Algebraic Basis in Control Theory控制理论中的代数基础

哈尔滨工业大学（深圳）

李衍杰

Contact Information

－李衍杰
－Room 1011，Building G
－Phone： 86530531
－Email：autolyj＠hit．edu．cn
－Teaching Assistant
－马帅康，陈鹏涁，駡柯剑，李心怡
－Room 415，Building A
－QQ群： 747589654

群名称：23春－控制理论中的代数基础
群 号：747589654

Reference Book

没有一种数学思想如当初刚被发现时那样发表出来。一旦问题解决了，思考的程序便颠倒过来，把火热的思考变成冰冷的美丽。

－－－－－－－－－弗赖登塔尔

课程目的

线性代数变为了计算科学，离散的概念需要具体的含义

Linear System

Persevering Multiplication

Persevering Addition

矩阵的行列式

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right] \\
& |A|=6
\end{aligned}
$$

如何理解 $|A B|=|A||B|$
$A B$ 表示依次施加变换 B 和变换 A ，先后放大 $|\boldsymbol{B}|$ 倍和 $|\boldsymbol{A}|$ 倍，
总共放大 $|\boldsymbol{A}||\boldsymbol{B}|$ 倍。
linear space

An intuitive map for Linear Algebra

In making the definition of a vector space, we generalized the linear structure (addition and scalar multiplication) of R^{2} and R^{3}.

We ignored other important features, such as the notions of length and angle.

Inner Product Space

Euclidean distance

R^{2} space

R^{n} space

Euclidean distance

We choose a point $\mathbf{0}$ as origin in real \boldsymbol{n} dimensional Euclidean space: the length of any vector \boldsymbol{x} in space, denoted as $\|\boldsymbol{x}\|$, is defined as its distance to the origin.
Denote the Cartesian coordinates of \boldsymbol{x} as
x_{1}, \ldots, x_{n}

$$
\|x\|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}
$$

Norm \& Distance

- Norm: Norm of vector v is the length of v - Denoted $\|v\|$

$$
\|v\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

- Distance: The distance between two vectors u and v is defined by $\|v-u\|$

$$
\begin{gathered}
v=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad u=\left[\begin{array}{c}
2 \\
-3 \\
0
\end{array}\right] \quad v-u=\left[\begin{array}{c}
-1 \\
5 \\
3
\end{array}\right]\|v-u\|=\sqrt{(-1)^{2}+5^{2}+3^{2}} \\
\|v\|=\sqrt{1^{2}+2^{2}+3^{2}}=\sqrt{14} \quad=\sqrt{35}
\end{gathered}
$$

dot product scalar product Inner product

6.2 Definition dot product (Scalar product)

For $x, y \in \mathbf{R}^{n}$, the dot product of x and y, denoted $x \cdot y$, is defined by

$$
x \cdot y=x_{1} y_{1}+\cdots+x_{n} y_{n},
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$.

Standard inner product

real vector space

- $x \cdot x \geq 0$ for all $x \in \mathbf{R}^{n}$;
- $x \cdot x=0$ if and only if $x=0$;
- for $y \in \mathbf{R}^{n}$ fixed, the map from \mathbf{R}^{n} to \mathbf{R} that sends $x \in \mathbf{R}^{n}$ to $x \cdot y$ is linear;
- $x \cdot y=y \cdot x$ for all $x, y \in \mathbf{R}^{n}$.

Definition. A Euclidean structure in a linear space X overthe reals is furnished by a realvalued function of two vector arguments called a scalar product and denoted as ($\boldsymbol{x}, \boldsymbol{y}$), which has the following properties:
(i) $(\boldsymbol{x}, \boldsymbol{y})$ is a bilinear function; that is, it is a linear function of each argument when the other is kept fixed.
(ii) It is symmetric:

$$
(x, y)=(y, x)
$$

(iii) It is positive:

$$
(\boldsymbol{x}, \boldsymbol{x})>0 \text { except for } \boldsymbol{x}=\mathbf{0}
$$

Examples

Standard inner product $(x, y)=x^{T} y$

1. Consider another inner product on R^{n}

$\langle x, y\rangle=x^{T} M y \quad$ Where \boldsymbol{M} is symmetric positive-define matrix

$$
\begin{gathered}
M=\left[\begin{array}{cc}
1 & \frac{1}{2} \\
\frac{1}{2} & 1
\end{array}\right] \\
\langle x, y\rangle=x_{1} y_{1}+\frac{1}{2} x_{1} y_{2}+\frac{1}{2} x_{2} y_{1}+x_{2} y_{2}
\end{gathered}
$$

2. The vector space of real functions whose domain is an closed interval [a, b] with inner product

$$
<f, g>=\int_{a}^{b} f(x) g(x) d x
$$

Consider a vector space of polynomials with degree less than 2 and its domain is $[0,1]$ we have

$$
<s-\frac{\sqrt{3}}{3}, s+\frac{\sqrt{3}}{3}>=\int_{0}^{1} s^{2}-1 / 3 d s=0
$$

3. Consider matrix linear space $R^{m \times n}$

Given A and B in $\mathbb{R}^{m \times n}$, we can define an inner product by

$$
\langle A, B\rangle=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} b_{i j}
$$

complex vector spaces

Recall that if $\lambda=a+b i$, where $a, b \in \mathbf{R}$, then

- the absolute value of λ, denoted $|\lambda|$, is defined by $|\lambda|=\sqrt{a^{2}+b^{2}}$;
- the complex conjugate of λ, denoted $\bar{\lambda}$, is defined by $\bar{\lambda}=a-b i$;
- $|\lambda|^{2}=\lambda \bar{\lambda}$.

For $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbf{C}^{n}$, we define the norm of z by

$$
\begin{gathered}
\|z\|=\sqrt{\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}} \\
\|z\|^{2}=z_{1} \overline{z_{1}}+\cdots+z_{n} \overline{z_{n}}
\end{gathered}
$$

the inner product of

$$
w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbf{C}^{n} \text { with } z \text { should equal }
$$

(1) $w \cdot z=w_{1} \overline{z_{1}}+\cdots+w_{n} \overline{z_{n}}$.

$$
\begin{array}{ll}
w \cdot z=w z^{H} & w=\left(w_{1}, \ldots, w_{n}\right) \\
& z=\left(z_{1}, \ldots, z_{n}\right)
\end{array}
$$

(2) $w \cdot z=\overline{w_{1}} z_{1}+\cdots+\overline{w_{n}} z_{n}$

$$
\begin{array}{rl}
w \cdot z=\bar{w} z^{T} & w \\
z & =\left(w_{1}, \ldots, w_{n}\right) \\
z \cdot\left(z_{1}, \ldots, z_{n}\right) \\
w=\overline{z \cdot w} &
\end{array}
$$

Fields of Complex number

An inner product on V is a function that takes each ordered pair (u, v) of elements of V to a number $\langle u, v\rangle \in \mathbf{F}$ and has the following properties:
positivity

$$
\langle v, v\rangle \geq 0 \text { for all } v \in V
$$

definiteness

$$
\langle v, v\rangle=0 \text { if and only if } v=0 ;
$$

additivity in first slot

$$
\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle \text { for all } u, v, w \in V ;
$$

homogeneity in first slot
$\langle\lambda u, v\rangle=\lambda\langle u, v\rangle$ for all $\lambda \in \mathbf{F}$ and all $u, v \in V ;$
conjugate symmetry

$$
\langle u, v\rangle=\overline{\langle v, u\rangle} \text { for all } u, v \in V .
$$

6.4 Example inner products
(a) The Euclidean inner product on \mathbf{F}^{n} is defined by

$$
\left\langle\left(w_{1}, \ldots, w_{n}\right),\left(z_{1}, \ldots, z_{n}\right)\right\rangle=w_{1} \overline{z_{1}}+\cdots+w_{n} \overline{z_{n}} .
$$

(b) If c_{1}, \ldots, c_{n} are positive numbers, then an inner product can be defined on \mathbf{F}^{n} by

$$
\left\langle\left(w_{1}, \ldots, w_{n}\right),\left(z_{1}, \ldots, z_{n}\right)\right\rangle=c_{1} w_{1} \overline{z_{1}}+\cdots+c_{n} w_{n} \overline{z_{n}} .
$$

(c) An inner product can be defined on the vector space of continuous real-valued functions on the interval $[-1,1]$ by

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

(d) An inner product can be defined on $\mathcal{P}(\mathbf{R})$ by

$$
\langle p, q\rangle=\int_{0}^{\infty} p(x) q(x) e^{-x} d x
$$

6.7 Basic properties of an inner product

(a) For each fixed $u \in V$, the function that takes v to $\langle v, u\rangle$ is a linear map from V to \mathbf{F}.
(b) $\quad\langle 0, u\rangle=0$ for every $u \in V$.
(c) $\langle u, 0\rangle=0$ for every $u \in V$.
(d) $\langle u, v+w\rangle=\langle u, v\rangle+\langle u, w\rangle$ for all $u, v, w \in V$.
(e) $\langle u, \lambda v\rangle=\bar{\lambda}\langle u, v\rangle$ for all $\lambda \in \mathbf{F}$ and $u, v \in V$.
(a) Part (a) follows from the conditions of additivity in the first slot and homogeneity in the first slot in the definition of an inner product.
(b) Part (b) follows from part (a) and the result that every linear map takes 0 to 0 .
(c) Part (c) follows from part (a) and the conjugate symmetry property in the definition of an inner product.
(d) Suppose $u, v, w \in V$. Then

$$
\begin{aligned}
\langle u, v+w\rangle & =\overline{\langle v+w, u\rangle} \\
& =\overline{\langle v, u\rangle+\langle w, u\rangle} \\
& =\overline{\langle v, u\rangle}+\overline{\langle w, u\rangle} \\
& =\langle u, v\rangle+\langle u, w\rangle .
\end{aligned}
$$

(e) Suppose $\lambda \in \mathbf{F}$ and $u, v \in V$. Then

$$
\begin{aligned}
\langle u, \lambda v\rangle & =\overline{\langle\lambda v, u\rangle} \\
& =\overline{\lambda\langle v, u\rangle} \\
& =\bar{\lambda} \overline{\langle v, u\rangle} \\
& =\bar{\lambda}\langle u, v\rangle
\end{aligned}
$$

as desired.

6.8 Definition norm, $\|v\|$ (Euclidean length)

For $v \in V$, the norm of v, denoted $\|v\|$, is defined by

$$
\|v\|=\sqrt{\langle v, v\rangle} .
$$

Example

$$
\|f\|=\sqrt{\int_{-1}^{1}(f(x))^{2} d x} . \quad\|A\|=\sqrt{\langle A, A\rangle}=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}
$$

Definition, The distance of two vectors \boldsymbol{x} and \boldsymbol{y} in a linear space with Euclidean norm is defined as $\| x$ - $y \|$.

6.10 Basic properties of the norm

Suppose $v \in V$.
(a) $\|v\|=0$ if and only if $v=0$.
(b) $\quad\|\lambda v\|=|\lambda|\|v\|$ for all $\lambda \in \mathbf{F}$.

Orthogonal and Orthonormal

Definition. Two vectors \boldsymbol{x} and \boldsymbol{y} are called orthogonal (perpendicular), denoted as $x \perp y$, if
 $$
(x, y)=0 .
$$
 (13)

6.12 Orthogonality and 0
(a) 0 is orthogonal to every vector in V.
(b) 0 is the only vector in V that is orthogonal to itself.

Equalities and Inequalities

6．13 Pythagorean Theorem（勾股定理）

Suppose u and v are orthogonal vectors in V ．Then

$$
\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2} .
$$

Proof We have

$$
\begin{aligned}
\|u+v\|^{2} & =\langle u+v, u+v\rangle \\
& =\langle u, u\rangle+\langle u, v\rangle+\langle v, u\rangle+\langle v, v\rangle \\
& =\|u\|^{2}+\|v\|^{2},
\end{aligned}
$$

as desired．

6.15 Cauchy-Schwarz Inequality

Suppose $u, v \in V$. Then

$$
|\langle u, v\rangle| \leq\|u\|\|v\| .
$$

This inequality is an equality if and only if one of u, v is a scalar multiple of the other.

$$
u=c v+(u-c v)
$$

Thus we need to choose c so that v is orthogonal to $(u-c v)$. In other words, we want

$$
0=\langle u-c v, v\rangle=\langle u, v\rangle-c\|v\|^{2}
$$

The equation above shows that we should choose c to be $\langle u, v\rangle /\|v\|^{2}$. Making this choice of c, we can write

$$
u=\frac{\langle u, v\rangle}{\|v\|^{2}} v+\left(u-\frac{\langle u, v\rangle}{\|v\|^{2}} v\right) .
$$

6.14 An orthogonal decomposition

Suppose $u, v \in V$, with $v \neq 0$. Set $c=\frac{\langle u, v\rangle}{\|v\|^{2}}$ and $w=u-\frac{\langle u, v\rangle}{\|v\|^{2}} v$. Then

$$
\langle w, v\rangle=0 \quad \text { and } \quad u=c v+w .
$$

Proof If $v=0$, then both sides of the desired inequality equal 0 . Thus we can assume that $v \neq 0$. Consider the orthogonal decomposition

$$
u=\frac{\langle u, v\rangle}{\|v\|^{2}} v+w
$$

given by 6.14 , where w is orthogonal to v. By the Pythagorean Theorem,

$$
\begin{aligned}
\|u\|^{2} & =\left\|\frac{\langle u, v\rangle}{\|v\|^{2}} v\right\|^{2}+\|w\|^{2} \\
& =\frac{|\langle u, v\rangle|^{2}}{\|v\|^{2}}+\|w\|^{2} \\
& \geq \frac{|\langle u, v\rangle|^{2}}{\|v\|^{2}} .
\end{aligned}
$$

Multiplying both sides of this inequality by $\|v\|^{2}$ and then taking square roots gives the desired inequality.

对于实数域线性空间的另一种证明方法：

Theorem 1 （Schwarz Inequality）．For all $\boldsymbol{x}, \boldsymbol{y}$ ，

$$
\|(x, y) \mid \leq\| x\|\|y\| .
$$

（9）
Proof．Consider the function $\boldsymbol{q}(\boldsymbol{t})$ of the real variable t defined by

$$
\begin{equation*}
q(t)=\|x+t y\|^{2} \tag{10}
\end{equation*}
$$

Using the definition of norm and properties of inner product，we can write

$$
q(t)=\|x\|^{2}+2 t(x, y)+t^{2}\|y\|^{2}
$$

Assume that $\boldsymbol{y} \neq 0$ and set $\boldsymbol{t}=-(\boldsymbol{x}, \boldsymbol{y}) /\|y\|^{2}$ in (10)'.
Since (10) shows that $q(t) \geq 0$ for all \boldsymbol{t}, we get that

$$
\|x\|^{2}-\frac{(x, y)^{2}}{\|y\|^{2}} \geq 0
$$

This proves (9). For $\boldsymbol{y}=0$, (9) is trivially true.
6.17 Example examples of the Cauchy-Schwarz Inequality
(a) If $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in \mathbf{R}$, then Cauchy(1821)

$$
\left|x_{1} y_{1}+\cdots+x_{n} y_{n}\right|^{2} \leq\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)\left(y_{1}^{2}+\cdots+y_{n}^{2}\right) .
$$

(b) If f, g are continuous real-valued functions on $[-1,1]$, then

$$
\begin{gathered}
\left|\int_{-1}^{1} f(x) g(x) d x\right|^{2} \leq\left(\int_{-1}^{1}(f(x))^{2} d x\right)\left(\int_{-1}^{1}(g(x))^{2} d x\right) . \\
\text { Schwartz(1886) }
\end{gathered}
$$

Applications

Let a, b, c be positive real numbers, we have

$$
\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a} \geq \frac{9}{a+b+c}
$$

Proof:

$$
\begin{aligned}
& (a+b+b+c+c+a) \times\left[\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right] \\
& =\left[(\sqrt{a+b})^{2}+(\sqrt{b+c})^{2}+(\sqrt{a+c})^{2}\right]\left[\left(\sqrt{\frac{1}{a+b}}\right)^{2}+\left(\sqrt{\frac{1}{b+c}}\right)^{2}+\left(\sqrt{\frac{1}{a+c}}\right)^{2}\right] \\
& \geq\left(\sqrt{a+b} \sqrt{\frac{1}{a+b}}+\sqrt{b+c} \sqrt{\frac{1}{b+c}}+\sqrt{a+c} \sqrt{\frac{1}{a+c}}\right)^{2} \\
& =9
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{9}{x+y+z} \leftrightarrow \frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}>9 \\
& \leftrightarrow \frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}>6 \leftrightarrow\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)>6
\end{aligned}
$$

Applications

log-sum-exp: $f(x)=\log \sum_{k=1}^{n} \exp x_{k}$ is convex

$$
\nabla^{2} f(x)=\frac{1}{\mathbf{1}^{T} z} \operatorname{diag}(z)-\frac{1}{\left(\mathbf{1}^{T} z\right)^{2}} z z^{T} \quad\left(z_{k}=\exp x_{k}\right)
$$

to show $\nabla^{2} f(x) \succeq 0$, we must verify that $v^{T} \nabla^{2} f(x) v \geq 0$ for all v :

$$
v^{T} \nabla^{2} f(x) v=\frac{\left(\sum_{k} z_{k} v_{k}^{2}\right)\left(\sum_{k} z_{k}\right)-\left(\sum_{k} v_{k} z_{k}\right)^{2}}{\left(\sum_{k} z_{k}\right)^{2}} \geq 0
$$

since $\left(\sum_{k} v_{k} z_{k}\right)^{2} \leq\left(\sum_{k} z_{k} v_{k}^{2}\right)\left(\sum_{k} z_{k}\right)$ (from Cauchy-Schwarz inequality)

6.18 Triangle Inequality

Suppose $u, v \in V$. Then

$$
\|u+v\| \leq\|u\|+\|v\|
$$

This inequality is an equality if and only if one of u, v is a nonnegative multiple of the other.

Proof We have

$$
\begin{aligned}
\|u+v\|^{2} & =\langle u+v, u+v\rangle \\
& =\langle u, u\rangle+\langle v, v\rangle+\langle u, v\rangle+\langle v, u\rangle \\
& =\langle u, u\rangle+\langle v, v\rangle+\langle u, v\rangle+\overline{\langle u, v\rangle} \\
& =\|u\|^{2}+\|v\|^{2}+2 \operatorname{Re}\langle u, v\rangle \\
& \leq\|u\|^{2}+\|v\|^{2}+2|\langle u, v\rangle| \\
& \leq\|u\|^{2}+\|v\|^{2}+2\|u\|\|v\| \\
& =(\|u\|+\|v\|)^{2},
\end{aligned}
$$

6.19
6.20
where 6.20 follows from the Cauchy-Schwarz Inequality (6.15). Taking square roots of both sides of the inequality above gives the desired inequality.

Parallelogram Equality

Suppose $u, v \in V$. Then

$$
\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right)
$$

Proof:

$$
\begin{aligned}
\|u+v\|^{2}+\|u-v\|^{2}= & \langle u+v, u+v\rangle+\langle u-v, u-v\rangle \\
= & \|u\|^{2}+\|v\|^{2}+\langle u, v\rangle+\langle v, u\rangle \\
& +\|u\|^{2}+\|v\|^{2}-\langle u, v\rangle-\langle v, u\rangle \\
= & 2\left(\|u\|^{2}+\|v\|^{2}\right)
\end{aligned}
$$

Geometric property $\left(R^{2}\right)$

where θ the angle between \boldsymbol{x} and \boldsymbol{y}.

Definition: The angle between two vectors x and y in a linear space with Euclidean norm is defined as

$$
\theta=\arccos \frac{(x, y)}{\|x\|\|y\|}
$$

$$
\begin{aligned}
& l_{1}: a_{1} x+b_{1} y+c_{1}=0 \\
& l_{2}: a_{2} x+b_{2} y+c_{2}=0
\end{aligned} \quad \Longrightarrow \cos \alpha=\frac{\left|a_{1} a_{2}+b_{1} b_{2}\right|}{\sqrt{a_{1}^{2}+b_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}}}
$$

Theorem 2.

$$
\|x\|=\max (x, y),\|y\|=1
$$

Proof. By Theorem 1, we have $|(x, y)| \leq\|x\|\|y\| \leq\|x\|$ for any \boldsymbol{y} with $\|y\|=1$.
Let $\boldsymbol{y}=\boldsymbol{x} /\|x\|$, then $(\boldsymbol{x}, \boldsymbol{y})=\|x\|$.

$$
\begin{array}{l|ll|}
(x, y)=x^{T} y \\
(x, y)=x^{T} M y & \begin{array}{ll}
\max & a_{1} y_{1}+a_{2} y_{2} \\
\text { s.t. } & y_{1}^{2}+y_{2}^{2}=1
\end{array} \\
M=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] & \begin{array}{ll}
\max & 2 a_{1} y_{1}+a_{1} y_{2}+a_{2} y_{1}+2 a_{2} y_{2} \\
\text { s.t. } & y_{1}^{2}+y_{1} y_{2}+y_{2}^{2}=1 / 2 \\
\hline
\end{array} \\
\hline
\end{array}
$$

Additional content

General norm

Definition

A vector space V is said to be a normed linear space if, to each vector $\mathbf{v} \in V$, there is associated a real number $\|\mathbf{v}\|$, called the norm of \mathbf{v}, satisfying

1. $\|\mathbf{v}\| \geq 0$ with equality if and only if $\mathbf{v}=0$.
2. $\|\alpha \mathbf{v}\|=|\alpha|\|\mathbf{v}\|$ for any scalar α.
3. $\|\mathbf{v}+\mathbf{w}\| \leq\|\mathbf{v}\|+\|\mathbf{w}\|$ for all $\mathbf{v}, \mathbf{w} \in V$.

Norms on R^{n}

$$
\begin{aligned}
& \|v\|_{p}=\left(\sum_{i=1}^{n}\left|v_{i}\right|^{p}\right)^{1 / p} \\
& \|v\|_{1}=\left|v_{1}\right|+\left|v_{2}\right|+\cdots+\left|v_{n}\right| \\
& \|v\|_{2}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}} \\
& \|v\|_{3}=\sqrt[3]{\left|v_{1}\right|^{3}+\left|v_{2}\right|^{3}+\cdots+\left|v_{n}\right|^{3}} \\
& \|v\|_{4}=\sqrt[4]{v_{1}^{4}+v_{2}^{4}+\cdots+v_{n}^{4}} \\
& \|v\|_{\infty}=\max _{i}\left|v_{i}\right|
\end{aligned}
$$

The norm is not linear. To inject linearity into the discussion

Only norm defined by inner product have the Pythagorean theorem

$$
\mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad \text { and } \quad \mathbf{x}_{2}=\left[\begin{array}{c}
-4 \\
2
\end{array}\right]
$$

are orthogonal; however,

$$
\left\|\mathbf{x}_{1}\right\|_{\infty}^{2}+\left\|\mathbf{x}_{2}\right\|_{\infty}^{2}=4+16=20
$$

while

$$
\left\|\mathbf{x}_{1}+\mathbf{x}_{2}\right\|_{\infty}^{2}=16
$$

If, however, $\|\cdot\|_{2}$ is used, then

$$
\left\|\mathbf{x}_{1}\right\|_{2}^{2}+\left\|\mathbf{x}_{2}\right\|_{2}^{2}=5+20=25=\left\|\mathbf{x}_{1}+\mathbf{x}_{2}\right\|_{2}^{2}
$$

Cauchy-Schwarz Inequality for general norm

$$
\begin{gathered}
\mid\langle x, y>| \leq\|x\|\|y\|_{*} \\
\|y\|_{*}=\sup _{\|x\| \leq 1}<x, y>
\end{gathered}
$$

设 $\|\|$｜是线性空间 V 上的一个范数．如果它满足平行四边形公式，即对任意两个向量 x 和 y ，

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right),
$$

则存在唯一的 V 上的一个内积 $\langle\cdot\rangle$ ，使得对任意向量 x

$$
\|x\|=\sqrt{\langle x, x\rangle} .
$$

问题：既然已经有了长度，为什么还要考虑不是长度的范数？

引入范数使得我们可以考虑两个向量的距离．而距离好处有两个，分别是定性的和定量的。定性的方面是可以考虑极限，进而引入连续，导数与积分等数学分析的方法．定量的方面是可以为最优逼近问题提供逼近性能指标．定性的角度来说，各种范数的作用是等价的（范数的等价性）；但就提供符合实际需求的逼近性能指标来说，不同的范数起着不同的作用，给出的＂最优解＂也不同。

Different norms

L1 Norm Regularization and Sparsity

over－fitting

把打扒捕拉被䢃盐派喔
 把打扒捕拉被䢃盐派喔

Why does a sparse solution avoid over-fitting

$$
\begin{aligned}
& \mathrm{Ax}=\mathrm{b}
\end{aligned}
$$

$$
\begin{aligned}
& \vdots
\end{aligned}
$$

A sparse solution may make the vector x smaller (sparse)

Why does a small L1 norm give a sparse solution

$$
y=a * x+b \quad[10,5] \quad\left[\begin{array}{cc}
10 & 1
\end{array}\right] \times\binom{ a}{b}=(5) \quad b=5-10 * a
$$

1-norm regularization and sparse

When there is a zombie outbreak, which one should be the weapon of choice?

Orthogonal Projection

6.14 An orthogonal decomposition

Suppose $u, v \in V$, with $v \neq 0$. Set $c=\frac{\langle u, v\rangle}{\|v\|^{2}}$ and $w=u-\frac{\langle u, v\rangle}{\|v\|^{2}} v$. Then

$$
\langle w, v\rangle=0 \quad \text { and } \quad u=c v+w .
$$

Orthogonal Projection

Orthogonal Set

- A set of vectors is called an orthogonal set if every pair of distinct vectors in the set is orthogonal. Standard inner product

$$
\mathcal{S}=\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
5 \\
-4 \\
1
\end{array}\right]\right\} \text { An orthogonal set? }
$$

By definition, a set with only one vector is an orthogonal set.

Is orthogonal set independent?

Independent?

- Any orthogonal set of nonzero vectors is linearly independent.

Let $\mathcal{S}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ be an orthogonal set $\mathbf{v}_{i} \neq$ $\mathbf{0}$ for $i=1,2, \ldots, k$.

Assume $c_{1}, c_{2}, \ldots, c_{k}$ make $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k}=\mathbf{0}$
$\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{i} \mathbf{v}_{i}+\cdots+c_{k} \mathbf{v}_{k}\right) \cdot \mathbf{v}_{i}$
$=c_{1} \mathbf{v}_{1} \cdot \mathbf{v}_{i}+c_{2} \mathbf{v}_{2} \cdot \mathbf{v}_{i}+\cdots+c_{i} \mathbf{v}_{i} \cdot \mathbf{v}_{i}+\cdots+c_{k} \mathbf{v}_{k} \cdot \mathbf{v}_{i}$
$=c_{i}\left(\mathbf{v}_{i} \cdot \mathbf{v}_{i}\right)=c_{i}\left\|\mathbf{v}_{i}\right\|^{2}$
$\neq 0$
$c_{i}=0$

$$
c_{1}=c_{2}=\cdots=c_{k}=0
$$

Problem

- Example: $\mathcal{S}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is an basis for \mathscr{R}^{3}

$$
\begin{gathered}
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
5 \\
-4 \\
1
\end{array}\right] \\
\text { Let } \mathbf{u}=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right] \text { and } \mathbf{u}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3} \\
c_{1}=?, c_{2}=?, c_{3}=?
\end{gathered}
$$

Orthogonal Basis

- Let $S=\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ be an orthogonal basis for a subspace W , and let u be a vector in W .

Proof

$$
\begin{gathered}
u=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k} \\
\frac{u}{\downarrow} \cdot v_{1} \\
\frac{u^{\prime} \cdot v_{2}}{\left\|v_{1}\right\|^{2}}
\end{gathered} \frac{\frac{u \downarrow v_{k}}{\left\|v_{2}\right\|^{2}}}{\frac{u}{\left\|v_{k}\right\|^{2}}}
$$

To find c_{i}

$$
\begin{aligned}
u \cdot v_{i} & =\left(c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{i} v_{i}+\cdots+c_{k} v_{k}\right) \cdot v_{i} \\
& =c_{1} v_{1} \cdot v_{i}+c_{2} v_{2} \cdot v_{i}+\cdots+c_{i} v_{i} \cdot v_{i}+\cdots+c_{k} v_{k} \cdot v_{i} \\
& =c_{i}\left(v_{i} \cdot v_{i}\right)=c_{i}\left\|v_{i}\right\|^{2} \square c_{i}=\frac{u \cdot v_{i}}{\left\|v_{i}\right\|^{2}}
\end{aligned}
$$

Example

- Example: $\mathfrak{S}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is an orthogonal basis for \boldsymbol{R}^{3}

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
5 \\
-4 \\
1
\end{array}\right]
$$

$$
\text { Let } \mathbf{u}=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right] \text { and } \mathbf{u}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}
$$

$c_{1}=\frac{\mathbf{u} \cdot \mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|^{2}}$
$c_{2}=\frac{\mathbf{u} \cdot \mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|^{2}}$
$c_{3}=\frac{\mathbf{u} \cdot \mathbf{v}_{3}}{\left\|\mathbf{v}_{3}\right\|^{2}}$

Orthogonal Projection on a line

- Orthogonal projection of a vector on a line

v: any vector
\mathbf{u} : any nonzero vector on \mathcal{L} \mathbf{w} : orthogonal projection of \mathbf{v} onto $\mathcal{L}, \mathbf{w}=\mathbf{c u}$
\mathbf{z} : v-w
$(v-w) \cdot u=(v-c u) \cdot u=v \cdot u-c u \cdot u=v \cdot u-c\|u\|^{2}$
$c=\frac{v \cdot u}{\|u\|^{2}} \quad w=c u=\frac{v \cdot u}{\|u\|^{2}} u$
Distance from tip of \mathbf{v} to $\mathcal{L}:\|z\|=\|v-w\|=\left\|v-\frac{v \cdot u}{\|u\|^{2}} u\right\|_{68}$

$$
\begin{gathered}
\left(v_{3}-w_{1,}, v_{1}\right)=\left(v_{3}-c_{1} v_{1}, v_{1}\right)=\left(v_{3}, v_{1}\right)-c_{1}\left(v_{1}, v_{1}\right)=0 \\
w_{1}=\frac{\left(v_{3}, v_{1}\right)}{\left\|v_{1}\right\|^{2}} v_{1} \quad w_{2}=\frac{\left(v_{3}, v_{2}\right)}{\left\|v_{2}\right\|^{2}} v_{2} \\
w=w_{1}+w_{2}=\frac{\left(v_{3}, v_{1}\right)}{\left\|v_{1}\right\|^{2}} v_{1}+\frac{\left(v_{3}, v_{2}\right)}{\left\|v_{2}\right\|^{2}} v_{2}
\end{gathered}
$$

Orthogonal Projection

- Let $S=\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ be an orthogonal basis for a subspace W , and let u be a vector in W .

$$
\begin{gathered}
u=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k} \\
\downarrow \downarrow \\
\frac{u^{\downarrow} \cdot v_{1}}{\left\|v_{1}\right\|^{2}} \frac{u^{\downarrow} \cdot v_{2}}{\left\|v_{2}\right\|^{2}} \quad \frac{u^{\downarrow} \cdot v_{k}}{\left\|v_{k}\right\|^{2}}
\end{gathered}
$$

- Let u be any vector, and w is the orthogonal projection of u on W.

$$
\begin{array}{r}
w=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k} \\
\frac{u \cdot v_{1}}{\left\|v_{1}\right\|^{2}} \frac{u \cdot v_{2}}{\left\|v_{2}\right\|^{2}} \quad \frac{u \cdot v_{k}}{\left\|v_{k}\right\|^{2}}
\end{array}
$$

＂才能最好于孤独中培养，品格最好在世界的波涛汹涌中形成＂

Orthogonal Basis

Let $\left\{u_{1}, u_{2}, \cdots, u_{k}\right\}$ be a basis of a subspace W. How to transform $\left\{u_{1}, u_{2}, \cdots, u_{k}\right\}$ into an orthogonal basis

$$
\begin{array}{ll}
\mathbf{v}_{1}=\mathbf{u}_{1}, \\
\mathbf{v}_{2} & =\mathbf{u}_{2}-\frac{\mathbf{u}_{2} \cdot \mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}, \\
\mathbf{v}_{3}=\mathbf{u}_{3}-\frac{\mathbf{u}_{3} \cdot \mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}-\frac{\mathbf{u}_{3} \cdot \mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|^{2}} \mathbf{v}_{2}, & \text { Gram-Schmidt } \\
\mathbf{v}_{k}=\mathbf{u}_{k}-\frac{\mathbf{u}_{k} \cdot \mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}-\frac{\mathbf{u}_{k} \cdot \mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|^{2}} \mathbf{v}_{2}-\cdots-\frac{\mathbf{u}_{k} \cdot \mathbf{v}_{k-1}}{\left\|\mathbf{v}_{k-1}\right\|^{2}} \mathbf{v}_{k-1}
\end{array}
$$

Then $\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ is an orthogonal basis for W
$\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{i}\right\}=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{i}\right\}$ orthogonal

Visualization

https://www.youtube.com/watch?v=Ys28-Yq21B8

Example

$S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is a basis for subspace W

$$
u_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \quad u_{2}=\left[\begin{array}{l}
2 \\
1 \\
0 \\
1
\end{array}\right] \quad u_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

(L.I. vectors)

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{u}_{1} \\
& \mathbf{S}^{\prime \prime}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, 4 \mathbf{v}_{3}\right\} ? ? ? \text { is also an orthogonal basis. } \\
& \mathbf{v}_{2}=\mathbf{u}_{2}-\frac{\mathbf{u}_{2} \cdot \mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}=\left[\begin{array}{l}
2 \\
1 \\
0 \\
1
\end{array}\right]-\frac{4}{4}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right], \\
& \mathbf{v}_{3}=\mathbf{u}_{3}-\frac{\mathbf{u}_{3} \cdot \mathbf{u}_{1}}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}-\frac{\mathbf{u}_{3} \cdot \mathbf{u}_{2}}{\left\|\mathbf{v}_{2}\right\|^{2}} \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
2 \\
1
\end{array}\right]-\frac{5}{4}\left[\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right]-\frac{(-1)}{2}\left[\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right]=\frac{1}{4}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right] .
\end{aligned}
$$

Orthonormal Set

- A set of vectors is called an orthonormal set if it is an orthogonal set, and the norm of all the vectors is 1

$$
\begin{aligned}
\mathcal{S}=\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
5 \\
-4 \\
1
\end{array}\right]\right\} \quad \begin{array}{l}
\text { Is orthonormal set } \\
\text { independent? }
\end{array} \\
\frac{1}{\sqrt{14}}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \frac{1}{\sqrt{3}}\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right] \frac{1}{\sqrt{42}}\left[\begin{array}{c}
5 \\
-4 \\
1
\end{array}\right]
\end{aligned}
$$

6.23 Definition orthonormal

- A list of vectors is called orthonormal if each vector in the list has norm 1 and is orthogonal to all the other vectors in the list.
- In other words, a list e_{1}, \ldots, e_{m} of vectors in V is orthonormal if

$$
\left\langle e_{j}, e_{k}\right\rangle= \begin{cases}1 & \text { if } j=k \\ 0 & \text { if } j \neq k\end{cases}
$$

6.24 Example orthonormal lists
(a) The standard basis in \mathbf{F}^{n} is an orthonormal list.
(b) $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right),\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$ is an orthonormal list in \mathbf{F}^{3}.
(c) $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right),\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right),\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}},-\frac{2}{\sqrt{6}}\right)$ is an orthonormal list in \mathbf{F}^{3}.
6.25 The norm of an orthonormal linear combination

If e_{1}, \ldots, e_{m} is an orthonormal list of vectors in V, then

$$
\left\|a_{1} e_{1}+\cdots+a_{m} e_{m}\right\|^{2}=\left|a_{1}\right|^{2}+\cdots+\left|a_{m}\right|^{2}
$$

for all $a_{1}, \ldots, a_{m} \in \mathbf{F}$.
6.26 An orthonormal list is linearly independent

Every orthonormal list of vectors is linearly independent.

6.27 Definition orthonormal basis

An orthonormal basis of V is an orthonormal list of vectors in V that is also a basis of V.

6.28 An orthonormal list of the right length is an orthonormal basis

Every orthonormal list of vectors in V with length $\operatorname{dim} V$ is an orthonormal basis of V.
6.29 Example Show that

$$
\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right),\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right),\left(-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)
$$

is an orthonormal basis of \mathbf{F}^{4}.

Example

Suppose n is a positive integer. Prove that

$$
\frac{1}{\sqrt{2 \pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\cos 2 x}{\sqrt{\pi}}, \ldots, \frac{\cos n x}{\sqrt{\pi}}, \frac{\sin x}{\sqrt{\pi}}, \frac{\sin 2 x}{\sqrt{\pi}}, \ldots, \frac{\sin n x}{\sqrt{\pi}}
$$

is an orthonormal list of vectors in $C[-\pi, \pi]$, the vector space of continuous real-valued functions on $[-\pi, \pi]$ with inner product

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x
$$

Proof:

$$
\begin{array}{cc}
\int(\sin j t)(\sin k t) d t= \\
\int(\sin j t)^{2} d t=\frac{2 j t-\sin 2 j t}{4 j} & \frac{j \sin (j-k) t+k \sin (j-k) t-j \sin (j+k) t+k \sin (j+k) t}{2(j-k)(j+k)} \\
\int(\cos j t)^{2} d t=\frac{2 j t+\sin 2 j t}{4 j} . & \int(\sin j t)(\cos k t) d t= \\
\frac{j \cos (j-k) t+k \cos (j-k) t+j \cos (j+k) t-k \cos (j+k) t}{2(k-j)(j+k)} \\
\int(\cos j t)(\cos k t) d t= \\
\frac{j \sin (j-k) t+k \sin (j-k) t+j \sin (j+k) t-k \sin (j+k) t}{2(j-k)(j+k)} \\
\int(\sin j t)(\cos j t) d t=-\frac{(\cos j t)^{2}}{2 j} .
\end{array}
$$

Example

Fourier Series

$$
\langle f, g\rangle=\frac{1}{l} \int_{-l}^{l} f(x) g(x) d x
$$

[-l,l]Periodic function

$$
f(t)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left[a_{k} \cos (k \omega t)+b_{k} \sin (k \omega t)\right]
$$

$$
\begin{gathered}
\omega=\frac{2 \pi}{2 l} \\
\left\{\begin{array}{l}
a_{k}=\frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n \pi x}{l} d x(n=0,1,2, \ldots) \\
b_{k}=\frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n \pi x}{l} d x(n=1,2, \ldots)
\end{array}\right.
\end{gathered}
$$

In general, given a basis e_{1}, \ldots, e_{n} of V and a vector $v \in V$, we know that there is some choice of scalars $a_{1}, \ldots, a_{n} \in \mathbf{F}$ such that

$$
v=a_{1} e_{1}+\cdots+a_{n} e_{n}
$$

Coordinate $\left(a_{1}, a_{2}, \ldots \ldots . a_{n}\right)$
6.30 Writing a vector as linear combination of orthonormal basis Suppose e_{1}, \ldots, e_{n} is an orthonormal basis of V and $v \in V$. Then

$$
v=\left\langle v, e_{1}\right\rangle e_{1}+\cdots+\left\langle v, e_{n}\right\rangle e_{n}
$$

and

$$
\|v\|^{2}=\left|\left\langle v, e_{1}\right\rangle\right|^{2}+\cdots+\left|\left\langle v, e_{n}\right\rangle\right|^{2} .
$$

6.31 Gram-Schmidt Procedure

Suppose v_{1}, \ldots, v_{m} is a linearly independent list of vectors in V. Let $e_{1}=v_{1} /\left\|v_{1}\right\|$. For $j=2, \ldots, m$, define e_{j} inductively by

$$
e_{j}=\frac{v_{j}-\left\langle v_{j}, e_{1}\right\rangle e_{1}-\cdots-\left\langle v_{j}, e_{j-1}\right\rangle e_{j-1}}{\left\|v_{j}-\left\langle v_{j}, e_{1}\right\rangle e_{1}-\cdots-\left\langle v_{j}, e_{j-1}\right\rangle e_{j-1}\right\|} .
$$

Then e_{1}, \ldots, e_{m} is an orthonormal list of vectors in V such that

$$
\operatorname{span}\left(v_{1}, \ldots, v_{j}\right)=\operatorname{span}\left(e_{1}, \ldots, e_{j}\right)
$$

for $j=1, \ldots, m$.
6.33 Example Find an orthonormal basis of $\mathcal{P}_{2}(\mathbf{R})$, where the inner product is given by $\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x$.

Solution We will apply the Gram-Schmidt Procedure (6.31) to the basis $1, x, x^{2}$.

To get started, with this inner product we have

$$
\|1\|^{2}=\int_{-1}^{1} 1^{2} d x=2
$$

Thus $\|1\|=\sqrt{2}$, and hence $e_{1}=\sqrt{\frac{1}{2}}$.
Now the numerator in the expression for e_{2} is

$$
x-\left\langle x, e_{1}\right\rangle e_{1}=x-\left(\int_{-1}^{1} x \sqrt{\frac{1}{2}} d x\right) \sqrt{\frac{1}{2}}=x .
$$

We have

$$
\|x\|^{2}=\int_{-1}^{1} x^{2} d x=\frac{2}{3} .
$$

Thus $\|x\|=\sqrt{\frac{2}{3}}$, and hence $e_{2}=\sqrt{\frac{3}{2}} x$.

Now the numerator in the expression for e_{3} is

$$
\begin{aligned}
x^{2} & -\left\langle x^{2}, e_{1}\right\rangle e_{1}-\left\langle x^{2}, e_{2}\right\rangle e_{2} \\
& =x^{2}-\left(\int_{-1}^{1} x^{2} \sqrt{\frac{1}{2}} d x\right) \sqrt{\frac{1}{2}}-\left(\int_{-1}^{1} x^{2} \sqrt{\frac{3}{2}} x d x\right) \sqrt{\frac{3}{2}} x \\
& =x^{2}-\frac{1}{3} .
\end{aligned}
$$

We have

$$
\left\|x^{2}-\frac{1}{3}\right\|^{2}=\int_{-1}^{1}\left(x^{4}-\frac{2}{3} x^{2}+\frac{1}{9}\right) d x=\frac{8}{45}
$$

Thus $\left\|x^{2}-\frac{1}{3}\right\|=\sqrt{\frac{8}{45}}$, and hence $e_{3}=\sqrt{\frac{45}{8}}\left(x^{2}-\frac{1}{3}\right)$.
Thus

$$
\sqrt{\frac{1}{2}}, \sqrt{\frac{3}{2}} x, \sqrt{\frac{45}{8}}\left(x^{2}-\frac{1}{3}\right)
$$

Theorem 4 (Gram-Schmidt). Given an arbitrary basis $\boldsymbol{y}^{(1)}, \ldots, \boldsymbol{y}^{(n)}$ in a finite-dimensional linear space equipped with a Euclidean structure, there is a related basis $\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(n)}$ with the following properties:
(i) $\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(n)}$ is an orthonormal basis.
(ii) $\boldsymbol{x}^{(k)}$ is a linear combination of $\boldsymbol{y}^{(1)}, \ldots, \boldsymbol{y}^{(k)}$, for all \boldsymbol{k}.

Proof. We proceed recursively; suppose $\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(k-1)}$ have already been constructed. We set

$$
x^{(k)}=c\left(y^{(k)}-\sum_{1}^{k-1} c_{j} x^{(j)}\right)
$$

$$
\begin{aligned}
& \left(x^{(k)}, x^{(l)}\right)=c\left(\left(y^{(k)}, x^{(l)}\right)-\sum_{1}^{k-1} c_{j}\left(x^{(j)}, x^{(l)}\right)\right) \\
& =c\left(\left(y^{(k)}, x^{(l)}\right)-c_{l}\right)=0, \quad \text { for } l=1,2, \ldots, k-1 .
\end{aligned}
$$

Since $\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(k-1)}$ are already orthonormal, it is easy to see that $\boldsymbol{x}^{(k)}$ defined above is orthogonal to them if we choose

$$
c_{l}=\left(y^{(k)}, x^{(l)}\right), \quad l=1, \ldots, k-1
$$

Finally we choose c so that $\left\|x^{k}\right\|=1$.

$$
\begin{aligned}
& x^{(k)}=c\left(y^{(k)}-\sum_{1}^{k-1} c_{j} x^{(j)}\right) . \\
& y^{(1)}=a_{11} x^{(1)} y^{(2)}=a_{21} x^{(1)}+a_{22} x^{(2)} \\
& y^{(k)}=a_{k 1} x^{(1)}+\cdots+a_{k k} x^{(k)} \\
& Y=\left[\begin{array}{lll}
y^{(1)} & \cdots & y^{(k)}
\end{array}\right] \\
& =\left[\begin{array}{llll}
x^{(1)} & \cdots & x^{(k)}
\end{array}\right]\left[\begin{array}{cccc}
a_{11} & a_{12} \ldots & a_{1 k} \\
0 & a_{22} \ldots & a_{2 k} \\
\vdots & \vdots & \vdots \\
0 & 0 \ldots & a_{k k}
\end{array}\right] \\
& Y=Q R, \mathrm{Q} \text { is an orthogonal matrix }
\end{aligned}
$$

Let \boldsymbol{y} be any other vector in X_{i} it can be expressed as

$$
\begin{aligned}
& y=\sum b_{k} x^{(k)} . \\
& x=\sum a_{j} x^{(j)}
\end{aligned}
$$

(16)
get

$$
\begin{aligned}
(x, y) & =\sum \sum a_{j} b_{k}\left(x^{(j)}, y^{(k)}\right) \\
& =\sum a_{j} b_{j}
\end{aligned}
$$

In particular, for $\boldsymbol{y}=\boldsymbol{x}$ we get

$$
\|x\|^{2}=\sum a_{j}^{2}
$$

Equation (17) shows that the mapping defined by (16),

$$
x \rightarrow\left(a_{1}, \ldots, a_{n}\right)
$$

carries the space X with a Euclidean structure into $F^{\boldsymbol{n}}$, and carries the scalar product of X into the standard scalar product (2) of F^{n}.

6.39 Definition linear functional

A linear functional on V is a linear map from V to \mathbf{F}. In other words, a linear functional is an element of $\mathcal{L}(V, \mathbf{F})$.
6.40 Example The function $\varphi: \mathbf{F}^{3} \rightarrow \mathbf{F}$ defined by

$$
\varphi\left(z_{1}, z_{2}, z_{3}\right)=2 z_{1}-5 z_{2}+z_{3}
$$

is a linear functional on \mathbf{F}^{3}. We could write this linear functional in the form

$$
\varphi(z)=\langle z, u\rangle
$$

for every $z \in \mathbf{F}^{3}$, where $u=(2,-5,1)$.

6.42 Riesz Representation Theorem

Suppose V is finite-dimensional and φ is a linear functional on V. Then there is a unique vector $u \in V$ such that

$$
\varphi(v)=\langle v, u\rangle
$$

for every $v \in V$.
Proof First we show there exists a vector $u \in V$ such that $\varphi(v)=\langle v, u\rangle$ for every $v \in V$. Let e_{1}, \ldots, e_{n} be an orthonormal basis of V. Then

$$
\begin{aligned}
\varphi(v) & =\varphi\left(\left\langle v, e_{1}\right\rangle e_{1}+\cdots+\left\langle v, e_{n}\right\rangle e_{n}\right) \\
& =\left\langle v, e_{1}\right\rangle \varphi\left(e_{1}\right)+\cdots+\left\langle v, e_{n}\right\rangle \varphi\left(e_{n}\right) \\
& =\left\langle v, \overline{\varphi\left(e_{1}\right)} e_{1}+\cdots+\overline{\varphi\left(e_{n}\right)} e_{n}\right\rangle
\end{aligned}
$$

for every $v \in V$, where the first equality comes from 6.30. Thus setting
6.43

$$
u=\overline{\varphi\left(e_{1}\right)} e_{1}+\cdots+\overline{\varphi\left(e_{n}\right)} e_{n},
$$

we have $\varphi(v)=\langle v, u\rangle$ for every $v \in V$, as desired.

Now we prove that only one vector $u \in V$ has the desired behavior. Suppose $u_{1}, u_{2} \in V$ are such that

$$
\varphi(v)=\left\langle v, u_{1}\right\rangle=\left\langle v, u_{2}\right\rangle
$$

for every $v \in V$. Then

$$
0=\left\langle v, u_{1}\right\rangle-\left\langle v, u_{2}\right\rangle=\left\langle v, u_{1}-u_{2}\right\rangle
$$

for every $v \in V$. Taking $v=u_{1}-u_{2}$ shows that $u_{1}-u_{2}=0$. In other words, $u_{1}=u_{2}$, completing the proof of the uniqueness part of the result.
6.41 Example The function $\varphi: \mathcal{P}_{2}(\mathbf{R}) \rightarrow \mathbf{R}$ defined by

$$
\varphi(p)=\int_{-1}^{1} p(t)(\cos (\pi t)) d t
$$

is a linear functional on $\mathcal{P}_{2}(\mathbf{R})$ (here the inner product on $\mathcal{P}_{2}(\mathbf{R})$ is multiplication followed by integration on $[-1,1]$; see 6.33). It is not obvious that there exists $u \in \mathcal{P}_{2}(\mathbf{R})$ such that

$$
\varphi(p)=\langle p, u\rangle
$$

for every $p \in \mathcal{P}_{2}(\mathbf{R})$ [we cannot take $u(t)=\cos (\pi t)$ because that function is not an element of $\left.\mathcal{P}_{2}(\mathbf{R})\right]$.
6.44 Example Find $u \in \mathcal{P}_{2}(\mathbf{R})$ such that

$$
\int_{-1}^{1} p(t)(\cos (\pi t)) d t=\int_{-1}^{1} p(t) u(t) d t
$$

for every $p \in \mathcal{P}_{2}(\mathbf{R})$.
Solution Let $\varphi(p)=\int_{-1}^{1} p(t)(\cos (\pi t)) d t$. Applying formula 6.43 from the proof above, and using the orthonormal basis from Example 6.33, we have

$$
\begin{aligned}
u(x)= & \left(\int_{-1}^{1} \sqrt{\frac{1}{2}}(\cos (\pi t)) d t\right) \sqrt{\frac{1}{2}}+\left(\int_{-1}^{1} \sqrt{\frac{3}{2}} t(\cos (\pi t)) d t\right) \sqrt{\frac{3}{2}} x \\
& +\left(\int_{-1}^{1} \sqrt{\frac{45}{8}}\left(t^{2}-\frac{1}{3}\right)(\cos (\pi t)) d t\right) \sqrt{\frac{45}{8}}\left(x^{2}-\frac{1}{3}\right) .
\end{aligned}
$$

A bit of calculus shows that

$$
u(x)=-\frac{45}{2 \pi^{2}}\left(x^{2}-\frac{1}{3}\right)
$$

Orthogonal complement

6.45 Definition orthogonal complement, U^{\perp}

If U is a subset of V, then the orthogonal complement of U, denoted U^{\perp}, is the set of all vectors in V that are orthogonal to every vector in U :

$$
U^{\perp}=\{v \in V:\langle v, u\rangle=0 \text { for every } u \in U\} .
$$

$$
\mathrm{Y}^{\perp}=\{z:(y, z)=0, \forall y \in Y\}
$$

6.46 Basic properties of orthogonal complement
(a) If U is a subset of V, then U^{\perp} is a subspace of V.
(b) $\{0\}^{\perp}=V$.
(c) $V^{\perp}=\{0\}$.
(d) If U is a subset of V, then $U \cap U^{\perp} \subset\{0\}$.
(e) If U and W are subsets of V and $U \subset W$, then $W^{\perp} \subset U^{\perp}$.
(a) Suppose U is a subset of V. Then $\langle 0, u\rangle=0$ for every $u \in U$; thus $0 \in U^{\perp}$.
Suppose $v, w \in U^{\perp}$. If $u \in U$, then

$$
\langle v+w, u\rangle=\langle v, u\rangle+\langle w, u\rangle=0+0=0
$$

Thus $v+w \in U^{\perp}$. In other words, U^{\perp} is closed under addition.
Similarly, suppose $\lambda \in \mathbf{F}$ and $v \in U^{\perp}$. If $u \in U$, then

$$
\langle\lambda v, u\rangle=\lambda\langle v, u\rangle=\lambda \cdot 0=0 .
$$

Thus $\lambda v \in U^{\perp}$. In other words, U^{\perp} is closed under scalar multiplication. Thus U^{\perp} is a subspace of V.
(b) Suppose $v \in V$. Then $\langle v, 0\rangle=0$, which implies that $v \in\{0\}^{\perp}$. Thus $\{0\}^{\perp}=V$.
(c) Suppose $v \in V^{\perp}$. Then $\langle v, v\rangle=0$, which implies that $v=0$. Thus $V^{\perp}=\{0\}$.
(d) Suppose U is a subset of V and $v \in U \cap U^{\perp}$. Then $\langle v, v\rangle=0$, which implies that $v=0$. Thus $U \cap U^{\perp} \subset\{0\}$.
(e) \quad Suppose U and W are subsets of V and $U \subset W$. Suppose $v \in W^{\perp}$. Then $\langle v, u\rangle=0$ for every $u \in W$, which implies that $\langle v, u\rangle=0$ for every $u \in U$. Hence $v \in U^{\perp}$. Thus $W^{\perp} \subset U^{\perp}$.

Examples

For $Y=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$, where $\mathbf{u}_{1}=\left[\begin{array}{llll}1 & 1 & -1 & 4\end{array}\right]^{T}$ and $\mathbf{u}_{2}=\left[\begin{array}{lll}1-1 & 1 & 2\end{array}\right]^{T}$ Please find the Y^{\perp}.
i.e., $\mathbf{v}=\left[\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4}\end{array}\right]^{T}$ satisfies
$\begin{gathered}x_{1}+x_{2}-x_{3}+4 x_{4}=0 \\ x_{1}-x_{2}+x_{3}+2 x_{4}=0 .\end{gathered} \Leftrightarrow\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}-3 x_{4} \\ x_{3}-x_{4} \\ x_{3} \\ x_{4}\end{array}\right]=x_{3}\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}-3 \\ -1 \\ 0 \\ 1\end{array}\right]$
$\Leftrightarrow \mathcal{B}=\left\{\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-3 \\ -1 \\ 0 \\ 1\end{array}\right]\right\}$ is a basis for Y^{\perp}.

Examples

- For any matrix A

$(\text { Row } A)^{\perp}=$ Null A

$\mathbf{v} \in(\operatorname{Row} A)^{\perp} \Leftrightarrow$ For all $\mathbf{w} \in \operatorname{Span}\{$ rows of $A\},(\mathbf{w}, \mathbf{v})=0$ $\Leftrightarrow A v=0$.

$(\operatorname{Col} A)^{\perp}=N u l l A^{T}$

$(\operatorname{Col} A)^{\perp}=\left(\operatorname{Row} A^{T}\right)^{\perp}=\operatorname{Null} A^{T}$.

6.47 Direct sum of a subspace and its orthogonal complement

Suppose U is a finite-dimensional subspace of V. Then

$$
V=U \oplus U^{\perp}
$$

Proof First we will show that
6.48

$$
V=U+U^{\perp}
$$

To do this, suppose $v \in V$. Let e_{1}, \ldots, e_{m} be an orthonormal basis of U. Obviously
$6.49 v=\underbrace{\left\langle v, e_{1}\right\rangle e_{1}+\cdots+\left\langle v, e_{m}\right\rangle e_{m}}_{u}+\underbrace{v-\left\langle v, e_{1}\right\rangle e_{1}-\cdots-\left\langle v, e_{m}\right\rangle e_{m}}_{w}$.
Let u and w be defined as in the equation above. Clearly $u \in U$. Because e_{1}, \ldots, e_{m} is an orthonormal list, for each $j=1, \ldots, m$ we have

$$
\begin{aligned}
\left\langle w, e_{j}\right\rangle & =\left\langle v, e_{j}\right\rangle-\left\langle v, e_{j}\right\rangle \\
& =0
\end{aligned}
$$

Thus w is orthogonal to every vector in $\operatorname{span}\left(e_{1}, \ldots, e_{m}\right)$. In other words, $w \in U^{\perp}$. Thus we have written $v=u+w$, where $u \in U$ and $w \in U^{\perp}$, completing the proof of 6.48 .

From 6.46(d), we know that $U \cap U^{\perp}=\{0\}$. Along with 6.48, this implies that $V=U \oplus U^{\perp}$ (see 1.45).
6.50 Dimension of the orthogonal complement

Suppose V is finite-dimensional and U is a subspace of V. Then

$$
\operatorname{dim} U^{\perp}=\operatorname{dim} V-\operatorname{dim} U
$$

6.51 The orthogonal complement of the orthogonal complement

Suppose U is a finite-dimensional subspace of V. Then

$$
U=\left(U^{\perp}\right)^{\perp} .
$$

Proof First we will show that
6.52

$$
U \subset\left(U^{\perp}\right)^{\perp}
$$

To do this, suppose $u \in U$. Then $\langle u, v\rangle=0$ for every $v \in U^{\perp}$ (by the definition of U^{\perp}). Because u is orthogonal to every vector in U^{\perp}, we have $u \in\left(U^{\perp}\right)^{\perp}$, completing the proof of 6.52 .

To prove the inclusion in the other direction, suppose $v \in\left(U^{\perp}\right)^{\perp}$. By 6.47, we can write $v=u+w$, where $u \in U$ and $w \in U^{\perp}$. We have $v-u=w \in U^{\perp}$. Because $v \in\left(U^{\perp}\right)^{\perp}$ and $u \in\left(U^{\perp}\right)^{\perp}$ (from 6.52), we have $v-u \in\left(U^{\perp}\right)^{\perp}$. Thus $v-u \in U^{\perp} \cap\left(U^{\perp}\right)^{\perp}$, which implies that $v-u$ is orthogonal to itself, which implies that $v-u=0$, which implies that $v=u$, which implies that $v \in U$. Thus $\left(U^{\perp}\right)^{\perp} \subset U$, which along with 6.52 completes the proof.

6.53 Definition orthogonal projection, P_{U}

Suppose U is a finite-dimensional subspace of V. The orthogonal projection of V onto U is the operator $P_{U} \in \mathcal{L}(V)$ defined as follows: For $v \in V$, write $v=u+w$, where $u \in U$ and $w \in U^{\perp}$. Then $P_{U} v=u$. 6.54 Example Suppose $x \in V$ with $x \neq 0$ and $U=\operatorname{span}(x)$. Show that

$$
P_{U} v=\frac{\langle v, x\rangle}{\|x\|^{2}} x
$$

for every $v \in V$.
Solution \quad Suppose $v \in V$. Then

$$
v=\frac{\langle v, x\rangle}{\|x\|^{2}} x+\left(v-\frac{\langle v, x\rangle}{\|x\|^{2}} x\right),
$$

where the first term on the right is in $\operatorname{span}(x)$ (and thus in U) and the second term on the right is orthogonal to x (and thus is in U^{\perp}). Thus $P_{U} v$ equitbs the first term on the right, as desire.

6.55 Properties of the orthogonal projection P_{U}

Suppose U is a finite-dimensional subspace of V and $v \in V$. Then
(a) $\quad P_{U} \in \mathcal{L}(V)$;
(b) $\quad P_{U} u=u$ for every $u \in U$;
(c) $\quad P_{U} w=0$ for every $w \in U^{\perp}$;
(d) range $P_{U}=U$;
(e) null $P_{U}=U^{\perp}$;
(f) $\quad v-P_{U} v \in U^{\perp}$;
(g) $P_{U}^{2}=P_{U}$;
(h) $\quad\left\|P_{U} v\right\| \leq\|v\|$;
(i) for every orthonormal basis e_{1}, \ldots, e_{m} of U,

$$
P_{U} v=\left\langle v, e_{1}\right\rangle e_{1}+\cdots+\left\langle v, e_{m}\right\rangle e_{m} .
$$

Proof

(a) To show that P_{U} is a linear map on V, suppose $v_{1}, v_{2} \in V$. Write

$$
v_{1}=u_{1}+w_{1} \quad \text { and } \quad v_{2}=u_{2}+w_{2}
$$

with $u_{1}, u_{2} \in U$ and $w_{1}, w_{2} \in U^{\perp}$. Thus $P_{U} v_{1}=u_{1}$ and $P_{U} v_{2}=u_{2}$. Now

$$
v_{1}+v_{2}=\left(u_{1}+u_{2}\right)+\left(w_{1}+w_{2}\right)
$$

where $u_{1}+u_{2} \in U$ and $w_{1}+w_{2} \in U^{\perp}$. Thus

$$
P_{U}\left(v_{1}+v_{2}\right)=u_{1}+u_{2}=P_{U} v_{1}+P_{U} v_{2}
$$

Similarly, suppose $\lambda \in \mathbf{F}$. The equation $v=u+w$ with $u \in U$ and $w \in U^{\perp}$ implies that $\lambda v=\lambda u+\lambda w$ with $\lambda u \in U$ and $\lambda w \in U^{\perp}$. Thus $P_{U}(\lambda v)=\lambda u=\lambda P_{U} v$.
Hence P_{U} is a linear map from V to V.
(b) Suppose $u \in U$. We can write $u=u+0$, where $u \in U$ and $0 \in U^{\perp}$. Thus $P_{U} u=u$.
(c) Suppose $w \in U^{\perp}$. We can write $w=0+w$, where $0 \in U$ and $w \in U^{\perp}$. Thus $P_{U} w=0$.
(d) The definition of P_{U} implies that range $P_{U} \subset U$. Part (b) implies that $U \subset$ range P_{U}. Thus range $P_{U}=U$.
(e) Part (c) implies that $U^{\perp} \subset$ null P_{U}. To prove the inclusion in the other direction, note that if $v \in$ null P_{U} then the decomposition given by 6.47 must be $v=0+v$, where $0 \in U$ and $v \in U^{\perp}$. Thus null $P_{U} \subset U^{\perp}$.
(f) If $v=u+w$ with $u \in U$ and $w \in U^{\perp}$, then

$$
v-P_{U} v=v-u=w \in U^{\perp}
$$

(g) If $v=u+w$ with $u \in U$ and $w \in U^{\perp}$, then

$$
\left(P_{U}^{2}\right) v=P_{U}\left(P_{U} v\right)=P_{U} u=u=P_{U} v .
$$

(h) If $v=u+w$ with $u \in U$ and $w \in U^{\perp}$, then

$$
\left\|P_{U} v\right\|^{2}=\|u\|^{2} \leq\|u\|^{2}+\|w\|^{2}=\|v\|^{2},
$$

where the last equality comes from the Pythagorean Theorem.
(i) The formula for $P_{U} v$ follows from equation 6.49 in the proof of 6.47.

6.56 Minimizing the distance to a subspace

Suppose U is a finite-dimensional subspace of $V, v \in V$, and $u \in U$. Then

$$
\left\|v-P_{U} v\right\| \leq\|v-u\| .
$$

Furthermore, the inequality above is an equality if and only if $u=P_{U} v$.

Proof We have
6.57

$$
\begin{aligned}
\left\|v-P_{U} v\right\|^{2} & \leq\left\|v-P_{U} v\right\|^{2}+\left\|P_{U} v-u\right\|^{2} \\
& =\left\|\left(v-P_{U} v\right)+\left(P_{U} v-u\right)\right\|^{2} \\
& =\|v-u\|^{2}
\end{aligned}
$$

where the first line above holds because $0 \leq\left\|P_{U} v-u\right\|^{2}$, the second line above comes from the Pythagorean Theorem [which applies because $v-P_{U} v \in U^{\perp}$ by 6.55(f), and $\left.P_{U} v-u \in U\right]$, and the third line above holds by simple algebra. Taking square roots gives the desired inequality.

Our inequality above is an equality if and only if 6.57 is an equality, which happens if and only if $\left\|P_{U} v-u\right\|=0$, which happens if and only if $u=P_{U} v$.

Example

Example Find a polynomial u with real coefficients and degree at most 5 that approximates $\sin x$ as well as possible on the interval $[-\pi, \pi]$, in the sense that

$$
\int_{-\pi}^{\pi}|\sin x-u(x)|^{2} d x
$$

is as small as possible. Compare this result to the Taylor series approximation.

Solution Let $C_{\mathbf{R}}[-\pi, \pi]$ denote the real inner product space of continuous real-valued functions on $[-\pi, \pi]$ with inner product

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x
$$

Let $v \in C_{\mathbf{R}}[-\pi, \pi]$ be the function defined by $v(x)=\sin x$. Let U denote the subspace of $C_{\mathbf{R}}[-\pi, \pi]$ consisting of the polynomials with real coefficients and degree at most 5 . Our problem can now be reformulated as follows:

Find $u \in U$ such that $\|v-u\|$ is as small as possible.

$$
\begin{gathered}
1, x, x^{2}, x^{3}, x^{4}, x^{5} \longrightarrow e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6} \\
u(x)=0.987862 x-0.155271 x^{3}+0.00564312 x^{5}
\end{gathered}
$$

$$
u(x)=0.987862 x-0.155271 x^{3}+0.00564312 x^{5}
$$

R^{n} space

Orthogonal Projection

- Let $S=\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ be an orthogonal basis for a subspace W . Let u be any vector, and w is the orthogonal projection of u on W.

$$
\begin{array}{r}
w=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k} \\
\frac{\downarrow}{u \cdot v_{1}} \\
\left\|v_{1}\right\|^{2} \\
\frac{u \cdot v_{2}}{\left\|v_{2}\right\|^{2}}
\end{array} \frac{u^{\downarrow} v_{k}}{\left\|v_{k}\right\|^{2}}
$$

$C=\left[\begin{array}{lll}v_{1} & \cdots & v_{k}\end{array}\right] \quad P_{W}=C\left(C^{T} C\right)^{-1} C^{T} \quad w=P_{\mathrm{W}} u$

Orthogonal Projection Matrix

- Let C be an $\mathrm{n} \times \mathrm{k}$ matrix whose columns form a basis for a subspace W

$(\operatorname{Col} A)^{\perp}=\operatorname{Null} A^{T}$

$$
P_{W}=C\left(C^{T} C\right)^{-1} C^{T}
$$

Proof: Let $\mathbf{u} \in \mathscr{R}^{n}$ and $\mathbf{w}=P_{w}(\mathbf{u})$.
Since $W=\operatorname{Col} C, \mathbf{w}=C \mathbf{b}$ for some $\mathbf{b} \in \mathfrak{R}^{k}$ and $\mathbf{u}-\mathbf{w} \in W^{\perp}$
$\Rightarrow \mathbf{0}=C^{T}(\mathbf{u}-\mathbf{w})=C^{T} \mathbf{u}-C^{T} \mathbf{w}=C^{T} \mathbf{u}-C^{T} C b$.
$\Rightarrow C^{T} \mathbf{u}=C^{T} \mathbf{C b}$.
$\Rightarrow \mathbf{b}=\left(C^{T} C\right)^{-1} C^{T} \mathbf{u}$ and $\mathbf{w}=C\left(C^{T} C\right)^{-1} C^{T} \mathbf{u}$ as $C^{T} C$ is
invertible.
Least square problem $\min _{\{b\}}\|C b-u\|_{2}$

Let C be a matrix with linearly independent columns. Then $C^{T} C$ is invertible.

Proof: We want to prove that $C^{\top} C$ has independent columns.

Suppose $C^{\top} \mathbf{C b}=\mathbf{0}$ for some \mathbf{b}.
$\Rightarrow \mathbf{b}^{T} \mathbf{C}^{T} \mathbf{C b}=(\mathbf{C b})^{T} \mathbf{C b}=(\mathbf{C b}) \cdot(\mathbf{C b})=\|\mathbf{C b}\|^{2}=0$.
$\Rightarrow \mathbf{C b}=\mathbf{0} \Rightarrow \mathbf{b}=\mathbf{0}$ since C has L.I. columns.
Thus $C^{\top} C$ is invertible.

Orthogonal Projection Matrix

- Example: Let W be the 2-dimensional subspace of \mathscr{R}^{3} with equation $x_{1}-x_{2}+2 x_{3}$ $=0$.

$$
\begin{aligned}
& P_{W}=C\left(C^{T} C\right)^{-1} C^{T} \\
& W \text { has a basis }
\end{aligned}
$$

$$
P_{W}=\frac{1}{6}\left[\begin{array}{ccc}
5 & 1 & -2 \\
1 & 5 & 2 \\
-2 & 2 & 2
\end{array}\right]
$$

$$
P_{W}\left[\begin{array}{l}
1 \\
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
0 \\
4 \\
2
\end{array}\right]
$$

Least square problems

A least squares problem can generally be formulated as an overdetermined linear system of equations. Recall that an overdetermined system is one involving more equations than unknowns. Such systems are usually inconsistent. Thus, given an $m \times n$ system $A \mathbf{x}=\mathbf{b}$ with $m>n$, we cannot expect in general to find a vector $\mathbf{x} \in \mathbb{R}^{n}$ for which $A \mathbf{x}$ equals \mathbf{b}. Instead, we can look for a vector \mathbf{x} for which $A \mathbf{x}$ is "closest" to \mathbf{b}. As you might expect, orthogonality plays an important role in finding such an \mathbf{x}.

If we are given a system of equations $A \mathbf{x}=\mathbf{b}$, where A is an $m \times n$ matrix with $m>n$ and $\mathbf{b} \in \mathbb{R}^{m}$, then, for each $\mathbf{x} \in \mathbb{R}^{n}$, we can form a residual

$$
r(\mathbf{x})=\mathbf{b}-A \mathbf{x}
$$

The distance between \mathbf{b} and $A \mathbf{x}$ is given by

$$
\|\mathbf{b}-A \mathbf{x}\|=\|r(\mathbf{x})\|
$$

Thank you

