Homework 1

April 11, 2023

1. Let V be a vector space and let $\mathbf{x}, \mathbf{y} \in V$. Show that
(a) $\beta \mathbf{0}=\mathbf{0}$ for each scalar β.

Proof:
Let x is a vector in V.

$$
\beta \mathbf{0}=\beta(x-x)=\beta x-\beta x=\mathbf{0} .
$$

(b) $\mathbf{x}+\mathbf{y}=\mathbf{0}$ implies that $\mathbf{y}=-\mathbf{x}$.

Proof:
$\because x+y=\mathbf{0}$ and $\beta \mathbf{0}=\mathbf{0}$ for each scalar β,
$\therefore y=y+(-1) *(x+y)=-x$.
(c) $(-1) \mathbf{x}=-\mathbf{x}$.

Proof:
$(-1) x+x=(1-1) x=0 x$
$\because x=1 x=(1+0) x=x+0 x, \therefore 0 x=\mathbf{0}$
$\therefore(-1) x+x=\mathbf{0}$.
$\because x+(-x)=\mathbf{0}, \therefore(-1) x=-x$
2. Let V be the set of all ordered pairs of real numbers with addition defined by

$$
\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)
$$

and scalar multiplication defined by

$$
\alpha \circ\left(x_{1}, x_{2}\right)=\left(\alpha x_{1}, x_{2}\right)
$$

Scalar multipliacation for this system is defined in an unusual way, and consequently we use the symbol o to avoid confusion with the ordinary scalar multiplication of row vectors. Is V a vector space with these operations? Justify your answer.
Proof:
Suppose V is a vector space, and let $x_{1} \in R, x_{2} \neq 0$.

For addition, $\left(x_{1}, x_{2}\right)+\left(x_{1}, x_{2}\right)=\left(2 x_{1}, 2 x_{2}\right)$;
For scalar multipliacation,

$$
\left(x_{1}, x_{2}\right)+\left(x_{1}, x_{2}\right)=(1+1)\left(x_{1}, x_{2}\right)=\left(2 x_{1}, x_{2}\right)
$$

However, $\because x_{2} \neq 0, \therefore\left(2 x_{1}, 2 x_{2}\right) \neq\left(2 x_{1}, x_{2}\right)$,
$\therefore\left(x_{1}, x_{2}\right)+\left(x_{1}, x_{2}\right) \neq\left(x_{1}, x_{2}\right)+\left(x_{1}, x_{2}\right)$, which is contradicory.
All in all, the suppostion is incorrected. V is not a vector space.
3. Let R^{+}denote the set of positive real numbers. Define the operation of scalar multiplication, denoted o, by

$$
\alpha \circ x=x^{\alpha}
$$

for each $x \in R^{+}$and for any real number α. Define the operation of addition, denoted \oplus, by

$$
x \oplus y=x \cdot y \quad \text { for all } \quad x, y \in R^{+}
$$

Thus, for this system, the scalar product of -3 times $\frac{1}{2}$ is given by

$$
-3 \circ \frac{1}{2}=\left(\frac{1}{2}\right)^{-3}=8
$$

and the sum of 2 and 5 is given by

$$
2 \oplus 5=2 \cdot 5=10
$$

Is R^{+}a vector space with these operations? Prove your answer.
Solve:
R^{+}is a vector space.
Proof:
Let $x, y, z \in R^{+}, \alpha, \beta \in R$
$\because x \oplus y=x y>0, \therefore x \oplus y \in V$
$\because \alpha \circ x=x^{\alpha}>0, \therefore \alpha \circ x \in V$
Then, proof V satisfies the eight properties:
(a) $x \oplus y=x * y=y * x=y \oplus x$.
(b) $(x \oplus y) \oplus z=(x y) z=x(y z)=x \oplus(y \oplus z)$.
(c) Let $\mathbf{0}=1$. Then, $x \oplus \mathbf{0}=x * 1=x$
(d) For each x, there is a $-x=\frac{1}{x}$,
letting $x \oplus-x=x * \frac{1}{x}=1=\mathbf{0}$
(e) $(\alpha * \beta) \circ x=x^{\alpha} \beta=\left(x^{\beta}\right)^{\alpha}=\alpha \circ(\beta \circ x)$
(f) $(\alpha+\beta) \circ x=x^{\alpha \beta}=x^{\alpha} \oplus x^{\beta}=\alpha \circ x \oplus \beta \circ x$
(g) $\alpha \circ(x \oplus y)=(x y)^{\alpha}=x^{\alpha} * y^{\alpha}=\alpha \circ x \oplus \alpha \circ y$
(h) $1 \circ x=x^{1}=x$

As a result, R^{+}is a vector space.
4. Suppose $\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}$ and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{q}$ are vectors in a vector space V, and let $H=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right)$ and $K=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{q}\right)$.
(a) Show that $H \bigcap K$ is a subspace of V.

Proof:
$\because \forall u \in H$, there's always $u=a_{1} u_{1}+\ldots+a_{p} u_{p}, a_{1}, \ldots a_{p} \in R$
$\therefore u \in V$
And for the same issue, $\forall v \in K$, there's always $v \in V$
$\therefore H, K \subseteq V$
$\because H \bigcap K \subseteq H \subseteq V, \therefore H \bigcap K$ is a subset of V
$\forall x, y \in H \bigcap K, \because H \bigcap K \subseteq H, \therefore x, y \in H$
Define $\alpha \in R$.
$\because H$ is a vector space.
$\therefore x+y, \alpha x \in H$, for the same, $x+y, \alpha x \in K$
$\therefore x+y, \alpha x \in H \bigcap K$, and $H \bigcap K$ is a subspace.
(b) Show that H and K are subspaces of $H+K$.

Proof:
$\because H=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{2}\right), H$ is a vector space.
The same, K is a vector space.
$\because H+K$ contains the linear conbination of H and K,
$\therefore H, K$ is the subspace of $H+K$.
(c) Show that $H+K=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{q}\right)$.

Proof:
Define $x \in H, x=a_{1} \mathbf{u}_{1}+\ldots+a_{p} \mathbf{u}_{p}, a_{1}, \ldots, a_{p} \in R$,
$y \in K, y=b_{1} \mathbf{v}_{1}+\ldots+b_{q} \mathbf{v}_{q}, b_{1}, \ldots, b_{q} \in R$.
$\therefore \forall z \in H+K, z=\alpha x+\beta y, \alpha, \beta \in R$,
$z=\alpha a_{1} \mathbf{u}_{1}+\ldots+\alpha a_{p} \mathbf{u}_{p}+\beta b_{1} \mathbf{v}_{1}+\ldots+\beta b_{q} \mathbf{v}_{q}$.
$\therefore z \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{q}\right)$,
$H+K \subseteq \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{q}\right)$.
$\forall w \in \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{q}\right)$,
$w=m_{1} \mathbf{u}_{1}+\ldots+m_{p} \mathbf{u}_{p}+n_{1} \mathbf{v}_{1}+\ldots+n_{q} \mathbf{v}_{q}$,
$m_{1}, \ldots m_{p}, n_{1}, \ldots, n_{q} \in R$.
$\because m_{1} \mathbf{u}_{1}+\ldots+m_{p} \mathbf{u}_{p} \in H, n_{1} \mathbf{v}_{1}+\ldots+n_{q} \mathbf{v}_{q} \in K$.
$\therefore w \in H+K, \operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{q}\right) \subseteq H+K$.
$\therefore H+K=\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{q}\right)$.
5. Let $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}$ be a spanning set for a vector space V.
(a) If we add another vector, \mathbf{x}_{k+1}, to the set, will we still have a spanning set? Explain.
Solve:
Yes, we still have a spanning set.
$\because V=\operatorname{Span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right)$
$\therefore \forall \mathbf{v} \in V, \mathbf{v}=\mathbf{a}_{1} \mathbf{x}_{1}+\ldots+\mathbf{a}_{k} \mathbf{x}_{k}, \mathbf{a}_{1}, \ldots, \mathbf{a}_{k} \in R$
$\therefore \mathbf{v}=\mathbf{a}_{1} \mathbf{x}_{1}+\ldots+\mathbf{a}_{k} \mathbf{x}_{k}+0 * \mathbf{x}_{k+1}$
$\therefore V=\operatorname{Span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}, \mathbf{x}_{k+1}\right)$
(b) If we delete one of the vectors,say, \mathbf{x}_{k}, from the set, will we still have a spanning set? Explain.
Solve:
That has many possibilities:
$\because V=\operatorname{Span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right)$
$\therefore k \geq \operatorname{Dim} V$
If $k=\operatorname{Dim} V$
\because The number of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-1}$ is less than $\operatorname{Dim} V$,
\therefore It is not a spanning set of V after deleting.
If $k \geq \operatorname{Dim} V$
(i) If \mathbf{x}_{k} is the liner combination of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-1}$

Suppose $\forall \mathbf{x}_{k}=\mathbf{b}_{1} \mathbf{x}_{1}+\ldots+\mathbf{b}_{k-1} \mathbf{x}_{k-1}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{k-1} \in R$
$\forall \mathbf{v} \in V, \mathbf{v}=\mathbf{a}_{1} \mathbf{x}_{1}+\ldots+\mathbf{a}_{k} \mathbf{x}_{k}, \mathbf{a}_{1}, \ldots, \mathbf{a}_{k} \in R$
$\mathbf{v}=\mathbf{a}_{1} \mathbf{x}_{1}+\ldots+\mathbf{a}_{k-1} \mathbf{x}_{k-1}+\mathbf{b}_{1} \mathbf{x}_{1}+\ldots+\mathbf{b}_{k-1} \mathbf{x}_{k-1}$
$=\left(\mathbf{a}_{1} \mathbf{b}_{1}\right) \mathbf{x}_{1}+\ldots+\left(\mathbf{a}_{k-1} \mathbf{b}_{k-1}\right) \mathbf{x}_{k-1}$
\therefore It is a spanning set of V after deleting.
(ii) If \mathbf{x}_{k} cann't be written as a liner combination of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-1}$

Suppose It is a spanning set of V after deleting
$\exists \mathbf{v} \in V$ while $\mathbf{v}=\mathbf{x}_{k}$, whitch cann't be written as a linear combination of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-1}$, bringing contradiction.
\therefore It is not a spanning set of V after deleting.

