Figenvalue and Eigenvector
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Systems of Linear differential equations

Y =AY Solution??? V() =aY(1) em— y(z‘) = ce”

S
ne Ax = Ax
=™ X — Y — 1 x =AY my AY =M Ax=Ae¥x=AY =Y

A eigenvalue
X elgenvector

Ax = Ax
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Example

® Reflection operator 7 about the line y= (1/2)x

y=@/2)x " p, is an eigenvector of T

T(by) = by Its eigenvalue Is 1.

b, Is an eigenvector of 7

T(b,) = —b, Its eigenvalue is -1.

by




Example

cos@ — sinb
* Rotation M(6) = l ] |

sinf cos @

Do any n x n matrix or linear operator have eigenvalues?




INnvariant subspace

LV)=LWV,V)
direct sum decomposition V=U®---0U

T'e L) T|, the restriction of T to the smaller domain U,




INnvariant subspace

Definition: Invariant subspace

Suppose T° € L(V). A subspace U of V is called invariant under T if
u € U implies Tu € U.

U is invariant under 7" if T'|y is an operator on U.



Examples

* [nvariant subspace of T e L(V)

(a)
(b)
(¢)
(d)

PN

-

N’
»

>

null 7°;

range 7.

(a)

(b)

(¢)

(d)

If u € {0}, then u = 0 and hence Tu = 0 € {0}. Thus {0} is invariant
under 7.

Ifu € V,then Tu € V. Thus V is invariant under 7.

If u € null 7, then Tu = 0, and hence Tu € null 7. Thus null 7 is
invariant under 7.

If u € range 7, then Tu € range 7. Thus range 7T is invariant under 7.



Examples

Example  Suppose that 7 € L(P(R)) is defined by Tp = p’.

P4(R) = {a, +at+a,t’ +ait’ +a,t’|a eR,i=0,1,2,3,4}



Eigenvalues and Eigenvectors

Invariant subspaces with dimension 1
U={Av:AeF} =span(v) yve V withy #0

If U is invariant under an operator 7' € L(V'), thenTv e U

Tv = Av. |

Conversely, if Tv = Av for some A € F, then span(v) is a I-dimensional

subspace of V invariant under 7.



Figenvalue

Suppose T € L(V'). A number A € F is called an eigenvalue of T if
there exists v € V such thatv # 0 and Tv = Av.

Comment: T has a 1-dimensional invariant subspace
if and only if T has an eigenvalue

v#0



Equivalent conditions to be an eigenvalue

Suppose V' is finite-dimensional, 77 € L(V'), and A € F. Then the
following are equivalent:

(a)  Aisaneigenvalue of 7';

Recall that I € L(V) is the iden-
tity operator defined by Iv = v for
allv € 'V.

(b) T — Al is not injective;

(c) T — Al is not surjective;

(d) T —Alisnotinvertible. () det(T — A1) = 0



What is one-to-one (injective):
iInput x output y

source target
domain codomain

one to one

T is one-to-one iff for all x, and x, in X,
T(x,) = T(x,) implies that x, = x..



What is onto (surjective):
Let . X— Y be a map. T is onto if its range is the

whole target set. More specifically, this means
vyeyY, IxeX, suchthat T(x)=y.

Intuitively, we may think of a map as a way of "shooting"
from source to target. The map is onto if any element of
the target set is "hit" by some element of the source.

XY X&v

Onto Not onto

If T is both injective and surjective, we call it bijective.



Tyv=Ay <o) (T —)A[)y=020.

T —AI isnotinjective. Thus null(T —Al) # {0}

dim range(7 - A/)=dim V- dim null(7 - A7)<dimV

T — Al is not surjective



Figenvector

Suppose 7' € L(V') and A € F is an eigenvalue of 7. A vectorv € V is
called an eigenvector of T corresponding to A if v # 0 and Tv = Av.

Tv = Avifandonlyif (T —Al)y = (. ==y < null(7" — A1)



EXam 9, | e Suppose T' € L(F?) is defined by
I'(w,z) = (—z,w).

(a)  Find the eigenvalues and eigenvectors of 7" if F = R.

(b)  Find the eigenvalues and eigenvectors of 7" if F = C.




Solution

(@ T has no eigenvalues

b) —z=Aw, W=7 mmmp —Z = 127 ) —|
A=iand A = —i

Eigenvectors correspondingto \ — j is (w, —wi)

Eigenvectors correspondingtoA = —; is (W. Wi)

)'2



example

Define T': P(R) — P(R) by Tp = p'. Find all eigenvalues and eigenvectors of 7.

Suppose X is an eigenvalue of T with an eigenvector ¢, then
g =Tq=\q.

Note that in general deg p’ < deg p(because we consider deg0 = —oo). If A £ 0, then deg Aq > degq’.
We get a contradiction. If A = 0, then ¢ = ¢ for nonzero ¢ € R. Hence the only eigenvalue of T is
zero with nonzero constant polynomials as eigenvectors.



Eigenvectors and linearly independent

Let T € L(V). Suppose Aq...., A, are distinct eigenvalues of 7" and
Vi, ...,V are corresponding eigenvectors. Then vy, ..., vm 18 linearly

independent.



Proof  Suppose vy, ..., vm 18 linearly dependent. Let k& be the smallest posi-
tive integer such that

5.11 Vi € span(vy, ..., Vr—_1):

the existence of k with this property follows from the Linear Dependence
Lemma (2.21). Thus there exist aq,....ar—1 € F such that

5.12 Ve = a1Vy] + -+ + Aj—1Vie—1-

Apply T to both sides of this equation, getting
AV = a1A vy + -+ + ag—1 Ag—1Vi—1-
Multiply both sides of 5.12 by A, and then subtract the equation above, getting

0=ai(Aqg —A)vi 4+ + ap—1(Ag — Ag—1)Vi—1-



Corollary

Suppose V' is finite-dimensional. Then each operator on V' has at most
dim V distinct eigenvalues.



Existence of Eigenvalues

5.21  Operators on complex vector spaces have an eigenvalue

Every operator on a finite-dimensional, nonzero, complex vector space
has an eigenvalue.



Proof Suppose V' is a complex vector space with dimension » > 0 and
T € L(V). Choose v € V with v # 0. Then

is not linearly independent, because V' has dimension n and we have n + 1
vectors. Thus there exist complex numbers ay, . . ., an., not all 0, such that

O=agv+a;Tv+---+a,T"v.

Note that aq..... a, cannot all be 0, because otherwise the equation above
would become 0 = agv, which would force a¢ also to be 0.
Make the a’s the coefficients of a polynomial, which by the Fundamental

Theorem of Algebra (4.14) has a factorization
ag+aiz+--+az" =c(z—=Xx1) (2 —Am).

where ¢ is a nonzero complex number, each A ; is in C, and the equation holds

for all z € C (here m is not necessarily equal to n, because a,, may equal 0).

We then have
O=agv+a;Tv+---+a,T"v
= (apl +a,T +---+a,T")v
— (T =y 1) (T — AmI)V.

Thus 7" — A; I is not injective for at least one ;. In other words, 7" has an

eigenvalue.



Matrix of an operator

Suppose 7" € L(V) and vy,.. ., vy 18 a basis of V. The matrix of T with
respect to this basis is the n-by-n matrix

Al,l ¢ o o Al,n
M(T) = . :
Ap1 oo Ann

whose entries A ; ; are defined by
Tv, = Al,kvl i An,kvn.

If the basis 1s not clear from the context, then the notation
M(T, (v1.....vy)) is used.



Example

523 Example DefineT € L(F?)by T(x,y.z) = (2x+y.5y+3z,82).

Then
M(T) = ( ) .

S O

1
S
0

oo W O



upper-triangular matrix

A matrix 1s called upper triangular if all the entries below the diagonal
equal O.

o O N
o DN -
oo W O



Conditions for upper-triangular matrix

Suppose 7' € L(V) and vy, ..., v, 1s a basis of V. Then the following are
equivalent:

(a)  the matrix of 7" with respect to vy, ..., v, 1S upper triangular;
(b) Tv; €span(vy,...,vj)toreach j =1,...,n;

(c) span(viy,...,v;)isinvariantunder 7 foreach j = 1,...,n.



operator and upper-triangular matrix

Suppose V' is a finite-dimensional complex vector space and 7 € L(V).
Then 7" has an upper-triangular matrix with resh)ect to some basis of V.
Proof I We will use induction on the dimension of V. Clearly the desired
result holds if dim V' = 1.
Suppose now that dim V' > 1 and the desired result holds for all complex

vector spaces whose dimension is less than the dimension of V. Let A be any
eigenvalue of 7' (5.21 guarantees that 7" has an eigenvalue). Let

U = range(T — AT).

Because 7" — A1 is not surjective (see 3.69), dim U < dim V. Furthermore,
U is invariant under 7. To prove this, suppose u € U. Then

Tu=(T—Alu + Au.



Proof

Obviously (T — Al)u € U (because U equals the range of T — Al) and
Au € U. Thus the equation above shows that Tu € U. Hence U is invariant
under 7, as claimed.

Thus 7’|y 1s an operator on U. By our induction hypothesis, there is a
basis uy,...,u,, of U with respect to which 7'|y has an upper-triangular
matrix. Thus for each j we have (using 5.26)

5.28 Tuj = (Tly)(uj) € span(uy, ... .uj).
Extend uy,....u,, toabasis uy, ..., U, vy, ..., v, of V. For each k, we
have

Tvi = (T —Al)vi + Avg.

The definition of U shows that (7" — Al )vy € U = span(uq,...,u,). Thus
the equation above shows that

5.29 Tvi € span(Uy, ... . Um,V1,...,Vi).

From 5.28 and 5.29, we conclude (using 5.26) that 7" has an upper-
triangular matrix with respect to the basis uy, ..., uy,,vi,..., v, of V, as
desired. |



Determination of invertibility from upper-triangular matrix

Suppose T' € L(V') has an upper-triangular matrix with respect to some
basis of V. Then T 1s invertible if and only 1f all the entries on the diagonal
of that upper-triangular matrix are nonzero.



Determination of eigenvalues from upper-triangular matrix

5.32 Determination of eigenvalues from upper-triangular matrix

Suppose 7" € L(V') has an upper-triangular matrix with respect to some
basis of V. Then the eigenvalues of 7" are precisely the entries on the
diagonal of that upper-triangular matrix.



Eigenspaces and Diagonal Matrices

Suppose T € L(V) and A € F. The eigenspace of T corresponding to A,
denoted E(A, T), is defined by

EQ,T) =null(T — ).

In other words, £ (A, T') is the set of all eigenvectors of 7" corresponding
to A, along with the 0 vector.

5.35 Example

o O o0
S o O
wn O O

E@®.T) = span(vi). E(5.T) = span(vz,v3)



Sum of eigenspaces is a direct sum

Suppose V' is finite-dimensional and 7" € L(V). Suppose also that
Al...., A, are distinct eigenvalues of YT Then

EA,T)+ -4+ EAy,T)
1S a direct sum. Furthermore,

dmEA,T)+---+dim E(A,,, T) < dim V.



Proof To show that E(A1,7T) + --- 4+ E(A,,, T) is a direct sum, suppose
ul "I'""I‘um :()9

where each u; 1sin E(A, T'). Because eigenvectors corresponding to distinct
eigenvalues are linearly independent (see 5.10), this implies that each u;

equals 0. This implies (using 1.44) that E(A1,T)+---+ E(A, T) 1s a direct
sum, as desired.

Now

dim E(A.T) + - +dimE(A,, T) = dim(EA, T)® - & E(Am.T))

< dimV,

where the equality above follows from Exercise 16 in Section 2.C. N



diagonalizable

5.39 Definition diagonalizable

An operator 7" € L(V) is called diagonalizable if the operator has a
diagonal matrix with respect to some basis of V.



540 Example Define T € £(R?) by
T'(x,y)=(@41lx +7y,—20x + 74y).
The matrix of 7 with respect to the standard basis of R? is
( 41 7 )
20 74 )°

which 1s not a diagonal matrix. However, T 1s diagonalizable, because the
matrix of 7" with respect to the basis (1,4), (7,5) 1s

69 0
0 46 )

as you should verity.



Conditions equivalent to diagonalizability
Suppose V' is finite-dimensional and 7" € L(V'). Let Ay, ..., Am denote

the distinct eigenvalues of 7. Then the following are equivalent:

(a) T is diagonalizable;
(b) V' has a basis consisting of eigenvectors of 7;

(¢)  there exist 1-dimensional subspaces Uy, . ... U, of V, each invariant
under 7, such that

V=U &:---b Uy;:

d V=EMT)® - & EMAn,T);
(e) dimV =dimEA.T)+---+dimEA,,. T).



Proof An operator 7" € £(V') has a diagonal matrix

Al 0

0 An
with respect to a basis vy, ..., v, of Vif and only if 7v; = A;v; for each ;.
Thus (a) and (b) are equivalent.

Suppose (b) holds; thus V" has a basis vy, ..., v, consisting of eigenvectors
of 7. For each j, let U; = span(v;). Obviously each U; is a I-dimensional
subspace of V' that is invariant under 7. Because vy, ....v, is a basis of V,
each vector in V' can be written uniquely as a linear combination of vy, ..., Vn.
In other words, each vector in V' can be written uniquely as a sum v +- - -4,
where each uj isin U;. Thus V = U; & --- @& U,. Hence (b) implies (c).

Suppose now that (¢) holds; thus there are 1-dimensional subspaces
Uy.....U, of V, each invariant under 7, such that V = U; & --- & U,,.
For each j, let v; be a nonzero vector in U;. Then each v; is an eigenvector
of 7. Because each vector in V' can be written uniquely as a sum vy +- - -+ u,,

where each u; is in U; (so each u; is a scalar multiple of v;), we see that
Vi, ..., v 1s a basis of V. Thus (c¢) implies (b).



Suppose (b) holds; thus V' has a basis consisting of eigenvectors of 7.
Hence every vector in V' is a linear combination of eigenvectors of 7, which
implies that

V=EA.T)+---+ EXAu.T).

Now 5.38 shows that (d) holds.
That (d) implies (e) follows immediately from Exercise 16 in Section 2.C.



Finally, suppose (e) holds; thus
5.42 dimV =dmEA.T)+---+dimEA,.T).

Choose a basis of each E£(A ;. T); put all these bases together to form a list
Visooos v, of eigenvectors of 7, where n = dim V' (by 5.42). To show that
this list is linearly independent, suppose

avy +---+a,v, =0,

where aq. . ... anp € F. Foreach j = 1...., m, let u ; denote the sum of all
the terms ay v such that vy € E(A;,T). Thuseachu; isin E(A;.T), and

Uy + -+ u, = 0.

Because eigenvectors corresponding to distinct eigenvalues are linearly inde-
pendent (see 5.10), this implies that each u ; equals 0. Because each u; is a
sum of terms ay vy, where the vi’s were chosen to be a basis of E(A ;, T'), this
implies that all the @y ’s equal 0. Thus vy, ..., vy, 18 linearly independent and
hence is a basis of V' (by 2.39). Thus (e) implies (b), completing the proof. m



5.43 Example Show that the operator T € £(C?) defined by
T'(w,z) = (z,0)
1s not diagonalizable.

Solution  As you should verity, O 1s the only eigenvalue of 7" and furthermore
E,T)={w,0) € C?:weC

Thus conditions (b), (¢), (d), and (e) of 5.41 are easily seen to fail (of
course, because these conditions are equivalent, it 1s only necessary to check
that one of them fails). Thus condition (a) of 5.41 also fails, and hence 7' 1s

not diagonalizable.
0 1w [z
0 0|\z) (0O



Enough eigenvalues implies diagonalizability

If T e L£(V) has dim V distinct eigenvalues, then 7 is diagonalizable.

Proof Suppose 7" € L(V) has dim V' distinct eigenvalues Aq, ..., AdgimV.
For each j,letv; € V be an eigenvector corresponding to the eigenvalue A ;.
Because eigenvectors corresponding to distinct eigenvalues are linearly inde-
pendent (see 5.10), v1.....V4qim v 1s linearly independent. A linearly indepen-
dent list of dim V" vectors 1n V' 1s a basis of V' (see 2.39); thus vy, ..., VgmV
1s a basis of V. With respect to this basis consisting of eigenvectors, 7 has a

diagonal matrix. N



545 Example Define 7 € L(F?)by T(x,y.z) = 2x +y,5y +3z.82).
Find a basis of F? with respect to which 7" has a diagonal matrix.

Solution  With respect to the standard basis, the matrix of 7" 1s

S O

1
S
0

0 W O



T(x,v,z) = A(x,y,2)

for A = 2, then for A = 5, and then for A = 8. These simple equations are
easy to solve: for A = 2 we have the eigenvector (1,0, 0); for A = 5 we have

the eigenvector (1, 3,0); for A = 8 we have the eigenvector (1, 6, 6).
Thus (1.0, 0), (1.3,0). (1,6, 6) is a basis of F>, and with respect to this

basis the matrix of 7' 1s
2 0 0
O 5 0 |.
0O 0 8



Systems of Linear differential equations

Y =AY Solution??? V(1) = ay(l) e (1) = ce”
x|
= Ax = Ax
Y = xzze =™ X e—) Y — 1 x =AY )y AY =M Ax =AM x=AY =Y
At
X, e

Yl Y2 are solutions, then aY +[Y, is also a solution



Example

y, =3y, +4y,
YV, =3y, +2y,
det(A-AI)=0 (A-61)x=0,(A+I)x=0
A:|:§ 421:| o ) > 4269 2:-1 ) D > X :(493)T9x2 :(19_1)T

6¢ —t
Y dce” +c,e

Y =£ V=gt o e, =
V2 3ce” —c,e

Y(0)- 4c, +c, _ 6 .l —n
3¢, —c, 1 G=b6=




Complex eigenvalues

Let A be areal n X n matrix with a complex eigenvalue

A = a + bi, and let x be an eigenvector belonging to A.

The vector x can be split up into its real and imaginary

parts.

Re z1 + 1 Im z;
Re o + 7 Im x9

_Rc T, +1Imx,

Re 1

Re xo

Re z,

Im T

Im z-
+ 1 . =Rex+11mx

Imz,

Since the entries of A are all real, it follows that

A =a — biisalsoan eigenvalue of A with eigenvector

Rexz; —1Im x;
Re o — 72 Im xo

_Rc z, —tIlmz,

=Rex—7Imx



and hence e’ x and eXt)_c are both solutions of the first-

order system Y’ = AY. Any linear combination of
these two solutions will also be a solution. Thus, if we set

Y, = %(e’\‘x + eX‘x) = Re(e*x)

and

1 XMoo
Y, = 5 (e’\‘x - e”x) = Im(e”x)
then the vector functions Y1 and Y9 are real-valued
solutions of Y’ = AY. Taking the real and imaginary

parts of

eitx = elatib)iy

= e™(cos bt + i sin bt)(Re x + ¢ Im x)

we see that

Y: =e*[(cosbt) Rex — (sin bt) Im x]
Y: =e*[(cosbt) Im x + (sin bt) Re x]



Y = Y1+ Yo
Yo = —2y; + 3ys
Let
11
e

The eigenvalues of A are A = 2 4+ 4 and A = 2 — 4, with
eigenvectors X = (1,1 + 7)Y andx = (1,1 — 2)7,
respectively.



v, | €*(cost+isint) ]
e*(cos t + i sin t)(1 + 1)
| e? cost + ie sin t
~ |e*(cos t — sin t) + ie*(cos t + sin t)]

Let

et cos t
Y; = Re(ex
' (¢7) [ezt(cos t — sin t)]

and

2%
e’ sint
Y, = Im(eMx) =
? (¢7) [e2t(cos t + sin t)]

Any linear combination
Y=cY1+cYs

will be a solution of the system.



Higher-Order Systems

Given a second-order system of the form

Y'=A, Y+A Y’
we may translate it into a first-order system by setting

Yn+1 (t) — y,1 (t)
Yn+2 (t)

|
<
[\ M
N
(3
N—

nlt) = 9(0)



If we let

Y=Y = (v, 9n)"

and
Y2 — YI — (yn+17 oo 7y2n)T
then
Y, = OY; + I'Y,
and

Y’2:A1Y1—|—A2Y2

The equations can be combined to give the 2n X 2n
first-order system

EIRrAtS



Higher-Order Systems

In general, if we have an mth-order system of the form

Y™ = A Y + AY +...+ A Y™

where each A; is an n X n matrix, we can transform it
into a first-order system by setting

Y =Y, Y:=Y1,...,. Y=Y,

We will end up with a system of the form

Y (0O I O o1 v,
Y, O O I ol Y
Y 0O 0 0 I||Ym
Y, A Ay Aj A Y,



If the system is simply of the form Y™ = AY, it is usually not necessary to intro-
duce new variables. In this case, we need only calculate the mth roots of the eigenvalues
of A. If A 1s an eigenvalue of A, X 1s an eigenvector belonging to A, o 1s an mth root of
A, and Y = €7°x, then

Y™ = g™e%'x = Y
and

AY = ¢7"AX = 1e’'x =AY
Therefore, Y = ¢°’x is a solution to the system.



Applications

miz] (t) = —kx1 + k(xs — x1)

My (t) = —k(zy — 1) — kg

[l
—
SN
U
r] = —mil(Zazl — x2)
—
Ty = —%(—xl + 2x5)



Supposenowthatm; = me =1, k=1

-2 1
voax A= ]

has eigenvalues A\ = —1 and Ay = —3. Corresponding

to A1, we have the eigenvector v = (1, 1)T and
o1 = +1i. Thus, e¥vy and e “vy are both solutions

(e e w1 = (Re e)vi = (cos vy

and

%(eit — e‘it)vl e (Im eit)V1 = (sin t)v1
(



are also both solutions of (2). Similarly, for A, = —3, we have the eigenvector v, =
(1, —1)T and o, = £+/3i. It follows that

(Re e‘/git)vz = (cosﬂt) Vo
and
(Im e‘/git)vz = (sin\/§t> \'D

are also solutions of (2). Thus, the general solution will
be of the form

X(t) =ci(cost)vi + ca(sint)vy + c3 (cos\/gt) Vo + ¢4 (sin\/gt) Vo

_ |cacost+casint +cy cosv/3t + ¢4 siny/3t
cpcost+cosint — c3 cos\/§t — C4 sin\/gt

At time ¢t = 0, we have X(t) = [2 sint]

21(0) = 22(0) =0 and z}(0) =z5(0) =2



The Exponential of a Matrix

Given a scalar a, the exponential €* can be expressed in
terms of a power series

1 1
e=1+a+—a%2+ —a’+...
21 3!

Similarly, for any n X m matrix A, we can define the
matrix exponential eA in terms of the convergent power
series

1 1
A 2 3



the matrix exponential is easy to compute:

e? = lim (I+D+lD2+ ...+#Dm)

Igﬂ Kt © A
e 2
- Jim, -
_ ZEh| |




It is more difficult to compute the matrix exponential for
a general n X m matrix A. If, however, A is
diagonalizable, then

A — XDkX-1 for k=1,2,...
A :X(I+D+%D2+%D3+...)X‘1
= XeP X1



Y =ay, y(0)=yo

the solution is

y = ey

The matrix exponential can be applied to the initial value
problem

Y' — AY, Y(0)=Y,



then

and

Thus, the solution of
Y' =AY, Y(0)=Y,
1s simply

Y = 1Y,



cle’\ltxl e cze’\2tx2 T cne’\"txn

If A is diagonalizable,
Y = XPx 1y,
Thus,
Y = XetPe
[ crett
cze/\2t
= (X1,X2,...,Xp)
c,ze)‘"t

= creMtxy + ... + cpeMtix,



Singular Value Decomposition

* Diagonalization can only apply on some square matrices.

A=WEW

* Singular value decomposition (SVD) can apply on any matrix.



SVD

m X N NnxXn

* Any m x n matrix A
m X n m X
Ya Orthonormal
A = U Set
Orthonormal Set Diagona Independent
PN
Independent  The diagonal entries
are non-negative




B U ses B EQ W e O

(We can exchange 0 o ... 0(00 ... 0

S some rows and i B owe BN 3 :
\/D columns to achieve 0 0 |00 ...0
that) 0 0 ::: 0|00 :: O

* Any m x n matrix A

B B s A0 Y wax U

— —

m X n nxXn

Independent

m X n

A

Independent Diagona What is the rank of A?

If Ais a m x n matrix, and B Is a n x k matrix.

Rank(AB) < min(Rank(A), Rank(B))
If B is a matrix of rank n, thenRank(AB) = Rank(A)
If Ais a matrix of rank n, thenRank(AB) = Rank(B)



SVD

* Any m x n matrix A

m X N m X m X N nxXn
T Independent

Independent Diagona
m X K kxk kxn

IIIIIII ‘||||| .
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SVD

* Any m x n matrix A

m X N

A

m X n

0y 1S deleted

m X m m X n

Independent Diagonal

m x (k-1) (k-1) x (k-1) (k-1) x n

NnxXn

l Independent

What Is the rank of
A’?

k-1

A’ is the rank k-1 matrix minimizing [|A — A’||



AAT = UXvTyTyT —uexyTpyT
ATA = VvYXTyTuxyT = vyTyyT

A" Av=0c"v AA u = c’u

BIgAE—m x niViERE, ICANEE AT,
E55EsEr(AAT) = r(ATA) = r(A) = r(AT).

BigsiEAEElh Az =0/ AT Az =0,
R Az = 0WAT (Az) = 0.FilAz = O A AT Az = ORIRR.

stFAT Az = 0,mnERSRIL 2T 85T AT Ax = 2T x0 = 0.
& (Az)T (Az) =0,.80, ||Az|| = 0. FrLUERAz = 057, AT (Az) = ORVRRER N Az = ORJAR,

Fril Az = 0F1AT Az = 0GHERNR=E, Filr(A) =r(ATA), BE, r(AT) =r(AAT). FA
r(AAT) = r(ATA) = r(A) = r(AT).

TEDESS FEHEER.

g2 AT ANBNESHENIS TS E, AT Az = A
FNESRIUABRIAAT Az = \Az, WEAAT (Az) = \(Az),
R AT AR A AT SERNIESISEE.

FEEE, ABMBAGHERNIESISIEE,



Low rank approximation using the singular
value decomposition

https:.//www.youtube.com/watch?v=pAiVb7gWUrM



THEAE X

SOHTERAR |AB|=| 4B

AB FHORIEINES R B F1ZSR A,
SeIEHTK |B|{E#0 | 465

MK | 4||B| .
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