(Due: Oct. 31, 2024)

1. (20')

给定线性时不变系统 $\dot{x} = Ax$,如果当 $x(0) = \begin{bmatrix} 1 & -1 \end{bmatrix}^T$ 时, $x(t) = \begin{bmatrix} e^{-2t} & -e^{-2t} \end{bmatrix}^T$;当 $x(0) = \begin{bmatrix} 2 & -1 \end{bmatrix}^T$ 时, $x(t) = \begin{bmatrix} 2e^{-2t} & -e^{-2t} \end{bmatrix}^T$,试求该系统的系统矩阵 A ,以及状态转移矩阵 $\phi(t,0)$ 或 $\phi(t)$ 。

2. (15')

对于任意两个可交换的矩阵 $A \in R^{n \times n}$ 和 $B \in R^{n \times n}$, 即AB = BA, 试证明

$$e^{(A+B)t} = e^{At}e^{Bt} = e^{Bt}e^{At}$$

3. (20')

给定如下线性时不变系统

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u, \qquad x(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad t \ge 0$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

请用两种方法求系统的单位阶跃响应 y(t)。

4. (15')

给定矩阵 $A \in \mathbb{R}^{n \times n}$,则可由下列式子计算 e^{At} ,

$$e^{At} = a_0(t)I + a_1(t)A + \dots + a_{n-1}(t)A^{n-1}$$

假设矩阵 A 的特征根 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 两两相异,试求 $a_i(t)$, $i=0,1,\cdots,n-1$. (注:请写出详细的步骤)

5. (10')

设采样周期为的T = 0.01s,求下面连续系统所对应的离散化状态方程。

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

6. (20')

设描述线性时不变系统的差分方程为 y(k+2)+3y(k+1)+2y(k)=u(k)。

- (1) 选取 $x_i(k) = y(k)$, $x_i(k) = y(k+1)$ 为一组状态变量,写出该系统的状态方程。
- (2) 假设系统初始值为 $\nu(0) = 0$, $\nu(1) = 1$, 求系统的单位阶跃响应 $\nu(k)$ 。