (v, u). Hence
Answer: (u+v,u—v)=(Qu)—(uv)+{v,u) —(v,v)
= wu)—(wv)=lul®-lvl?
(b) By (a).
(u+v,u—v)=(uu)—{(uv)+{(v,u)—(v,v)
= (u, u) - (U, 'U) =llu ”2 —llv ||2= 0

(c)

Note that || u [|=|| v || for a rhombus,
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Problem?2
Suppose V' is a real inner product space, show that:
a) the inner product (v 4 v,u —v) = ||ul|” — ||v||* for every u,v € V.

b) if u,v € V have the same norm, then u + v is orthogonal to u — v.
c¢) use part(b) to show that the diagonals of a rhombus are perpendicular to each other.

g

u+vu-v)=wu)—Wwv)+vu —(v,v)
=wu)—wv)y=lul®*-lvi*=0
Therefore, the diagonals of a rhombus are perpendicular to each other.
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Problem3
Suppose u, v € V, prove that the inner product (u,v) = 0 if and only if ||u|| < ||u + av|| for
all a € R.

(sufficiency) If (u, v) = 0, then

Proof:
lu+av 2=l u l? +I av II?=]l u II?

by 6.13.

6.13 Pythagorean Theorem

Suppose u and v are orthogonal vectors in V. Then
2 2 2
e +v[= = [lu]® + V]~

(necessity) If | u |I<|l u + av || forall a € F, this implies

lu+av 1> =l ul*=|al® | v I*+ a{v,u) + @(u,v) = 0.
If v=0,then{u,v)=0. If v+ 0,pluga=—{(u,v)/llvI* into the previous
equation ,we obtain

[(u, v)|?
> 0.
I v 112
Hence (u,v) = 0.
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Problem4

Suppose u, v € V', prove that ||au + bv|| = [|bu + av|| for all a,b € R if and only if ||ul| = ||v||.

Proof:

If lav+bull=llau+bv | foralla,b € R, by settinga = 1 and b = 0, we have ||
ull=llvl .
Conversely, suppose || u |=|l v || . Forall a,b € R, we have
| av + bu 1°= (av + bu, av + bu)
=a’ lu lI*+ ab({u,v) + (v,u)) + b* |l v II*
and
| au + bv |I?= {(au + bv, au + bv)
=a? |l v I*+ ab({u, v) + (v,u)) + b* Il u |l
Hence if || v [|=Il u || , we have
a’ llull*+ b2 llviF=a®ll vI*+ bl ull?
Therefore || av + bu 1=l au + bv 11*, i.e. || av + bu l|I=Il au + bv |l.



TS B L P23 “ HW2 HW3 HW4 HW5
22T\ HARBIN INSTITUTE OF TECHNOLOGY

Problem5

Suppose u,v € V, ||lul| = [|[v|]| =1 and (u,v) = 1, prove that u = v.

Proof:
Consider || u — v |I*, we have

lu—vi’P=(u—-v,u—v)= (wu) — (w,v) = (v,u) + (v, v)
=l u I>°= (u,v) — (u,v)+l v 1?°= 0

hence u — v = 0 by definiteness. Thatisu = v.
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Problem®6

Find vectors u,v € R? such that w is a scalar multiple of (1,3), v is orthogonal to (1, 3),
and (1,2) = u + v.

Answer:

Let v=(x,y)andu =2(1,3), where x,y,z € R. Note that v 1s orthogonal to
(1,3) ,we have
(x,y) - (1,3) =x+ 3y =0.
It follows that v =Y (—3,1). Since (1,2) = u + v, we obtain
y(=3,1)+2z(1,3) =(z—3v, v+ 32z) = (1,2).
We can solve the equation and get V= —1/10and z = 7/10 . Hence u = (7/10,21/
10) and v = (3/10,—1/10).
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Problem7

Prove that (z; + -+ z,)° < n (2?4 --- + 22) for all positive integers n and all real num-
bers xq, ..., x,.

Proof: 6.15 Cauchy—Schwarz Inequality

Suppose u,v € V. Then
[ (u, v} < (]| [IVIl-

This inequality is an equality if and only if one of u, v is a scalar multiple
of the other.

By the Cauchy—Schwarz Inequality, if x4, ..., X,,, V1, ---, ¥, € R, then
X1y + o X nl® < (6 + -+ XD 07+ W)
Let y; = 1,we can obtain
lxy + 42,7 < (f + 4 x7) -

Therefore, (x1 + - + x,)* < n(x# + --- + x}) for all positive integers n and all real
numbers Xq, ..., X,,.
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Problems8

Suppose V' is a real inner product space, prove that

o) = Jlu— o7

(u,0) .
for all u,v € V.
Proof: Suppose V 1s a real inner-product space and u, v € V. Then
lu+vI?=llu—vI? @+vu+v)—(u—v,u—"7)
4 - 4
P4 2¢u, v) v 12— (w12 = 2¢u, v)+H v 1)
B 4
4(u, v)
T4
= (u,v)

as desired.
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Problem1

Suppose €y, ..., €, is an orthonormal list of vectors in V. Let v € V. Prove that

2 2 2
||1.|| = |<.”' Fl}l (e | |(I'Ts P‘TI’I)I

if and only if v € span(ey, ..., ,,).

eSolution
2. Solution: If v € span(ey,- - -, ey), then ey, - - -, ey, is an orthonormal basis of span(eq, - - -, ep) by

6.26. By 6.30, it follows that
o[> = (v, ex)|? + - - + [(v, em)[*.
If |lv||% = (v, e1)]? + - - - + |{v, em)|%, we denote
E=v— ((v,er)er + -+ (v,em)en).
It is easily seen that
(& ei) = (v,ei) — (v,ei) =0
fori =1,---,m. This implies
(¢, er)er+ -+ (v,em)en) = 0.
By 6.13, we have

loll* =lI€1* + [I{v, er)er + - + (v, em)eml|®
=II€]1 + [(v, en)|® + - - - + | (v, em)].

It follows that ||£]|2 = 0, hence & = 0. Thus v = (v,e1)e; + - - - + (v, e)em, NAMely

vE Spa'n(ela"' rem)'
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Problem2
/ﬁ;]mﬁe n is a positive integer. Prove that \
1  cosxr cos2x cosnz sinz sin2r sin n
is an orthonormal list of vectors in C' |-, 7, the vector space of continuous real-valued functions
on |-, 7| with inner product : : .
sin (a+B) =sinacosB—+cosasinB
T sin (a—f) =sinacosf—cosasin
K (f,9) = f(z)g(z)dx. cos (a+B) =cosacosB—sinasinf
. T - . .
eSolution cos (a—B) =cosacosB-+sinasinB
CoMMENT: This orthonormal list is often used for modeling periodic : @ [ (sin jt)(sin kt) dt =
phenomena such as tides. I '
I jsin(j — k)t + ksin(j — k)t — jsin(j + k)t + ksin(j + k)t
SoLuTiON: First we need to show that each element of the list above : 25 - k)G +k)
has norm 1. This follows easily from the following formulas: : f (sin jt)(cos kt) dt =
S T j(sinjt)ﬂdz=wf ; jcos(j — k)t + kcos(j — k)t + j cos( + k)t — kcos(j + k)t
4 | 2(k—3)G + k)
1 ! .
ms% 1 +;osa f{mjt)z 2Jt +sm 2Jt : /(ms;,-t)(ooskt) dt =
I Jsin(j — k)t + ksin(j — k)t + jsin(j + k)t — ksin(j + k)t
Next we need to show that any two distinct elements of the list above : 2(7 — k)(7 + k)
are orthogonal. This foll ily from the following f las, vali -
A g0 i ows easily from the following formulas, valid when : f{sinjt)(oosjt)dt=- _CO;?]I
1
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Problem3

611 P2 (R), consider the inner product given by

(p,q) = /u. p(x)q(x)de

Apply the Gram-Schmidt Procedure to the basis 1, =, z* to produce an orthonormal basis of

@z (R). J

.SOIUtlon @ For the second polynomial, we first compute @ us(z) = pa(z) — (pa, eoheo(z) — (pa, e1)er(x)
1 1
@  We have the polynomials ur(z) = pa(z) — (p1, eo)eo(x) =z?- [ pa(x)eo(x)dr - 1 — [ pa()es(a)da - (2\/§.r . vﬁ)
1 J0 J0
=I— pi(x)eo(x)dx- 1 . b 1 Lrg 1.
po(z) = 1, pi() = z, palz) = 2. /o =at- (a2 (a-3) [ (- 50°) e
For the first vector of the orthonormal basis, we have =T- / rdr 2 1 lr,( B l) 1
Jo = 2\ x
1 3 2/ 12
eo(x) = polz) =1 T3 =t -a 4.
becatse We also compute Now.
) ||n1||2 = (uy, uy) , 1 N
lleall” = (eq, ea) o lJuz||* = / ug(z)*dr
= / uy(x) de : "l
_ : 2 o = / (.rl — 22+ i.:r‘2 — l:.r + L) dr
= eo{x)*dr _ [1 (IE s l) o Jo 3 336
. i /0 4 -1
L ; Jugl = . Theret
-1 a 80 [[ug|| = 35 Therefore,
so ||lu]| = % Therefore, s

= [leof = 1. | y |
e1(r) = ug(r) 2\/5(1_ %) — 3 — V3. l|lual|

e
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611 P2 (R), consider the inner product given by
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eSolution

(p,q) = [ p(x)q(x)de
G;(R].

J1

Apply the Gram-Schmidt Procedure to the basis 1, =, z* to produce an orthonormal basis of
(@ RESULT

J
eplz)=1

e1(x) = 23 — V3

ezlx) = 6v5z? — 6vhzr +v5
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Problem4

@r each of the following, use the Gram-Schmidt process find an orthonormal basis for R {ﬁ

-1 3
=[]

. 2 5
‘3“’1_[1 m]

. where R (A) is the linear space spanned by the columns of A.
eSolution K 4) ! [ ; /
@ Using the Gram-Schmidt process,we get P1=Ti2q1
s/ v2 a2 —pi
ri= ||a1| N szl l‘“!;| T
= v/(=1)2+12 ria2= (a2, q, _ [_11] 1
= ‘I.,-"'E =q a2 B 4
. 3 4,/2
— [—l \,@ 1/ \-‘“ﬂ - roo= |laa — ;1 ‘*.
1/ \,'_}
{ ”—] f ¢ o = 3 I . 3
“_1” =—1|,"|,|_r] "-)'+I-,u"“'f2 '} = || 5 - 1 | | V&
1 [_1‘ _ 4 0 H
G /D — 4
vall. v; / Vectors | } = {{ ST }7'} form
- — /12 = 12 actors {qg1,. g2} = {(——, 1 —=. —=]
- l. \_.2 = 2,' " 4 4 o 41, 42 \'2 v,? | \-} \2 )
1/v2 = V32 an orthonormal basis for R? = R(A).
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@r each of the following, use the Gram-Schmidt process find an orthonormal basis for R [h

D

o
=
|
[
- |
[
=L

L. [2 5
24= 1 )

wlere R (A) is the linear space spanned by the columns of A. /

eSolution

@ g5 = o-Al - | Csaef - (0

- | 0

@ <oy = lall = 4230 = J§

-_E.l "..L aJlT -
q] LT J-Sl } (

Al
DNe
e

w2 €8> 7 Y s

by 1
-
sl
—
° 9
SRR

ool T T !
b {% ﬁ_-hﬁ_\-t.rf

:
oo g (203

P = (aw)"
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Problem5

Given x, = i (1,1,1,—1)" and x = [l (1,1,3,5)", verify that these vectors form an Urthmmrm&
. 4 - . ! . ‘_ . . "
set in R?. Extend this set to an orthonomal basis for R* by finding an orthonomal basis for the

I 11 —1
I 1 3 5

)" )!

null space of

s g Tt [ ) et £ . e . o e Qn . P
eSolution \]ii'mt. First find a basis for the null space and then use the Gram-Schmidt process.| /
I
@ , @ 1 [1
. - ! R |F_11
9 < ! ledl= 113 | 4 =115 |3
| 1 )
I (]
(x1,22)= 7324 : _Jhez 212412 12 —Jh2 12492452
- 2 2 : —vl;]{l + 1+ 1+ (-1)%) —\|.1_—]{1+1 32 + 52)
1 — .
_lp oy og gt | _ /iy = /o= - 36
=3l 15| 1 l Vi V36
-1 : =1 =1
| _ —
:L{1-1+1-1*3-1+5-{-1}] I =1 =1
12 ;
1 ; " e _
= ﬁ'“ I Therefore, {x1,x2) = {(1.1,1, =1)7,(1,1,3,57)} form an orthonormal basis
—0 ; for the two-dimensional subspace of R*.
|
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eSolution

Given x, = % (1,1,1, —l)T and x» = ﬁ (1,1, 3, 5)T._ verify that these vectors form an Urthmmrlnb

set in R?. Extend this set to an orthonomal basis for R* by finding an orthonomal basis for the

I 11 —1
I 1 3 5

null space of

\Eﬁut: First find a basis for the null space and then use the Gram-Schmidt process.| %

In order to determine the basis for the column space of matrix A, let’s transform it to the reduced row echelon form.

{1 1 1 —1} Romsha-m |1 1 1 —1] We get system of equations

113 5

=
=
8]
(=]

{ zit+rs—Adry=0 = x1=4z4— 19
Ros—m Ror i z3+3dz4=0 = z3=-3r14
o

If we take 9 = a, x4y = 3, we get

i R) 1 1 0 —A4]
_ﬂ' 01 3 ) z1 =48 -

Irq = -38

Vector z = (r1,72,73,74)" belongs to N(A) if Therefore, N(A) consists of all vectors of the form

Iy 0 I 43 —a -1 4
1 1 0 —4) |x2| _ |0 T o [1]_[u
001 3] |xs] |0 zs|l = =3g | =2 o | TP]_3}
Ty 0 Ty 3 0 1

HWS5
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Problem5

Given x, = % (1,1,1,—1)" and x = ﬁ (1,1,3,5)", verify that these vectors form an Urthmmrlnb
set in R?. Extend this set to an orthonomal basis for R* by finding an orthonomal basis for the

I 11 —1
I 1 3 5

)" )!

null space of

eSolution \Eﬁut: First find a basis for the null space and then use the Gram-Schmidt process.| %
i
q1= ﬁ

The vectors |' 1]

- » _ 11 rao= |laz — p1l|
{ay, a2} = {(-1,1,0,0)T,(4,0,-3,1)T}) V'?[H R 9

0] P1=T12q1 0 _Q]
form a basis for the N(A). —-1/v2 ~1/V2 “0i_3l ~|o J
1/V2 = 1/V2 1 0
0 | = —2v/2 “[;' - -
e
Now let’s find an orthonormal basis for N(A4). o 0 9
Using the Gram-Schmidt process, we get | ‘ 9 - _9 |
ri2= 'lfl_z!-'?l.l _2-| | 1]
= q‘ s = . / : :
152 ) 0‘ =22 +22+(-3)2+12
0
rii= |lai| SIRTER) 0 =V
T ; r ="V [Ve o T
= V(=12 +12+ 02 +0? { 13| =3v2,
= V2, = —1/V2. 4+ 1/V2.0+0.(=3)+0-1

= —2v2,

HWS5
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Problem5

. o T , :
Given x, = ?12 (1,1,1,—1)" and x = ﬁ (1,1,3,5)", verify that these vectors form an Urthmmrlnb
set in R?. Extend this set to an orthonomal basis for R* by finding an orthonomal basis for the

I 11 —1
I 13 5

)T

null space of

eSolution \Eﬁut: First find a basis for the null space and then use the Gram-Schmidt process.| /
@ : . 3 P 2 | L We get system of equations
Therefore, vectors {gy, @)} = {{(——=: —=,0,0/7, (—=; —=, ——=: —=)* :
V2 V2 3ve 3ve 2 32 1
form an orthonormal basis for N(A). a+ 83— —v+——=5=0
\,-’Fl 3\"{;2
Let's check whether vectors a+3+—=+—6=0
V2 32
[xy.29.41,q2} form a basis for RY. In order for this to be true it's enough to a+33—-—6=0
prove that these vectors are linearly independent. (This is because R(AT) vV 1
and N(A) are orthogonal and the vectors make up bases for R(AT) and —a+ 55+ 75 = .
N{A) respectively. ) v
If we subtract second equation from the first, and also add third equation
Let a,3,v,0 € R. to the fourth, we get
/ 2/3./°
A - I VIr=0 = [1=0
al Vgl an| VVE |, 512732 _ |0
1 |3 ' 0 —1/v2| |0 85— 2 §=0 = |3 = lra‘
= | 5 0 1/3v2 0 3v2 12v2
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Problem5

Given x, = % (1,1,1,—1)" and x = ﬁ (1,1,3,5)", verify that these vectors form an Urthmmrlnb
set in R?. Extend this set to an orthonomal basis for R* by finding an orthonomal basis for the

I 11 —1
I 1 3 5

)" )!

null space of

eSolution \Eﬁut: First find a basis for the null space and then use the Gram-Schmidt process.| %
@ If we substitute 3 = : é in the first equation, we get
e . -~ . | v S
If we substitute 4 = 0 into the original system, we get these equations 1 5 i
————0=0 = —y20=0 = |6=0]|
2 3\.-"12 3\."'2
B+—=0=0

ik Iv2 From 3 = —LE follows that

1 6v2
a+3i—-—40=0

\,-""21 g=0
—a+ 59+ —_L§=U * = . g i ¥ s

3v2 Now, if we substitute 5 = v = 6 = 0 in the first equation of the original
If we subtract first equation from the second and add the first equation FYBUEIEL Wi EEA
to the third, we get
o0
253 E 0
G o Since a = § = 7 = § = 0, it follows that
1
g4 — = - ” i 2 2 .
o V2 " [z1, 22, 1.2} = {(1,1,1,-1)T,(1,1,3,57 J.+---L_.—{=.ll.ll'|‘.1%._ . --;.%ﬁ:f}
2 vZ2 V2 3v2 32 Ve 3v2

are linearly independent and therefore form an orthonormal basis for R*.
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/Fim] a polynomial g € P, (R) such that N
1 1
Iz (—) = [ p(z)q(z)dr
2 Jo
for every p € P2 (R). Y,

eSolution

@ First off, we would need an orthonormal basis of P»(R), which is where the
inner product of two polynomials in P5( R} is defined to be the integral from
0 to 1 of the product of the two polynomials. So, an orthonormal basis of
P>(R) was already computed in a previous exercise.
Now, specifically, let eq(x) = 1, ea(z) = V3(—1 + 2z), and e3(z) = V5(1 —
6x + 6x2). Next, note that (eq, €5, €4) is an orthonormal basis of Py(R). So,
define a linear functional ¢ on Po(R) by ¢(p) = p{%}.

@ So, we would seek q € P5(R) such that ¢(p) = (p.q) for every single p €
Py(R). So, by using a former formmula, we would now have q = w(eq)e; +
.,:{_l‘.'g_}['g + .,-.":{f.';ijlf.';;.

So, when vou now evaluate the right side of the given equation, then vou
would not have g = —% + 15z — 1522
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Problem 1

Find a polynomial ¢ € Py (R) such that

/Dlp(m) (cosma)dr = [Dlp(:r)q(m) dx

for every p € Py (R).
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2 1 12
A= 1|1 1| . b=| 6
2 1 18

(a) Use the Gram Schmidt process to find an orthonormal basis for the column space of A.
(b) Factor A into a product QR. where () has an orthonormal set of column vectors and R is
upper triangular.

(¢) Solve the least squares problem Ax = b.

HW4 HW5

Problem 2

Let

2 1 12
» We are given A = [ 1 1 |, and b = 6 |. Part (b), which asks for the QR
2 1 18

factorization of A, makes part (a) refldundant. We first normalize the first column of A,
obtaining r1; = 3, and q; = (2/3,1/3,2/3)T. We then find rj» = ql a, = 5/3, and update
as to ag — riaqqp = (—1/9,4/9, —l/Q)T. Finally, we normalize a, obtaining 79y = \/5/3,

and qy = (1/3v2) (—1.4,—1)T = (—v/2/6.2v/2/3,—/2/6) .

The factorization that results is

2/3 _ﬁfﬂ [3 5/3}
A=QR= | 1/3 2v2/3 ,
2/3 —/2/6 0 V23
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Problem?2

so the least squares problem in part (c¢) reduces to solving the triangular system Rx =

22 9
3 |-

T L . - A
Q' b = [ —\/E} The solution is x
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Problem 3
Let U be an m-dimensional subspace of R™ and let V' be a k-dimensional subspace of U, where
0<k<m.
(a) Show that any orthonormal basis
{vi,vo, ..., Vi }
for V' can be expanded to form an orthonormal basis {vy,va, ... Vi, Vi1, ..., Vi } for U.
(b) Show that if W = Span{vgi1,.... vip}, then U =V & W,
(a) Let U7 be an m-dimensional subspace of E™ and let V' be a b-dimensional
subspace of U7, wheere 0 << k < m. Now let {vy.va. .. .. vy, } be an orthonormal
basis for 1. Then it can be extended to form a basis for U7, {vq.va. .. .. Vg, Uy 1y« oo s Uy |
Applving the Gram-Schmidt Orthogonalization process on the new base
we will get an orthonormal base {wvq, va..... Vi Vktls- .- U b which is an
extension of {vy, va,.... v .
(b) By exercise 33 and 34 of section 5.5, we see that

W =V+. Also. we know that U = V & VL, hence
we have U =V & W,
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Problem 4

HW4 HW5

Suppose vy, ..., Uy € V. Prove that

{'1-’1: cees '1.-’m}J_ — (Sp%ll] (t-}l: t-"m))J_

Solution: Suppose w € {vq,...,vm}". Let v =€ span(vy,...,vy). We have that
UV=aqt +...0p0n
for some ay,...,am € F. Moreover
(v,w) = {a1v1 + ...amvm,w) = a1 (v, w) + - - - + am{vm, w) = 0.

Thus w € (span(vi,...,vm))" and so {vy,...,vm}" C (span(vy,...,vm)) "
Now suppose w € (span(vy,...,vy)) . Since each v; is in span(vy, ..., vy), it follows that w is

orthogonal to each v;. Therefore w € {vy,..., v} and thus (span(vi,...,vm)) " C {vi,...,vm} "



@ BAE2E L% HW1 HW2 “ HW4 HWS5

Problem 5

Suppose U is the subspace of R* defined by
U= spartl ((l 2,3, _4) 1 (_5'_l 3, 2)) :
Find an orthonormal basis of U and an orthonormal basis of U+,

It's easy to check that (1,2,3,—4),(—5,4,3,2).(1,0,0,0},{0,1,0,0) 18 a basis
of B*. Applying the Gram-Schmidt Procedure yields

2,3, —4), ::\fiﬁﬁ_'{ 77.56,30,38)
1

1
e 0.9, —10.
JTG100 Y100 710"

Hence €1, e2 18 an orthonormal basis of U7, and e3, 4 18 an orthonormal basis

of U+.

1
R

(100,117.60,151). ~3).

€3 =
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Problem 1
InR?, let

U =span((1,1,0,0),(1,1,1,2)).

Find w € U such that ||lu — (1,2, 3,4)]| is as small as possible.

We will use the normal equations for the formula of an orthogonal projection. Let

1 1 1
3 4 2
A= 0 1 and b = 3
0 2 4

Then u is the orthogonal projection of b onto the subspace spanned by the column of A and it is given by

the formula:
u=A(ATA)"1ATb.
We get that

r, (1100
Ab‘(1112)

= W=
I
ST
[—

o @
S

ry,_(1100
AA_(1112)

e P e R
B = =
Il
P
N

HW5



DS EEEP L HW1 HW2 HWS3 HWS5

T\ HARBIN INSTITUTE OF TECHNOLOGY

Problem1

1/ 7 -2
T ax=1 AT g
(AA)Ab_O(_QQ)
11 15
SEESFE. 1| 15
_ T a\=1 AT _ 1+ _ 1
aa ol Bl ' IY (22) 10| 22
0 2 14

The answer is

15
1| 15
““10l 22
44

How do we know this is the desired vector? First, clearly u € U, (since it is equal by construction to
Tay + %%ag). Second, we can check that the residual polynomial r = b — u is orthogonal to U. Indeed, we

10
have
1 15 -5
r {1100 2 It 0t way, il 5L
A(b"")_(l 11 2)( 3 | 10| 22 )_(1 11 2)(10 g =9
4 44 —4
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Problem 2
Find p € P3(R) such that p(0) = 0,p'(0) = 0, and

1
f 2 + 3z — p(a)|*dz
0

Is as small as possible.

Proof. We consider the inner product space P3(R) of all polynomials of degree less or equal than 3 with

inner product 1
(P, q) = A p(z)q(z)dz.
We also consider the subspace U of P3(R) defined as
U= {pe P3R) : p'(0) = p(0) =0},

and the polynomial b(x) = 2+ 3z. To solve our problem, we need to construct u(x), the orthogonal projection
of b(x) =2+ 3z onto U.
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Problem?2

A basis for the subspace U is
(22, 1'3) .

We use the Gram-Schmidt algorithm to obtain an orthonormal basis. We get
— /522
HI2II

55'3 — _’;gsﬁ 5.’1;'2 . 51.2 1.3 . é.’BQ .
g2 = ( \/_ > \/_ = = 22 =5ﬁ($3— 2)-
2 - (a2, VBa2) - VBa2|| e — 3l

So an orthonormal basis for U is

5 5
Py (2 + 3z) = (2 + 3z, V52?) - V52% + (2 + 32,67 (:r3 - 6;::2)) - 6VT (;1:3 — 6;1:2)

= (2 VB)VE2? + (- f)ﬁf(l}) = M

q1 =

So we have

We get
2
u(z) = —11[;31 + 2427

HW5
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Problem?2

which is the desired polynomial.
How do we know this is the desired polynomial? First, clearly u(z) € U, so this is good. Second, we can
check that the residual polynomial r(z) = b(x) — u(x) is orthogonal to U. Indeed, we have

(r,2?) = V%i‘ +242% — 3z — 2,22%) =0,

203
10

(r,2°) = (——2° + 242° — 32 — 2,2°) = 0,
203

so u(z) = —g¢a® + 242? is the good answer.
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Problem 3

Suppose T' € L(V) and U is a subspace of V.

(a) Prove that if U C null T, then U is invariant under T'.
(b) Prove that if range T' C U, then U is invariant under 7'

1. Solution: (a) For any u € U, then Tu = 0 € U since U C nullT', hence U is invariant under T'.

(b) Forany uw € U, then T'u € rangeT C U, hence U is invariant under T'.
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Problem 4
Suppose S,T € L(V) are such that ST = T'S. Prove that range S is invariant under 7.

Solution: For any u € rangesS, there exists v € V such that Sv = u, hence

Tu =T8v = STv € rangeS.

Therefore range S is invariant under T.
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Problem 5
Suppose S,T € L(V) are such that ST = T'S. Prove that null S is invariant under 7.

Solution 5  For any v € Nul(S), S(v) = 0. Since ST = TS, S(T(v)) = T(S(v)) =

T(0) = 0. Then T'(v) € Nul(S). Then Nul(S) is invariant under 7.
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®Solution

Problem1

HW1 HW2 HW3 HW4

Define T' € L (F?) by
T (21, 22, 23) = (222,0,523)

Find all eigenvalues and eigenvectors ot 7.

SOLUTION: Suppose A is an eigenvalue of T'. For this particular operator,
the eigenvalue-eigenvector equation T'(z1, 22, 23) = A(21, 22, 23) becomes the
system of equations

220 = A2
0= Az
523 = Azs.

If A # 0, then the second equation implies that zo = 0, and the first
equation then implies that z; = 0. Because an eigenvalue must have a
nonzero eigenvector, there must be a solution to the system above with
z3 # 0. The third equation then shows that A = 5. In other words, 5 is the
only nonzero eigenvalue of T'. The set of eigenvectors corresponding to the
eigenvalue 5 is

{(0,0,23) : 23 € F}.
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HW3 HW4

Problem1

Define T € L (F3) by

T (21,29, 23) = (229,0,523)

Find all eigenvalues and eigenvectors ot 7.

®Solution

@

If A = 0, the first and third equations above show that zp = 0 and z3 = 0.
With these values for z;, z3, the equations above are satisfied for all values

of z;. Thus 0 is an eigenvalue of T. The set of eigenvectors corresponding
to the eigenvalue 0 is

{(zl,{],(]) 12 € F}
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Problem?2

[Deﬂne T:P(R)— P(R) by Tp=p'. Find all eigenvalues and eigenvectors of T.]

eSolution i _ . :
Suppose A is an eigenvalue of T with an eigenvector g, then

g" =Tqg = Aq.

Mote that in general deg p' < deg p(because we consider deg 0 = —o0). If A £ 0, then deg Ag > degq’.
We get a contradiction. If A = 0, then g = ¢ for nonzero ¢ € R. Hence the only eigenvalue of T is

zero with nonzero constant polynomials as eigenvectors.
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Problem3

/Suppose T € L(V). Suppose S € L(V) is invertible. )

(a)  Prove that 7 and S~ 7S have the same eigenvalues.

(b)  What is the relationship between the eigenvectors of 7 and the
\ eigenvectors of S~17S? y

®Solution (a) Suppose A is an eigenvalue of T, then there exists a nonzero vector v € V such

that Tv = Av. Hence
S ITS(S 'w)=8 "Tv=25 (M) =AS "o

Note that S 'v £ 0 as § !is invertible, hence X is an eigenvalue of § TS, namely every
eigenvalue of T is an eigenvalue of § TS Similarly, note that S(S 'TS)S ! = T, we have every

eigenvalue of § TS is an eigenvalue of T Hence T and S TS have the same eigenvalues.

(b) From the process of (a), one can easily deduce that v is an eigenvector of T if and only if § v
is an eigenvector of § TS,
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Problem4

eSolution @

HW1 HW2 HW3 HW4

Find all eigenvalues and eigenvectors of the backward shift operator
T € L(F°°) defined by

T(21.22.23....) = (_’72,_”3,...).

N /

SOLUTION: Suppose A is an eigenvalue of T'. For this particular oper-
ator, the cigenvalue-eigenvector equation 7'z = Az becomes the system of

equations
Z9 = Azl
z3 = )tz"2
z4 = Az3

From this we see that we can choose 2; arbitrarily and then solve for the
other coordinates: '

Z9 = )Lzl
23 = 1\22 = 1\221

24 = Az3 = A3z




K::,\ PEPL: HW1 HW2 HW3 HWA4

\..\ /’
LT H.HIIBIN INSTITUTI: OF TECHNOLOGY

Problem4

Find all eigenvalues and eigenvectors of the backward shift operator
T € L(F°°) defined by

T(21.22.23....) = (.’22,23,...).

- J

eSolution

(3) Thus each XA € F is an eigenvalue of T" and the set of corresponding eigen-
vectors is

{(w, M, 2w, Xw...) : w e F}.
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Problem5

If Ais a matrix with m x n dimension, please show that A7 A and AA” have the same nonzero

eigenvalues.
®Solution

since A 18 an m = n matrix with rank &k, there exist
otrhonormal bases B; = {vy,..., v, } and By = {uy, ..., u,,} for B® and

R™, respectively, and scalars o1 = - -+ = oy, > 0 such that (9) and (10} are
@ satisfied. Now we have, fori=1..... k.

@

AT Av; = AT (oquy)

— AT -

= oA Bigz2 AT ARSI SHEMEES R, AT Az = Az

= ;015 FNERIULASRAAT Az = Mz, WEAAT (Az) = M(Az),
2 FrA AT Afn A AT E18RNIESISE.,

= aiuy
’ RIS, AB HBAGERNEETISEHE,
Therefore, for: =1..... k; J'%., e E are eigenvalues of ATA corresponding
to g ee s W Hl
AAYu; = Aleiug)

= m; Ay

= o0

= rf'fn,-
Therefore, for: =1,... ., k; cr'%._ e E are eigenvalues of AAT corresponding
to (7 PR My < B‘E

Hence, AT A and AAT have the same eigenvalues.
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