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Linear System

Persevering Multiplication
Linear Linear

— —
system [ kx o

Persevering Addition

— Linear
X +x System

Linear 1772 Il Y1 +y2
System

X —

X5 —Y>

Hung-yi Lee



ELSE:NERR BN

|A| =3 . AB#BA? ?

(0]
S=a S, =3a
2 0 SNfeTEERR |AB|=|A|B|
< :[0 3] AB FHORMENNZEIR B FOZHR A,
|4|=6 SEFEHCK |B|fEH0 ||

REEHK || B 1.



linear space

o linear mapping
o :
° ® Linear
® System
o
o

An intuitive map for Linear Algebra



In making the definition of a vector space, we generalized the
linear structure (addition and scalar multiplication) of R and R3.

We ighored other important features, such as the notions of
length and angle.



Inner Product Space
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Euclidean distance
R? space

A

(x,,x,) or D}

2

| = /% +23
>
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R™ space
Euclidean distance

We choose a point 0 as origin in real n -
dimensional Euclidean space: the /ength of
any vector x in space, denoted as lixll, is
defined as its distance to the origin.

Denote the Cartesian coordinates of x as
X

-
“x":\/xl2 +- - 4X2.
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Norm & Distance

 Norm: Norm of vector v is the length of v
— Denoted |[|v||

lv|| = \/vlz + V5 + -+ vf

 Distance: The distance between two
vectors u and v is defined by ||v — u]|

1 2 —1

2 —3] v—=—u=]|5

3 0 3

V= u = lv —ull = /(=1)2 + 52 + 32

=35

lvll = V12 + 22 + 32 =14
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dot product
scalar product
Inner product



6.2 Definition dot product (Scalar product)

For x, y € R”, the dot product of x and y, denoted x - y, is defined by
Xy =Xx1y1+ -+ Xnyn,

where x = (x1,....,xp)and y = (y1,....Vn).

Standard inner product

15



real vector space

x-x >0 forall x € R”;
x-x =01fand only if x = 0;

for y € R” fixed, the map from R” to R that sends x € R” to x - y is
linear;

x-y=y-xforall x,y € R,

16



Definition. A Euclidean structure in a linear
space X over|the realslis furnished by a real-
valued function of two vector arguments called
a scalar product and denoted as (x, y), which
has the following properties:

(1) (x, y) is a bilinear function; that is, it is a
linear function of each argument when the
other is kept fixed.
(i) It is symmetric:
(X, ¥) = (¥, X).
(1i1) It is positive:
(x, X) > 0 exceptforx=0.

17



Examples | T
Standard inner product (X, ) =X"y

1. Consider another inner product on R"

<X,y >= x! My Where M is symmetric positive-define matrix

1 1
5 1
1 1
(x,y) = X0t Exlyz T 5 LY+ X)),

18



2. The vector space of real functions whose domain is
an closed interval [a, b] with inner product

< f.g>=[ f0gx)dx

Consider a vector space of polynomials with degree less than 2 and its
domain is [0,1] we have

V3 o3

<S—— S+—>—I s“—1/3ds =0

19



3. Consider matrix linear space R™*"

Given A and B in R"™*", we can define an inner product
by

20



complex vector spaces

Recall that if A = a + bi, where a, b € R, then

o the absolute value of A, denoted |A|, is defined by |A| = ~/a? + b?;
e the complex conjugate of A, denoted A, is defined by A = a — bi;

e |12 = M.

Forz = (z1,...,z,) € C", we define the norm of z by

12 = V121 + - + |zn2.

|21 = 2171 + - + zu %0

21



the inner product of

w= Wi,...,wp) € C" with z should equal

© W Z=WiZ1 + + Wnin

W'Z=WZH W:(WI,,Wn)
z=1(21,....2n)

@ W+ zZ=WzZ;+- - +w,z,
— T w= Wi,...,Wn)

z=1(21,....2Zn)

w-zzz-w‘

22



Fields of Complex number

An inner product on V is a function that takes each ordered pair (u, v) of
elements of V' to a number (u, v) € F and has the following properties:
positivity

(v.vy > Oforallv e V;

definiteness
(v,v) = 0if and only if v = 0O;

additivity in first slot
(u+v,w) = (u,w) + (v,w) forallu,v,we V;

homogeneity in first slot
(Au,v) = Au,v) forallA € Fand all u,v € V;

conjugate symmetry
(u,v) = (v,u) forallu,v e V.

23



6.4

(a)

(b)

(¢)

(d)

Example inner products

The Euclidean inner product on F"is defined by
(wi,..., Wp)o(Z1s.. . Zn)) = Wi1Z1 4+ -+ wWpZy.

Ifcy,....c, are positive numbers, then an inner product can be defined
on F” by
(Wi, ... Wp)o(Z1.. o onZp)) = CiWiZ1 4+ -+ 4+ chWnZn.

An inner product can be defined on the vector space of continuous
real-valued functions on the interval [—1, 1] by

1
(f8) = [ f@sds,
An inner product can be defined on P(R) by
oo
(p.q) = / p(x)q(x)e " dx.
0

24



6.7

(a)

(b)
(c)
(d)
(e)

Basic properties of an inner product

For each fixed u € V, the function that takes v to (v,

map from V' to F.

(
(
(
(

0.u) = Oforeveryu € V.

u,0) = 0 foreveryu € V.

u,v +

U, Av)

+w) =

(u,v) + (u.
A{u,v) forallA € Fand u,v e V.

w) for allu,v.w € V.

u) is a linear

25



Proof

(a)

(b)

(c)

(d)

(e)

Part (a) follows from the conditions of additivity in the first slot and
homogeneity in the first slot in the definition of an inner product.

Part (b) follows from part (a) and the result that every linear map takes
0 to 0.

Part (c) follows from part (a) and the conjugate symmetry property in
the definition of an inner product.

Suppose u,v,w € V. Then
(u.v+w) =

as desired. O

26



6.8 Definition norm, ||v|| (Euclidean length)

For v € V, the norm of v, denoted ||v|, is defined by

VIl = v/ {v.v).

Example

1
1A = \// (f(-\‘))zd-\‘. 1A=V (A, A) = X2 XY=y aizj
~1

Definition, The distance of two vectors x and y
In a linear space with Euclidean norm is defined
as llx - yll.

27



6.10 Basic properties of the norm

Suppose v € V.

(a) v[| = 0 if and only if v = 0.

(b)  |IAv] = |A||[v]| for all A € F.



Orthogonal and Orthonormal



Definition. Two vectors x and y are called
orthogonal (perpendicular), denoted as x4y, If

(x.y) = 0. (13)

30



6.12 Orthogonality and 0

(a)
(b)

0 is orthogonal to every vector in V.

0 1s the only vector in V' that 1s orthogonal to itself.

31



Equalities and Inequalities



6.13 Pythagorean Theorem (AfE®)

Suppose u and v are orthogonal vectors in V. Then

e +vI1% = [l + vl

u-+v U

Proof We have

|lu + v||2 = (u+v.u+v)
= (u,u) + (u,v) + (v.u) + (v.v)
= [lull® + [Iv]I>.
as desired.

Converse proposition?

33



6.15 Cauchy—-Schwarz Inequality

Suppose u, v € V. Then
[ V)| = (]l vl

This inequality 1s an equality if and only 1f one of u, v 1s a scalar multiple
of the other.

34



u-+v

Uu=cv+(u-—cv)

Thus we need to choose ¢ so that v is orthogonal to (v — c¢v). In other words,
we want
0= (u—cv,v) = (u,v)—c|v|]*

The equation above shows that we should choose ¢ to be (1, v)/||v||*. Making
this choice of ¢, we can write

) )
- ||v||2"+(“ BE V)'

u

35



6.14 An orthogonal decomposition

Suppose u,v € V, withv # 0. Set ¢ =

(w,v) =0 and u=cv+w.

36



Proof If v = 0, then both sides of the desired inequality equal 0. Thus we
can assume that v # 0. Consider the orthogonal decomposition

u,v
o
i

given by 6.14, where w 1s orthogonal to v. By the Pythagorean Theorem,

V+Ww

2
2 (u,v) 2
[{u, v) |
= TpE
6 16 > |<u’v>|2
vz

Multiplying both sides of this inequality by ||v||? and then taking square roots

oives the desired inequality. .
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Theorem 1 (Schwarz Inequality). For all x, y,
[(x,¥)| < lixtHyll. (9)

Proof. Consider the function q(t) of the real
variable t defined by

q(t) = lix + tyll?. (10)

Using the definition of norm and properties
of inner product, we can write

q(t) = lIx112 + 2t(x,y) + lyl12. (10)"

38



Assume that y # 0 and set t = - (x,y)/ llyll?
in (10)".
Since (10) shows that q(t) 2 0 for all £, we

get that
2

-0

HyH

This proves (9). For y=0, (9) is trivially true.

39



6.17 Example examples of the Cauchy-Schwarz Inequality

(@ Ifxp.....xn.V1.....vn € R, then Cauchy(1821)
|x1)’1‘|’"'+an’n|2§(xlz+""|’xn2)(J’12+"'+)’n2)-

(b) If f, g are continuous real-valued functions on [—1, 1], then
1

‘/_11 f(x)g(x) dx|2 < (f_ll(f(x))2 dx) (/_1(g(x))2dx).

Schwartz(1886)

40



Applications

Let a, b, c be positive real numbers, we have

2,22 S 9
a+b b+c c+a a+b+c

Proof: (a+b+b+c+c+a)x| I S
a+b b+c cHa

[y () s [ (V) (/s

]

a-+b b+ec

1 2
a-+c

1 1

> - -

_(\/a—l-b —g T Vb g FVeTe
9

)+ (7
+
a-+c

:

1 1 1 9 r+y+z rT+y+=z
> Y n (]

r+uy+=z
n Yy

—_—
rTt+y+z z Y

z i z T
L 222 28 560 (2
r T Yy Yy z Z x

z

T z T Yy
+y)+(m+z)+(z+

>9

z
Y

) > 6
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Applications

log-sum-exp: f(z) =log > _, expxy is convex

1 1

Vif(z) = T diag(z) — (1T2)22‘"~‘ (2 = exp xp)

to show V2f(x) = 0, we must verify that vT V2 f(z)v > 0 for all v

2RV} k) — Vi)
"l.’TVQf(;’ZT)"U - (2k 2x0i) (2, 21) ~ (D Vi) =0
(2 K )

since (3", vkzk)? < (O, zkvi) (O, zk) (from Cauchy-Schwarz inequality)

42



u-+v

6.18 Triangle Inequality

Suppose u,v € V. Then
[ + V]| = fJu]] + [Iv]].

This inequality 1s an equality if and only if one of u, v 1s a nonnegative
multiple of the other.

43



Proof We have

lu +vI? = (u+v.u+v)

= (u,u) + (v.v) + (u,v) + (v, u)
(u,u) + (v, v) + (u,v) + (u,v)

= JJu|l® + [Iv]* + 2 Re(u. v)

6.19 < |lull® + |[v||* + 2|(u. )]
6.20 < [l + [Iv[I* + 2| V]
= (Jlull + [IvID>.

where 6.20 follows from the Cauchy—Schwarz Inequality (6.15). Taking
square roots of both sides of the inequality above gives the desired inequality.

44



Parallelogram Equality

Suppose u,v € V. Then
e+ vII* + e = vlI> = 2| + [Iv]1?).

Proof.

[ +v)|)* + lu—v||* = (u+v.u+v)+ @—v.u—v
= el + V]2 + G v) + (. 0)
+ Jul® + VP = (e 0) = ()
= 2(Jull? + V).

45



Geometric property (R?)

y X
Iyl
3 % o4
il x y*
x = (l1xI1,0)
y = (llylicos 6, llyllsin 6 ) ly — xIIZ = llylI? + llxl1>-2 llyll llxllcosé

<x,y>=lIxlllyllcos 6

where 6 the angle between x and y.

46



Definition: The angle between two vectors
x and y in a linear space with Euclidean
norm is defined as

(x,¥) a
O = arccos
x| y]]
l: ax+by+c, =0 coser ja,a, _vl/;lh:‘
L-ax+b,y +¢,=0 N +b; NG +b;

47



Theorem 2.
lIxll = max (x,y),llyll = 1.

Proof. By Theorem 1, we have
(X, )] < lixtylI<Ixll

for any y with llyll = 1.
Let y = x/lIxll, then (x,y) = lIxll.

(x,y) =xTy max a,),+4a,y,
st yi+y; =1
(x,y) =x"My
max 2a,y,+ay, +a,y,+2a,y,
M=[§ ; st. ity +ys=1/2

48



Additional content

49



General norm

Definition

A vector space Vis said to be a normed linear space
if, to each vector v € V, there is associated a real number
v

, called the norm of v, satisfying

1 ||v|| > 0 with equality if and only if v = 0.
2. ||av|| = |a|||v|| for any scalar a.

3. ||[v+w| < |[|v] + ||w] forallv,w € V.

50



Norms on R"

n 1/p
lvll, = (ZW)
=1

vy = [vi] + [va]| + - + |y

v, = v +v2+ -+ v2
1 2

3
vl = YIvel3 + 0,3 + - + |v, 3

4
[olly = *vf + v+t
[0l = maxlog

The norm is not linear. To inject linearity into the discussion

51



Only norm defined by inner product have the Pythagorean theorem

g e[

are orthogonal; however,

%112, + 1x2l|2, = 4+ 16 = 20

while

||X1+X2||go =16

If, however, || - ||, is used, then

[%1]5 + [|x2]|2 = 5+ 20 =25 = lIx; + x5 I 2

52



Cauchy-Schwarz Inequality for general norm

| <x,y > | < |lx]||¥]].

lyl]l« = sup <x,y>

|[x]|<1

53
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Different norms

A

/

l1xll2

l1x1l1

56



L1 Norm Regularization and Sparsity

over-fitting
TCAT I\ FL FLET T IR E
TEAT I\ FL BRET H IR E
#

https://blog.mireview.com/I1-norm-regularization-and-sparsity-explained-for-dummies-5b0e4be3938a 57



Why does a sparse solution avoid over-fitting

Ax=Db

A sparse solution may make the vector x smaller (sparse)

58



Why does a small L1 norm give a sparse solution

y=a*x+b [10, 5] 10 1]><(“)=(5) b=5-10*a

\J

/

59



1-norm regularization and sparse
min f(w) min f(w)
s.t. |lw|l; <1 s.t.|lw|]; £1 ' O ‘ * 714

When there is a zombie outbreak, which one
should be the weapon of choice?

(
j
N
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Orthogonal Projection

61



6.14 An orthogonal decomposition

(u, v)

and w = u —
[v]|2

Suppose u,v € V, withv # 0. Set ¢ =

(w,v) =0 and u = cv+ w.

Orthogonal Projection

62



Orthogonal Set

» A set of vectors is called an orthogonal
set if every pair of distinct vectors in the
set is orthogonal. Standard inner product

-
s={4|21.
_3_

.

- —1 -

-k

—4

- 1 -

} An orthogonal set?

|s orthogonal set independent?

63



Independent?

* Any orthogonal set of nonzero vectors is
linearly independent.

Let 8 = {v,, V,, ..., V,} be an orthogonal set v, =
Ofori=1,2, ...k

Assume c,, C,, ..., ¢, make c,v, + C,V, + - + C vV, =0
(c1vy +covo+ -+ Vi + -+ Cp Vi) - Vi
= C1V]1*V; +CVo V;+ 4+ CV; V;+ "+ CLVE *V;

= ci(vi-vy) = Ci||ViH2 c,=0

— I



Problem

« Example: S = {v,, v,, V,} is an basis for ®°

Let u =

C1 :?,Cz

7C3

Orthogonal basis?

=7

and u = C1V1 + CoV9y + C3V3.

65



Orthogonal Basis

« LetS = {v{, v, -, v} be an orthogonal basis for a
subspace W, and let u be a vector in W.

U= C1V1 + CoVy + =+ + C Vg

b )
U-vy UV, (TR V%
Proof 112 | Y | vl

To find C;

U-v; = (C1v1 + vy + -+ cvp + - + V) - vy

= C1V1 " Vj T CUp " Vj + =+ CiV; * Vj + =+ + Cx Vg * Vj
u-v;

”villz 66

12

= ¢;(v; - vy) = ¢illv; Ci



Example

« Example: 8 ={v,, v,, v;} is an orthogonal
basis for R’

1 1 5
Vi = 2 s Vo — 1 s V3 — —4
_3_ _—1_ I 1 ]
-
Let u = 2 andu261V1—|—CQV2—|—CgV3.
1
u- vy u- vy u-vs
C C C
| val? R AIE

67



Orthogonal Projection on a line

* Orthogonal projection of a vector on a line

V: any vector

u: any nonzero vector on £

w: orthogonal projection of
vonto £L,w=cu

Z.V-W

wv—w)u =(v—cu)-u =v-u—cu-u =v-u—cllull?

v-u v-u
C = W=CUu=+—7"35U S
llul|? [lul|?
_ . V-Uu
Distance from tip of v to .£: lizl| = |lv = wll= [|[v — =5 u || &



(UB_WI,: V1) = (V3—C1V1, V1) = (V3,V1) — 1 (V1,v1) =0

V3, U
_ (vgw) = Wava)
W1 = TEAE V1 Al
_ _ (v3,vq) (v3,V7)
W=w)+W, =5V +—F7 5 V2
v, |l v, |l

69



Orthogonal Projection

« LetS ={vq,v,, -, v} be an orthogonal basis for a
subspace W, and let u be a vector in W.

U = C1Vq + CoVUy + =+ + C Vg
\ \ b

u- v u-vy u - vy

v ll= v ll? [Vl

70



* Let u be any vector , and w is the orthogonal projection of
uonW.

W = C1V1 + CoVUyp + *++ + Cp Uy
\

Uy UV, U - Uy

lvll? v ll2 lvill?

71
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Orthogonal Basis

Let {uq,uy, -+, u,} be abasis of a subspace W. How to
transform {uy, u,, -+, ux} into an orthogonal basis

Vi = Ui,
uz - vi .
Ve = ug— TAE Vi, Gram-Schmidt
. Lo U3iVi o U3Va Process
3 = 3 1 = 29
[[v|[? [[val|?
Vi = ug Ui - Vi v ug - V2v Ug - Vi1 Vi
= u — L — y— e — -
[[val|? [[val? [Vi—1][?
Then {vy,v,, -+, v} is an orthogonal basis for W
Spdn {VIaVQa'” 7vi}:Spa'n {ulau23”' ,117:}

73



Visualization

./

https://www.youtube.com/watch?v=Ys28-Yq21B8
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Example

S ={u,, u,, u;} is a basis for subspace W

(1] (2 1
1 1
up = |4 Uy = (1) up = | (L.l. vectors)
1. 1. 1.
Then 8" = {v,, v,, v} is an orthogonal basis
for W.
V= ” : :
S ={vy, V,, 4v3}??? s also an orthogonal basis.
[ 2 ] [ 1] 1]
B us - vy 1 _% 1| 0
D TN TR I N O B O
1 1] | 0 |
[ 1 ] 1] 1] 1]
g, U3TW o Uzeup L 51 _(—1) 0 1 -1
TV Wl el T 2 4 L 2 | sl 4
1 |1 0 | -1




Orthonormal Set 2=

« A set of vectors is called an orthonormal set if it is an
orthogonal set, and the norm of all the vectors is 1

( B 1 5 )

1

2 1
3
R
Vi3 3] ﬁ__ll Vaz

A vector that has norm equal to 1 is called a unit

S =

Is orthonormal set

independent?

vector.



6.23 Definition orthonormal

e A list of vectors is called orthonormal if each vector in the list has
norm | and is orthogonal to all the other vectors in the list.

e In other words, a list eq., ..., e;; of vectors in V' is orthonormal if
: \ 1 ifj =k,
e;,e =
TR0 i £k
6.24 Example orthonormal lists
(a)  The standard basis in F” is an orthonormal list.
1 1 1 1 1) e o T3
(b) (ﬁﬁ ﬁ)( ﬁ‘ﬁ‘o) is an orthonormal list in F?.
1 1 1 1 1 1 1 2\ -,
(C) (\/3 7 ﬁ)(_ﬁ ﬁO)( = T2 JE) is an orthonormal list

in F3.

77



6.25 The norm of an orthonormal linear combination

If e1,..., e, 1s an orthonormal list of vectors in V, then
larer + -+ + amem||* = |a1]* + -+ + |am|?

forallay,...,a;, €F.

6.26 An orthonormal list is linearly independent

Every orthonormal list of vectors is linearly independent.
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6.27 Definition orthonormal basis

An orthonormal basis of V' is an orthonormal list of vectors in V' that is
also a basis of V.

6.28 An orthonormal list of the right length is an orthonormal basis

Every orthonormal list of vectors in V' with length dim V' is an orthonormal
basis of V.

6.29 Example Show that

e e o

is an orthonormal basis of F4.

). (=

N | =
N—

N [—
N =
DN | =
N[

79



Example

Suppose 7 is a positive integer. Prove that

1 COSX COS2Xx cosnx Ssinx Sin2x sinnx
\/ﬂ’ ﬁ, ﬁ’..., ﬁ,ﬁ, ﬁ’...’ ,\/E

is an orthonormal list of vectors in C[—m, 7], the vector space of contin-
uous real-valued functions on [—, 7] with inner product

(f.g) = /_ f(x)g(x)dx.

Proof:
/ (sinjt)(sin kt) dt =
jsin(j — k)t + ksin(j — k)t — jsin(j + k)t + ksin(j + k)t
27t — sin 23t W-RNG+H
e
/ (Sm ]t) dt = 45 / (sin j¢)(cos kt) dt =
jcos(j — k)t + kcos(j — k)t + j cos(j + k)t — kcos(j + k)t
: 2jt + sin 2jt AR
/(003]t)2 dt = J = J . /(cosjt)(coskt) dt =
4-7 jsin(j — k)t + ksin(j — k)t + jsin(j + k)t — ksin(j + k)¢

207 — k)7 +k)
/(sinjt)(cosjt) dt = __(co;—;t)f

80



Example

. . o
Fourier Series <f.g>= [ fgods
[/, /] Periodic function

f(1)= % +g[ak cos(kat)+b, sin(ker) |

target 3 1 harmonic
k! ‘ 27
AYAWE 0=—"
of Do ! 2/
-1
0 2 4 6 8 10

~]|

5 3 harmonic 2 5 harmon ic { ak fil f(a:) COS %dm(n = 0, ]., 2, e )
N AU N b= 1 [, f(z)sin " da(n = 1,2,...)
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In general, given a basis ey, ....e, of V and a vector v € V, we know that
there is some choice of scalars aq, ..., d, € F such that

Vv =aie1 +---+ aney.

Coordinate (aq,as, ... ....ay,)

6.30 Writing a vector as linear combination of orthonormal basis

Suppose €1, ..., e, is an orthonormal basis of V' and v € V. Then
v=(v.er)er + -+ (v.en)en
and

IVII* = [(v en)|” + - + [(v.en) .
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6.31 Gram—-Schmidt Procedure

Suppose vy, ...,V is a linearly independent list of vectors in V. Let
er = vi/|vi|. For j = 2,...,m, define e; inductively by
o, = Vi~ el)er— - —(vj. ej1)€j1
J — .

lvi —(vj.er)er —---=(v;.ej_1)ej1
Then ey, ..., e, 1s an orthonormal list of vectors in V' such that

span(vy,...,v;) = span(ey,....e;)
forj =1,....,m.

83



6.33 Example Find an orthonormal basis of P> (R), where the inner prod-
uct is given by (p,q) = ]_11 p(x)g(x)dx.

Solution ~ We will apply the Gram—Schmidt Procedure (6.31) to the basis

1. x.x2

To get started, with this inner product we have

1
11 :/ 12dx = 2.

1

Thus |[1]] = v2. and hence ¢; = /1.
Now the numerator in the expression for e is

We have



Now the numerator in the expression for ez is

2

x—(xz X2, e2)en

er)

/ \/7d/\ / > J3xdx)y/3x

x2—

W= /X

We have

1
2 2 4 2.2

X —%H :/ (x% = 5x —l—l)d :%.
Thus ||x2 — || = /=, and hence e3 = /2 (x? — 3).
Jiie -

uJIv—
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Theorem 4 (Gram-Schmidt). Given an arbitrary
basis y{)...., ¥y in a finite-dimensional linear space
equipped with a Euclidean structure, there is a
related basis x(7),..., x(" with the following properties:

(1) x(N... ., x("is an orthonormal basis.
(i1) xW is a linear combination of y7,...,y0 for all k.

Proof. We proceed recursively; suppose x(7), ... x{k1)
have already been constructed. \We set

\

4 k-1
(b)) =¢| vk - Z ()
X c\y 1 c XU
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k-1
(x(k) , XD ):c((y(k) LX) )-ch (x(j) , XD )j
1

=c((yt,x0)-¢)=0, forl=1,2,...k-1.

Since x{7) ... x*7) are already orthonormal,
it is easy to see that x{k) defined above is
orthogonal to them if we choose

C, =(y®,x0), I=1,..k-1,

Finally we choose ¢ so that lIx*ll = 1.

87



4 k-1 \ RN
x(kb)=¢| yk)- ZC/.X(./) | space

\ L /
y(1)=a11x(1) y(2)=a21x(1) 4+ a22x(2)

y(k)zaklx(l) _|_ _|_ akkx(k)

Y=[y® . @]
a1 A2 .... Aqg
0
=[x ... xW]] . 4d2... az
0 0..... ak.k

Y = QR, Qs an orthogonal matrix B8



Let y be any other vector in X_it can be
expressed as yzz bk (k).

X = 2 ajxV) (16)
get (x,y)=zzajbk (X, y®)
:Zajbj‘ (17)

In particular, for y = x we get

o => a2 (17)
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Equation (17) shows that the mapping
defined by (16),

X — (a,,...,a,),
carries the space X with a Euclidean
structure into F™, and carries the scalar
product of X into the standard scalar
product (2) of F.

X o L_ga=(@a -

X F n

|xI| = llall

< x,y >=<a,b >
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6.39 Definition linear functional

A linear functional on V is a linear map from V' to F. In other words, a
linear functional is an element of L(V, F).

6.40 Example The function ¢ : F?> — F defined by
9(z1.22.23) = 221 — 522 + z3
is a linear functional on F3. We could write this linear functional in the form
¢(z) = (z.u)

for every z € F3, where u = (2, =5, 1).
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6.42 Riesz Representation Theorem

Suppose V' is finite-dimensional and ¢ is a linear functional on V. Then
there is a unique vector u € V' such that

p(v) = (v.u)
forevery v € V.

Proof  First we show there exists a vector u € V such that ¢(v) = (v, u) for
everyv € V. Letey. ..., e, be an orthonormal basis of V. Then

e(v) = p({v.er)er + -+ (v.en)en)
= (v.er)p(er) + -+ (v.eq)p(en)
— ("’* pler)er + -+ + (P(en)(’n)

for every v € V, where the first equality comes from 6.30. Thus setting

6.43 u = q@(er)er +---+ @len)en.

we have ¢(v) = (v, u) for every v € V, as desired. 92



Now we prove that only one vector u € V' has the desired behavior.
Suppose u1,up € V are such that

e(v) = (v.ur) = (v. u2)
for every v € V. Then
0= <V~U1> — (V. uz) o (V~M1 _u2>

for every v € V. Taking v = u — u5 shows that u1 —u, = 0. In other words,
up = up, completing the proof of the uniqueness part of the result. 0
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6.41 Example The function ¢ : P>(R) — R defined by

1
o(p) :/_ p(t)(cos(r)) dt

1

is a linear functional on P,(R) (here the inner product on P> (R) is multi-
plication followed by integration on [—1, 1]; see 6.33). It is not obvious that
there exists u € P>(R) such that

¢(p) = (p.u)

for every p € P>(R) [we cannot take u(7) = cos(mrt) because that function
is not an element of P> (R)].
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6.44 Example Findu € P,(R) such that
1 1
/ p(z)(cos(m)) dt = f p(tu(t) dt
—1 —1
for every p € P>(R).

Solution  Let ¢(p) = j_ll p(t)(cos(m‘)) dt. Applying formula 6.43 from
the proof above, and using the orthonormal basis from Example 6.33, we have

u(x) = (/;1 \/g(cos(yn‘)) dl)\/;_‘_ (‘/_11 \/gz(cos(m)) dt) \/gx
/ \/> COS(JU)) dt) 485(A2—%).

A bit of calculus shows that

u(x) = —
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Orthogonal complement



6.45 Definition orthogonal complement, U+

If U is a subset of V, then the orthogonal complement of U, denoted U+,
is the set of all vectors in V' that are orthogonal to every vector in U :

Ut ={eV:(vu)=0foreveryu € U}.
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Y1 = {z:(y,2) = 0,vy € Y}

I
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6.46 Basic properties of orthogonal complement

(a) If U is a subset of V, then U is a subspace of V.
(b {0t =V.

(©) V+={0}.

(d) IfU isasubsetof V,then U N UL C {0}.

(e) IfU and W are subsets of V and U C W, then W+ c U+,
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Proof

(a)  Suppose U is a subset of V. Then (0,u) = 0 for every u € U; thus
0eU~L.

Suppose v.w € U~L. If u € U, then
v+wu)=(v,u)+ (w,u) =0+0=0.

Thus v + w € U=+, In other words, U~ is closed under addition.

Similarly, suppose A € F and v € U+. If u € U, then
(Aviu)y = A(v,u) =A1-0=0.

Thus Av € UL, In other words, U is closed under scalar multiplica-
tion. Thus U~ is a subspace of V.
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(b)

(c)

(d)

(e)

Suppose v € V. Then (v, 0) = 0, which implies that v € {0}*. Thus
0+ =V

Suppose v € V. Then (v,v) = 0, which implies that v = 0. Thus
VL =10}

Suppose U is a subset of V and v € U N U+, Then (v,v) = 0, which
implies that v = 0. Thus U N U+ C {0}.

Suppose U and W are subsets of V and U C W. Suppose v € W,
Then (v,u) = 0O for every u € W, which implies that (v, u) = 0 for
every u € U. Hence v € UL. Thus W+ c U+, O
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Examples

For Y = Span{u,, u,}, whereu, =[1 1 -1 4]7andu,=[1-1 1 27"

Please find the Y*.
i.e., V=[x, X, X3 X, ]" satisfies

r1+x9 — 23+ 424 =0
1 — Ty + 23+ 224 = 0.

& B =<

SO = = O

N

I
X2
L3
L4

—31‘4
r3 — T4
L3
L4

> is a basis for Y- .

O = = O
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Examples

* For any matrix A

(Row A)J- = Null A

v € (Row A)* & For all w e Span{rows of A}, (w ,v )=0
< Av = 0.

LIV IV  (Col A) = (Row AT)* = Null AT
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6.47 Direct sum of a subspace and its orthogonal complement

Suppose U is a finite-dimensional subspace of V. Then
V=UeU".

Proof First we will show that

6.48 V=U+U

To do this, suppose v € V. Letey,..., e;; be an orthonormal basis of U.

Obviously

6.49 v=(v.ey)er +---+ (viem)em +v—{(v.e1)er — - — (v, em)e,,L.
u W

Let v and w be defined as in the equation above. Clearly u € U. Because

€1e.... em 1s an orthonormal list, foreach j =1,..., m we have
(woe;) = (v.e;) —(v.ej)
= 0.
Thus w is orthogonal to every vector in span(ey, ..., em). In other words,

w € U~+. Thus we have written v = u + w, where u € U and w € U=,
completing the proof of 6.48.

From 6.46(d), we know that U N U+ = {0}. Along with 6.48, this implies
that V = U @ U~ (see 1.45). o
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6.50 Dimension of the orthogonal complement

Suppose V' is finite-dimensional and U 1s a subspace of V. Then

dim U+ = dimV — dim U.

6.51 The orthogonal complement of the orthogonal complement

Suppose U 1is a finite-dimensional subspace of V. Then

U= (UN)" .
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Proof First we will show that
6.52 Uc (UMt

To do this, suppose u € U. Then (u,v) = 0 for every v € U+ (by the
definition of UL). Because u is orthogonal to every vector in U, we have
u € (U+)L, completing the proof of 6.52.

To prove the inclusion in the other direction, suppose v € (U+)+. By
6.47, we can write v = u + w, where u € U and w € UL. We have
v—u =we UL. Because v € (UL)L and u € (UL)L (from 6.52), we
have v —u € (UL)+. Thusv —u € UL N (U+)L, which implies that v — u
is orthogonal to itself, which implies that v — u = 0, which implies that
v = u, which implies that v € U. Thus (U~+)+ c U, which along with 6.52
completes the proof. .
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6.53 Definition orthogonal projection, Py

Suppose U is a finite-dimensional subspace of V. The orthogonal
projection of V onto U is the operator Py € L(V') defined as follows:
Forv € V, write v =u + w, where u € U and w € UL. Then Pyv = u.

6.54 Example Suppose x € V with x # 0 and U = span(x). Show that

(v, x)
Pyv =
I x]12

X

for every v € V.

Solution  Suppose v € V. Then

(v, x) (v, x)
y = X + (v — x).
| x || x||?

where the first term on the right is in span(x) (and thus in U) and the second
term on the right is orthogonal to x (and thus is in U-). Thus Py v equajs the
first term on the right, as desired.



6.55 Properties of the orthogonal projection Py

Suppose U is a finite-dimensional subspace of V and v € V. Then

(a)
(b)
(c)
(d)
(€)
()
(2)
(h)
(i)

Py e L(V);

Pyu = u foreveryu € U;
Pyw = 0 forevery w € U+;
range Py = U,

null Py = U+;

v— Pyve UL,

Py* = Py;

[Puvl < [v]:

for every orthonormal basis ey, ..., e, of U,

Pyv = {(v,e1)e1 +:--+ (v.em)em.
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Proof

To show that Py is a linear map on V, suppose vy, vy € V. Write
vi=u;+wy; and vy, = ur + wy

with .1, € U andwy, w, € U~L. Thus Pyvy; = uq and Pyvs = us.
Now
vi +v2 = (u1 + u2) + (w1 + w2),

where u; +u, € U and wy +wp € U L. Thus

Py(vi +v2) =u1 +uz = Pyvi + Pyva.

Similarly, suppose A € F. The equation v = u + w with v € U and
w € U+ implies that Av = Au 4+ Aw with Au € U and Aw € U+,
Thus Py (Av) = Au = APyv.

Hence Py is a linear map from V to V.
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(b)

(¢)

(d)

(€)

Suppose u € U. We can write ¥ = u + 0, where v € U and 0 € U+.

Thus Pypu = u.

Suppose w € U+, We can write w = 04w, where 0 € U andw € U+,

Thus Pyw = 0.

The definition of Py implies that range Py C U. Part (b) implies that
U C range Py. Thus range Py = U.

Part (¢) implies that U L c null Py. To prove the inclusion in the other
direction, note that if v € null Py then the decomposition given by 6.47
must be v = 0 + v, where 0 € U and v € U-. Thus null Py C UL,
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(f)

(h)

(1)

[fv=u+4+wwithueUandwe U L, then

v— Ppv=v—u=we U™+,

Ifv=u-+wwithu € U andw € U=, then

(PU2)V = Py(Pyv) = Pyu =u = Pyv.

Ifv=u-+wwithu € U andw € U=, then

2 2 2 2 2
1P vl|™ = [l = flull® 4+ lwll= = lIvII~

where the last equality comes from the Pythagorean Theorem.

The formula for Py v follows from equation 6.49 in the proof of 6.47. m
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6.56 Minimizing the distance to a subspace

Suppose U is a finite-dimensional subspace of V, v € V, and u € U. Then
lv—=Poyv|| = [lv—ul.
Furthermore, the inequality above is an equality if and only if u = Pyv.

Proof We have
6.57 lv— Pyv|?® < |v— Puv|* + | Puv — ul?
= [|(v— Pyv) + (Pyv—u)|?

= v —ul.

where the first line above holds because 0 < || Pyv — ul|?, the second
line above comes from the Pythagorean Theorem [which applies because
v— Pyve U+t by 6.55(f), and Pyv — u € U], and the third line above holds
by simple algebra. Taking square roots gives the desired inequality.

Our inequality above is an equality if and only if 6.57 is an equality,
which happens if and only if || Pyv — u| = 0, which happens if and only if
u = Pyv. [
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Example

Example Find a polynomial u with real coefficients and degree at
most 5 that approximates sin x as well as possible on the interval [, 7], in

the sense that .
/ [sinx — u(x)|* dx

—TT

1s as small as possible. Compare this result to the Taylor series approximation.
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Solution  Let Cr|[—m. 7r] denote the real inner product space of continuous
real-valued functions on [—z, 7r] with inner product

(f.g) = f(x)g(x)dx.

Let v € Cr[—m, ] be the function defined by v(x) = sinx. Let U denote the
subspace of Cr|[—, ] consisting of the polynomials with real coefficients
and degree at most 5. Our problem can now be reformulated as follows:

Find u € U such that ||v — u|| 1s as small as possible.

19x’x29'x39x4’x5 —— el ’ 629 639 649 659 86

u(x) = 0.987862x — 0.155271x> + 0.00564312x°
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_1 =

u(x) = 0.987862x — 0.155271x> + 0.00564312x°

3

X XS
Y3 T
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R™ space

Orthogonal Projection

¢ LetS ={v,v,, -, v} be an orthogonal basis for a
subspace W. Let u be any vector, and w is the
orthogonal projection of u on W.

W = CqV1 + CaUyp + - + C Vg

\

u- vy u: vy

lvall# llv2ll2 lvill?

C=[vi - w] Py=CcCTOT w=F,u
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Orthogonal Projection Matrix

* Let C be an n x k matrix whose columns
form a basis for a subspace W

(Col A)L+ = Null AT

P, =cCc(CTC)~tct nxn

Proof: Letu € ®" and w = P ,(u).
Since W = Col C, w = Cb for some b € R*

andu -—w eW*
=0=C'(u-w)=C'u-C'w=C'u-C’Cbh.
— C’'u=C'Cb.
=b=(C'Cy'"C'uandw =C(C'C)'C'uas C'Cis

invertible. Least square problem {bl}nHCb —ull, 121



Let C be a matrix with linearly independent
columns. Then C*C is invertible.

Proof: We want to prove that C'C has independent
columns.
Suppose C'Cb = 0 for some b.

— b'C’Cb = (Cb)'Cb = (Cb) ¢ (Cb) = ||Cb||2 = Q.
= Cb=0 = b=0since Chas L.l. columns.
Thus C’C is invertible.
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Orthogonal Projection Matrix

 Example: Let W be the 2-dimensional

subspace of ®° with equation x, — x, +2x,

= 0.
P, = C(CTC) 1CT

W has a basis -

5 1 -2
1 5 2
-2 2 2

AN | —

o

N

S

S
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Least square problems

A least squares problem can generally be formulated as
an overdetermined linear system of equations. Recall
that an overdetermined system is one involving more
equations than unknowns. Such systems are usually
inconsistent. Thus, given an m X n system Ax = b
with m > n, we cannot expect in general to find a vector
x € R" for which Ax equals b. Instead, we can look for
a vector x for which Ax is “closest” to b. As you might
expect, orthogonality plays an important role in finding
such an x.
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Least square problems

If we are given a system of equations Ax = b, where A
is an m X m matrix withm >nand b € R™, then, for
each x € R", we can form a residual

r(x) =b - Ax
The distance between b and Ax is given by

b — AxIl = Il r(x) Il
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A=[ay,az . n]  Peoyab = AATA) 14D

x* = (ATA)~14b

(Col AL = Null AT

plATy=0yeRr™  AT(b-Ax)=0
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Thank you



