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Persevering Multiplication

Persevering Addition
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An intuitive map for Linear Algebra

linear mapping

Linear
System

linear space



In making the definition of a vector space, we generalized the 
linear structure (addition and scalar multiplication) of R2 and R3. 

We ignored other important features, such as the notions of 
length and angle.
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Inner Product Space
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Euclidean distance
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space



Euclidean distance
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Norm & Distance
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dot product
scalar product
Inner product
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Standard inner product

˄Scalar product˅
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real vector space
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, Tx y x My� ! 

1. Consider another inner product on Rn

Where M is symmetric positive-define matrix

Examples ( , ) Tx y x y Standard inner product
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, ( ) ( )
b

a
f g f x g x dx� ! ³

2. The vector space of real functions whose domain is 
an closed interval [a, b] with inner product

Consider a vector space of polynomials with degree less than 2 and its 
domain is [0,1] we have

1 2

0

3 3, 1/ 3 0
3 3

s s s ds� � � ! �  ³
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3. Consider matrix linear space  Rmhn
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complex vector spaces

21



w z z w�  �
22

ĸ



Fields of Complex number
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Example

(Euclidean length)
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Orthogonal and Orthonormal

29



30



31



Equalities and Inequalities
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Converse proposition˛
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Using the definition of norm and properties 
of inner product, we can write   
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Cauchy(1821)

Schwartz(1886)
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Applications

Proof:



Applications
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Parallelogram Equality

Proof˖
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<x,y>=
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Definition: The angle between two vectors 
x and y in a linear space with Euclidean 
norm is defined as  

D
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Additional content



General norm
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Norms on Rn

51The norm is not linear. To inject linearity into the discussion



Only norm defined by inner product have the Pythagorean theorem  
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Cauchy-Schwarz Inequality for general norm



x

y

54



55



Different  norms

56



L1 Norm Regularization and Sparsity

57https://blog.mlreview.com/l1-norm-regularization-and-sparsity-explained-for-dummies-5b0e4be3938a

over-fitting



Why does a sparse solution avoid over-fitting
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A sparse solution may make the vector x smaller (sparse) 



Why does a small L1 norm give a sparse solution
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y = a * x + b [10, 5] b = 5 – 10 * a
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1-norm regularization and sparse

When there is a zombie outbreak, which one 
should be the weapon of choice?



Orthogonal Projection 
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Orthogonal Projection 



Orthogonal Set
• A set of vectors is called an orthogonal 

set if every pair of distinct vectors in the 
set is orthogonal.

An orthogonal set?

By definition, a set with only one vector 
is an orthogonal set.
Is orthogonal set independent?

Standard inner product 
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Independent?

• Any orthogonal set of nonzero vectors is 
linearly independent.  

Assume c1, c2, }, ck make c1v1 + c2v2 + " + ckvk = 0

ci = 0

Let S = {v1, v2, }, vk} be an orthogonal set vi z
0 for i = 1, 2, !, k.
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Problem

• Example: S = {v1, v2, v3} is an basis for R3

65Orthogonal  basis?



Orthogonal Basis

Proof
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Example

• Example: S = {v1, v2, v3} is an orthogonal 
basis for R3

67



Orthogonal Projection on a line

• Orthogonal projection of a vector on a line

v: any vector 
u: any nonzero vector on L
w: orthogonal projection of 

v onto L , w = cu
z: v � w

L

u

v

w
z

Distance from tip of v to L :

z

=0
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Y

3v
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Orthogonal Projection
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any vector

1v

2v

1 1c v
2 2c v w

u
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Orthogonal Basis

orthogonal

Gram-Schmidt 
Process
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Visualization

https://www.youtube.com/watch?v=Ys28-Yq21B8
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Example
S = {u1, u2, u3} is a basis for subspace W

(L.I. vectors)

Then S c = {v1, v2, v3} is an orthogonal basis 
for W .
S cc = {v1, v2, 4v3}???

75

is also an orthogonal basis.



Orthonormal Set
• A set of vectors is called an orthonormal set if it is an 

orthogonal set, and the norm of all the vectors is 1

Is orthonormal set 
independent?

Yes

A vector that has norm equal to 1 is called a unit 
vector. 76



77



78



79



80

Example

Proof˖



Example
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[ , ]l l� Periodic function

Fourier Series
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Coordinate
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x(k)
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(16)



90



91



92



93



94



95



Orthogonal complement
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YA
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Examples

For Y = Span{u1, u2}, where u1 = [ 1  1  �1  4 ]T and u2 =[ 1 �1  1  2 ]T

i.e., v = [ x1 x2 x3 x4 ]T satisfies

�

� is a basis for YA.

Please find the YA.
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• For any matrix A

(Col A)A = (Row AT) A = Null AT .

v � (Row A)A � For all w � Span{rows of A}, (w ,v )=0
� Av = 0.

Examples
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x

PYx

Y
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Y0

x

y=PY(x) z
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Example
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Orthogonal Projection
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Ww P u 



Proof: Let u � Rn and w = UW(u).  
Since W = Col C, w = Cb for some b � Rk

and u � w �WA

� 0 = CT(u � w) = CTu � CTw = CTu � CTCb.
� CTu = CTCb.
� b = (CTC)�1CTu and w = C(CTC)�1CTu as CTC is 

invertible.

Orthogonal Projection Matrix
• Let C be an n x k matrix whose columns 

form a basis for a subspace W 

n x n 
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Proof: We want to prove that CTC has independent 
columns.

Suppose CTCb = 0 for some b.
� bTCTCb = (Cb)TCb = (Cb) x (Cb) = __Cb__2 = 0.
� Cb = 0 � b = 0 since C has L.I. columns.
Thus CTC is invertible.
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Orthogonal Projection Matrix

• Example: Let W be the 2-dimensional 
subspace of R3 with equation x1 � x2 +2x3
= 0.

W has a basis
1 2
1 , 0
0 1

­ � ½ª º ª º
° °« » « »
® ¾« » « »
° °« » « »¬ ¼ ¬ ¼¯ ¿

1 2
1 0
0 1

�ª º
« »
« »
« »¬ ¼

5 1 2
1 1 5 2
6

2 2 2

�ª º
« »
« »
« »�¬ ¼
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Least square problems
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Least square problems

-
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b

126



Thank you
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