实验2系统的稳定性分析实验

一、实验目的

- 1. 熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。
- 2. 掌握香农定理,了解信号的采样保持与采样周期的关系。
- 3. 掌握采样周期对采样系统稳定性的影响。

二、实验设备

- 1. PC 机一台
- 2. NI ELVIS III 一台
- 3. "Circuits Control Board 1"(自动控制原理课程实验套件 1)
- 4. "Circuits Control Board 2"(自动控制原理课程实验套件 2)
- 5. 导线 14 根
- 三、实验原理
- 1. 典型的三阶系统稳定性分析
 - (1) 方框图:

图 3-1 三阶系统方框图

(2) 模拟电路图:

图 3-2 三阶系统模拟电路图

(3) 开环传递函数和特征方程:

系统的开环传递函数为:

C(S)U(S) =	$\frac{500}{R}$
u(3)11(3) –	$\overline{S(0.1S+1)(0.5S+1)}$
其中,开5	$ \operatorname{King} = \frac{500}{R} $

系统的特征方程为:

$$1 + G(S)H(S) = 0 \implies S^3 + 12S^2 + 20S + 20K = 0$$

(4) 实验内容:

在开始实验前由 Routh 判据得到 Routh 行列式为:

S ³	
S ²	
S ¹	
S ⁰	

为了保证系统稳定,第一列的各项值应该都为正数。计算系统稳定时下表各参数的取值

范围

0 < K < ?	R > ?	系统稳定
K = ?	R = ?	系统临界稳定
K > ?	R < ?	系统不稳定

注意:实际实验中,由于器件精度和个体差异等原因,测量值可能会与理论值之间存在偏差, 偏差在 20%范围内都是正常情况。

2. 信号的采样保持

(1) "采样-保持器"LF398

(a) "采样-保持器"LF398 介绍

本实验采用"采样-保持器"LF398 芯片。它具有采样和保持功能,是一种模拟信号存储器,在逻辑指令控制下,对输入的模拟量进行采样和寄存。通过使用"采样-保持器"LF398 能够实现将连续信号离散后以零阶保持器输出信号的功能。

(b) "采样-保持器"LF398 引脚图:

图 3-3 LF398 引脚图

采样周期 T 等于输入至 LF398 第 8 脚的脉冲信号周期,高电平时采样,低电平时保持。此脉冲信号由 ELVIS III 的数字输出端 A/DIOO 产生,改变脉冲的频率就能够改变采样周期。

(c) "采样-保持器"LF398 方框图:

图 3-4 采样保持功能方框图

(2) 信号的采样保持

采样保持模拟电路图:

图 3-5 采样保持电路模拟电路图

连续信号x(t)经采样器采样后变为离散信号x*(t),香农(Shannon)采样定理指出,离 散信号 x*(t)可以完满地复原为连续信号条件为:

 $\omega_{\rm s} \ge 2\omega_{\rm max}$

其中, ω_s 为采样角频率, $\omega_s = \frac{2\pi}{T}$ (T 为采样周期); ω_{max} 为信号x(t)连续频谱|X(j ω)| 中的最大角频率。上式也可以表示为:

$$T \le \frac{\pi}{\omega_{\max}}$$

例如:若连续信号x(t)是角频率为 $\omega_s = 2\pi \times 25$ 的正弦波,它经采样后变为 $x^*(t)$,则 $x^*(t)$ 经保持器能复原为连续信号的条件是采样周期 $T \leq \frac{\pi}{\omega_s}$,(正弦波 $\omega_{max} = \omega_s = 50\pi$),所以:

$$T \le \frac{\pi}{50\pi} = \frac{1}{50} = 20ms$$

3. 闭环采样控制系统

a) 方框图:

图 3-6 闭环采样系统方框图

b) 模拟电路图:

图 3-7 闭环采样系统模拟电路图

c) 传递函数:

$$G(S) = \frac{50}{S(S+1)}$$

四、典型环节稳定性分析

- 1. 实验准备
 - (1) 启动计算机,并检查 ELVIS III 的 USB 线是否连接到电脑。USB 线接口如图 3-8 A 所示;
 - (2) 将"Circuits Control Board 1"(自动控制原理课程实验套件 1)插入 ELVIS III 的插 槽中;
 - (3) 打开 ELVIS III 电源。电源开关位置在 ELVIS III 背后,如图 3-8 B 所示;

图 3-8 ELVIS III 平台开关及 USB 接口示意图

- (4) 打开自动控制原理课程实验套件板子开关。
- (5) 确认 ELVIS III 能够识别并显示实验板信息。

- (6) 在计算机上运行名为"实验 3 典型环节的稳定性分析实验"的 LabVIEW 工程。
- 软件位置:

...\自动控制原理课程实验套件\实验3典型环节的稳定性分析实验\实验代码

● 工程打开界面:

图 3-9 工程打开界面

● 双击打开 Main.vi,并单击程序运行按钮,程序运行界面如图 3-10 所示:

图 3-10 程序运行界面

- (7) 检查实验所需导线是否足够。本实验所需导线数量为 11 根。
- 2. 测试面板

图 3-11 测试面板组成

(1) 开始按钮和结束按钮

如图 3-11 A 所示。

未开始采集时,点击"开始"按钮开始进行采集;采样类型为"连续采样" 并正在采集中时,点击"结束"按钮停止采集。

(2) 通道

如图 3-11 B 所示。

该区域会自动显示实验所使用的 ELVIS III 资源,包括 AI 和 AO。

(3) 采样配置

如图 3-11 C 所示。

在每次实验前都需要进行采样配置,包括采样类型、采样率 Hz 和采样长度。 采样类型包括"单次采样"和"连续采样"两种模式。使用"单次采样"模 式,则采样的持续时间=采样长度/采样率;使用"连续采样"模式,则波形图 的更新时间=采样长度/采样率。

通过合理配置采样率和采样长度,使采样时间内采集到的反馈波形能够清晰 地表现曲线特征。如果输出信号是振荡信号,建议采用"单次运行"模式, 这样可以捕捉到最佳的振荡衰减或者发散信号,如果输出信号是等幅振荡信 号,则可以选择连续运行模式。 (4) 幅值和信号输出

幅值如图 3-11 D 所示;信号输出如图 3-11 E 所示。

"幅值"设置阶跃信号输出的幅值。受到设备硬件的限制,幅值的有效调节 范围为-10V~+10V。

"信号输出"按钮独立控制信号的输出,在程序运行后,可以用该按钮控制 阶跃信号的输出。该按钮被按下后(黄灯亮起),在进行采集时, ELVIS III 的模拟 输出口 AO 才会输出阶跃信号,幅值等于设置幅值,否则输出电压值为 0。

(5) A/AIO 和 A/AI1 测试

如图 3-11 F 所示。

通道 A/AIO 和 A/AI1 的测试数据显示,包括幅值和频率。

- (6) 波形图
 - a) 波形图组成
 - i. 波形图

如图 3-12 A 所示,能够显示采集得到的电压波形,从而得到电路的输入和输出,并能够清晰地表现曲线特征以及输入和输出之间的关系。

ii. 图例

如图 3-12 B 所示,能够配置波形图的各种参数。

iii. 图形工具选板

如图 3-12 C 所示,能够实现波形曲线的移动和缩放。

iv. 游标

如图 3-12 D 所示。在未进行采集的状态下点击"游标可见",在前面 添加对勾。此时波形图上会出现游标,游标图例框中显示游标的坐 标。在确认"图形工具选板"选中第一种功能状态,如下图所示, 将鼠标放置在波形图的游标上,鼠标变为"空心十字"后,拖动鼠 标实现游标的移动。

7

图 3-12 波形图组成

通道	波形图 A/AI0 入	A/AI1 🔨
A/AO A/A0 A/Al A/Al0 (N Samples) A/Al1 (N Samples) A/Al1 (N Samples) 来样範問 译曉采样 采样樂型	10 8 5 第 第 第 第 第 第 第 第 第 第 第 第 第	0.9 1
₩值 ① ① ② ② ② ③ ③ ③ ③ ③ ③ ③ ③ ③ ③ ③ ③ ③		Y ▲ 8 -0.258: 1 -0.269' ↓

图 3-13 刻度调整

- b) 波形图常用功能
 - i. 调整刻度
- 在实际的实验测量过程中,如果坐标刻度范围不能很好的表现曲线特征, 可以人为调整刻度值。具体方法如下:
- 在刻度数值上点击鼠标右键,点击"自动调整 X 标尺"("自动调整 Y 标尺"), 取消前边的对勾。

- 在刻度的最大值或最小值上单击或双击鼠标左键,直接输入需要的数值即可。
- 输入完成后"回车"或在空白处点击鼠标左键,完成对刻度值的更改。
- 需要注意的是,如果不取消"自动调整 x 标尺"("自动调整 y 标尺")前边的对 勾,直接进行刻度值的修改,波形图仍会根据波形曲线自动进行调整。
 - ii. 波形数据存储

如果需要存储波形,可以在波形图上单击右键,在右键菜单中选择"导出",如果需要导出波形数据选择"导出数据至 Excel";如果需要导出 波形图像选择"导出简化图像",在弹出的对话框中选择要保存的路径, 可以将波形保存成简化图的 bmp 格式文件。

图 3-14 波形图像数据存储

- 3. 实验步骤
- (1) 实验接线
- 三阶系统模拟电路图:

图 3-15 三阶系统模拟电路图

根据模拟电路图,实验接线有多种接法,只要能搭建成理论电路既可,注意接线过程切 勿带电操作。

接线提示具如下:

- 将 A/AOO 连接 P201,使用 ELVIS Ⅲ 的模拟信号输出端 A/AOO 产生阶跃信号 作为电路的输入,如上图连线(5);
- 将 P209 连接 A/AI1,使用 ELVIS Ⅲ 的模拟信号输入端 A/AI1 采集电路的输出, 如上图连线 10;
- 将 A/AOO 连接 A/AIO,跟踪输入信号,能够同时在计算机上看到电路的输入和输出,如上图连线①。
- 完成其他部分电路搭接,按照实验报告选取不同的电阻值。实验接线完成
 后,请再次检查电路接线是否正确,确认无误后上电。

(2) 软件设置

- 该环节设置为单次采样,如下图 A:
- 设置采样率为 1kHz, 如下图 B:
- 设置采样数为4k,采样时长即为采样数除以采样率,此处为4秒,如下图
 C:
- 设置信号幅值为 1V,如下图 D:
- 设置信号输出,将"信号输出"按钮点亮,此时 A/AOO 将会输出阶跃信号, 如下图 E:

测试面板	(_{实验电路}	2 毋	型环节的时域	响应和稳	定性分析实	验	退出	
	通道 A/AO KA/AO	2 J	, 典型环节的时域	 「 响 应 和 税	定性分析实	验	VAI1 🔨]
	A/AI A/AI A/AI0 (N Samples) A/AI1 (N Samples)		0.8 0.6					
Α			0.4 0.2					
В	采样率Hz [1000		-0.2 ^{-]} ,	0.02	0.04 0.06 时间(s)	0.08	0.	1
С	4000		A/AI0测试	A/AI1测试	一游标可见	(F 2	2
D]	幅值 0.00 频率	幅值 0.00 频率	游标: □■ 游标A/ □■ 游标A/	X AIO IO AI1	Y 1.001	
E	信号輸出 开始]	0.00	0.00		11 0	-0.136	

图 3-16 三阶系统软件设置

(3) 运行软件并观察实验结果

注意:

在每次点击"开始"按钮进行采集之前都需要手动对电容进行放电,放电方法是按下与电容并联的按键开关,短接电容两端。按下按键持续几秒后松手,并迅速点击"开始"按钮进行 采集,如果松手后间隔时间过久再采集,在间隔时间中电容就会充电。对电容放电是为了 避免由于电容充电而导致的输出饱和状态,影响实验结果。

● 点击"开始"按钮;

• 观察系统阶跃信号曲线和响应曲线:

(4) 更换电阻 R 的阻值,调节等幅振荡临界点

为了能够实现等幅振荡,在电路不变的情况下,将定值电阻 R 替换为可调电阻 RV6。

本实验中的滑动变阻器顺时针旋转阻值增大,逆时针旋转阻值减小。在该环节中,滑动 变阻器阻值增大使系统收敛,阻值减小使系统发散。临界点是让系统处于发散和收敛的临界 状态,表现为等幅振荡。

调节等幅振荡临界点实验的具体步骤如下:

(a) 滑动变阻器的选取:

● 电阻 R201(滑动变阻器 RV6, 30k~50k);

(b) 软件设置

- 该环节设置为连续采样,如下图 A:
- 设置采样率为 1kHz, 如下图 B:
- 设置采样数为 4k, 如下图 C:
- 设置信号幅值为 1V,如下图 D:
- 设置信号输出,将"信号输出"按钮点亮,此时 A/AOO 将会输出阶跃信号, 如下图 E:

12.5 10 7.5 5 5 0 0 0 -7.5 -5 -7.5 -10 -12.5 -10 -12.5 -10 0 0.5 1 0 0.5 1 0 0.5 1 1.5 2 2.5 3.5 4 4.5 5.5 6 时间(s)	AO A/AOO A/AOO A/AOO A/A/O (N Samples) VAI1 (N Samples) VAI1 (N Samples) 样配置 理型 22.5 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5 -0 -12.5 -0 -12.5 -0 -0 -12.5 -0 -0 -12.5 -0 -0 -12.5 -0 -0 -12.5 -0 -0 -12.5 -0 -0 -12.5 -0 -12.5 -0 -12.5 -0 -12.5 -0 -12.5 -0 -12.5 -0 -12.5 		波形图	A/AI0 A/AI1
10 7.5 2.5 0 -7.5 -7.5 -100 -12.5 -0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 时间(s)	A/A00 A/A/0 (N Samples) A/A/10 (N Samples) A/A/11 (N Samples) #記置 ##Hz 000 EK度 000 A/A/0例试 A/A/11測试 謝标可见	A/AO	12.5 -	
7.5 2.5 2.5 -5 -7.5 -10 -12.5 -10 -12.5 -10 -12.5 -10 -11.5 -1.5	A A/AI0 (N Samples) A/AI1 (N Samples) 年記置 課題型 該採祥 車Hz 000 A/AI0 測试 A/AI1 測试 副線可见 () () () () () () () () () () () () () (^I ₀ A/AO0	10	
2.5 0 -5 -5 -7.5 -10 -12.5 0 0.5 1 1.5 2 2.5 -10 -10 -11.5 2 2.5 3.5 4 4.5 5 5.5 6 时间(s)	A/AIO (N Samples) A/AII (N Samples) 体配置 理型 該採祥 準出 200 A/AIO 測试 A/AII 測试 副标可见 () () () () () () () () () () () () () (A/AI	7.5	
22.5 -2.5 -5 -7.5 -10 -12.5 -0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 时间(s)	A/Al1 (IV Samples)	A/AI0 (N Samples)	5	
■ 0 ■ -2.5 -7.5 -7.5 -10 -12.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 时间(s)	祥記置 環理 - 2.5 -5 -7.5 -7.5 -105 -12.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 时间(s) 平2.9 -7.5 -105 -12.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 田10(s)	A/AI1 (N Samples)	S 2.5	
-2.5 -5 -7.5 -10 -12.5 -0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 时间(s)				
-7.5 -7.5 -10 -12.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 时间(s)	¥类型 +技工 2000 = + + + - - - - - - - - - - - - -	联样配置	-2.5-	
-7.3 -10 -12.5 -12.5 -12.5 -12.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1		采样类型	-5-	
-12.5	-12.5 ³ -12.5 ³ 000 形度 200 A/AIO測试 A/AI1測试 □謝标可见	连续采样	-7.5	
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 时间(s)	+#HTZ 000		-12 5-	
时间(s)	000 时间(s)	★1年傘F1Z	0 0.5 1 1.5	2 2.5 3 3.5 4 4.5 5 5.5 6
	¥K度 000 A/AI0測试 A/AI1測试 □謝标可见	1000		时间(s)
	000 A/AIO測试 A/AII測试 」謝标可见	采样长度		
A/AI0测试 A/AI1测试 游标可见		4000	A/AI0测试 A/AI1测试	前标可见
			幅值幅值	游标: X Y
幅值 幅值 游标: X Y		4		100 101 1
幅值 幅值 游标: X Y [992.48m] 3.84 □ III 部分 (3.84		<u>لا</u> م	992.48m 3.84	□ 游标A/AI0
A/AI0测试 A/AI1测试 副辦标可见		米拝率Hz 1000 米拝长度 4000	-12.5 J 0 0.5 1 1.5 A/AIORISE A/AI1RISE MEE MEE	2 2.5 3 3.5 4 4.5 5 时间(s)
幅値 幅値 游标: X Y				
幅值 幅值 游标: X Y [992.48m 3.84 □ 部标A/Al0		1 	992.48m 3.84	□ 游标A/AI0

图 3-17 三阶系统调节等幅振荡软件设置

- (c) 粗调:在断电并且滑动变阻器未连线的情况下,调节滑动变阻器 RV6 使得 P35 和 P36 两端的电阻值为临界振荡时电阻 R 的理论值。
- (d) 上电: 在确保电容已经放电充分的条件下,点击开始按钮进行采集,观察系统 响应曲线的收敛情况。
- (e) 微调:调节滑动变阻器 RV6,使得系统的响应曲线等幅振荡。由于精度和个体差异,每个模块的临界点不一样,需要仔细调节,调节过程要细致,要有耐心。
- (f) 观察:

图 3-18 三阶系统临界等幅振荡

(g) 点击"结束"按钮停止采集

- (5) 更换电阻 R 的阻值,观察系统阶跃信号曲线和响应曲线
 - (a) 软件设置
 - 该环节设置为单次采样,如下图 A:
 - 设置采样率为 1kHz, 如下图 B:
 - 设置采样数为 10k,采样时长即为采样数除以采样率,此处为 10 秒,如下
 图 C:
 - 设置信号幅值为 1V,如下图 D:
 - 设置信号输出,将"信号输出"按钮点亮,此时 A/AOO 将会输出阶跃信号, 如下图 E:

通道	波形图	A/AI0 🔨 A/AI1 🔨
A/AO	1.6	
% A/AO0	1.4	
A/AI	1.2	
A/AI1 (N Samples)		
采样配置	0.4	
梁祥逝刑		
	0.2-	
	0.2	
单次采样 ¥样率Hz	0.2 0 -0.2 0 1 2 3	4 5 6 7 8 9 10
单次采样 采样率Hz 1000	0.2 0 -0.2 0 1 2 3	4 5 6 7 8 9 10 时间(s)
●次采样 単次采样 第样率Hz 1000 来样长度	0.2 0 -0.2 0 1 2 3	4 5 6 7 8 9 10 时间(s)
【単次采样 】 1000 采样长度 10000	0.2 0 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2	4 5 6 7 8 9 10 时间(s)
单次采样 来样率时z 1000 采样长度 10000	0.2 0 -0.2 0 1 2 3 A/AIO测试 A/AI1测试 幅值	4 5 6 7 8 9 10 时间(s) 副标可见
●次采样 ●次采样 1000 采样长度 10000	0.2 0 -0.2 0 1 2 3 A/AIO测试 幅值 995.40m	4 5 6 7 8 9 10 时间(s) 副标可见
単次采样	0.2 0 -0.2 0 1 2 3 A/AIO测试 梯值 995.40m 频率	4 5 6 7 8 9 10 时间(s)

图 3-19 三阶系统 R 为定值电阻软件设置

本实验结束,关闭 ELVIS III 试验台电源,并整理好导线。

4. 实验结果

将典型三阶系统在不同开环增益下的响应情况实验测试值填入下表

典型三阶系统在不同开环增益下的响应情况实验结果参考值

R(KΩ)	开环增益 K	稳定性
10		
30		
100		
R=		临界等幅振荡

五、离散系统的稳定性分析

- 1. 实验准备
 - (1) 启动计算机,并检查 ELVIS III 的 USB 线是否连接到电脑。USB 线接口如图 3-20 A 所示;
 - (2) 将"Circuits Control Board 2"(自动控制原理课程实验套件 1)插入 ELVIS III 的插 槽中;
 - (3) 打开 ELVIS III 电源。电源开关位置在 ELVIS III 背后,如图 3-20 B 所示;

图 3-20 ELVIS III 平台开关及 USB 接口示意图

- (4) 打开自动控制原理课程实验套件板子开关。
- (5) 确认 ELVIS III 能够识别并显示实验板信息。
- (6) 在计算机上运行名为"实验 6 离散系统的稳定性分析实验"的 LabVIEW 工程。
- 软件位置:

...\自动控制原理课程实验套件\实验6离散系统的稳定性分析实验\实验代码

● 工程打开界面:

图 3-21 工程打开界面

● 双击打开 Main.vi,并单击程序运行按钮,程序运行界面如下图所示:

Main.vi (实验6 离散系统的稳定性分析实验)	د. د. الالالالالالالالالالالالالالالالالالال	×
※短六	离散系统的稳定性分析 实验	退出
通道		
A/AO		
A/AO0 (N Samples)	1.25	
A/AI	1	
^I ₀ A/AI0 (N Samples)	0.75	
¹ / ₆ A/Al1 (N Samples)	0.5	
A/PWM	H 0.25	
A/PWM0		
采样配置	-0.25	
采样类型	-0.5	
连续采样	-0.75	
采样率(Hz)	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 (0.8 0.9 1
1000	L L L L L L L L L L L L L L L L L L L	
采样长度	参数配置 □游振可见	
1000		× × •
		<u>х ү</u> ^
幅值		0 0.9660
	脉冲周期(ms) 脉冲输出 🗆 游标A/Al1	
信号输出	A/AI1 (0 0.3537 🔻
开始		

图 3-22 程序运行界面

(7) 检查实验所需导线是否足够。本实验所需导线数量为14根。

2. 测试面板

图 3-23 测试面板组成

(1) 开始按钮和结束按钮

如图 3-23 A 所示。

未开始采集时,点击"开始"按钮开始进行采集;采样类型为"连续采样"

并正在采集中时,点击"结束"按钮停止采集。

(2) 通道

如图 3-23 B 所示。

该区域会自动显示实验所使用的 ELVIS III 资源,包括 AI 和 AO。

(3) 采样配置

如图 3-23 C 所示。

在每次实验前都需要进行采样配置,包括采样类型、采样率 Hz 和采样长度。 采样类型包括"单次采样"和"连续采样"两种模式。使用"单次采样"模 式,则采样的持续时间=采样长度/采样率;使用"连续采样"模式,则波形图 的更新时间=采样长度/采样率。

通过合理配置采样率和采样长度,使采样时间内采集到的反馈波形能够清晰 地表现曲线特征。如果输出信号是振荡信号,建议采用"单次运行"模式, 这样可以捕捉到最佳的振荡衰减或者发散信号,如果输出信号是等幅振荡信 号,则可以选择连续运行模式。

(4) 幅值和信号输出

幅值如图 3-23 D 所示;信号输出如图 3-23 E 所示。

"幅值"设置阶跃信号输出的幅值。受到设备硬件的限制,幅值的有效调节 范围为-10V~+10V。

"信号输出"按钮独立控制信号的输出,在程序运行后,可以用该按钮控制 阶跃信号的输出。该按钮被按下后(黄灯亮起),在进行采集时, ELVIS III 的模拟 输出口 AO 才会输出阶跃信号,幅值等于设置幅值,否则输出电压值为 0。

(5) A/AIO 和 A/AI1 测试

如图 3-23 F 所示。

通道 A/AIO 和 A/AI1 的测试数据显示,包括幅值和频率。

- (6) 波形图
 - a) 波形图组成
 - i. 波形图

如图 3-24 A 所示,能够显示采集得到的电压波形,从而得到电路的输入和输出,并能够清晰地表现曲线特征以及输入和输出之间的关系。

ii. 图例

如图 3-24 B 所示,能够配置波形图的各种参数。

iii. 图形工具选板

如图 3-24 C 所示,能够实现波形曲线的移动和缩放。

iv. 游标

如图 3-24 D 所示。在未进行采集的状态下点击"游标可见",在前面添加对勾。此时波形图上会出现游标,游标图例框中显示游标的坐标。在确认"图形工具选板"选中第一种功能状态,如下图所示,将鼠标放置在波形图的游标上,鼠标变为"空心十字"后,拖动鼠标实现游标的移动。

🔁 Main.vi (实验6 离散系统的稳定性分析实验		×
实验电路 实验电路	离散系统的稳定性分析实验	退出
通道 A/AO A/AO0 (N Samples) A/AI A/AI0 (N Samples) A/AI1 (N Samples) A/PWM A/PWM A/PWM A/PWM0 来样単型 注葉采样 系样型	波形图 1.25 1.25 0.75 0.25 0.25 -0.25 -0.5 -0.75 -1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7	B A 0.8 0.9 1
1000 采祥长度 1000 幅值 使号输出 开始	时间 参数配置 正弦/阶跃输出 正弦波频率 ● 阶跃输出 ● 5 ● 阶跃输出 ● 5 ● 一 游玩/4 ● 一 がい/4 ● - 3	x y 0 0 0.9660 1 0 0.3537 y ►

图 3-24 波形图组成

▶ Main.vi (实验6 离散系统的稳定性分析实验.I	vproj/NI-ELVIS-III-0314861c)	×
实验六]	离散系统的稳定性分析实验	
文通以入す 案論电路	本日ススペン/LAD/ROACE (エン) パイ 大会社 波形图 20150 20150 4/41	
幅值 □ 0 信号输出 ● 开始		

图 3-25 刻度调整

b) 波形图常用功能

i. 刻度

- 在实际的实验测量过程中,如果坐标刻度范围不能很好的表现曲线特征, 可以人为调整刻度值。具体方法如下:
- 在刻度数值上点击鼠标右键,点击"自动调整 X 标尺"("自动调整 Y 标尺"), 取消前边的对勾。
- 在刻度的最大值或最小值上单击或双击鼠标左键,直接输入需要的数值即可。
- 输入完成后"回车"或在空白处点击鼠标左键,完成对刻度值的更改。
- 需要注意的是,如果不取消"自动调整 x 标尺"("自动调整 y 标尺")前边的对 勾,直接进行刻度值的修改,波形图仍会根据波形曲线自动进行调整。
 - ii. 波形数据存储

如果需要存储波形,可以在波形图上单击右键,在右键菜单中选择"导出",如果需要导出波形数据选择"导出数据至 Excel";如果需要导出 波形图像选择"导出简化图像",在弹出的对话框中选择要保存的路径, 可以将波形保存成简化图的 bmp 格式文件。

实验中路 联 实验电路	离散系统的稳定	性分析实验		退出
where 実給电路 通道 A/AO 基/A/AO0 (N Samples) A/AI 基 A/AI0 (N Samples) A/AI 基 A/AI0 (N Samples) A/PWM 基 A/PWM 基 A/PWM0 来样記置 平祥樂型 逆续采祥 采祥楽型 逆续采祥 采祥楽型 〔追頭の 平祥楽型 〔追頭の 三〇 〇		振 振 振 振 振 輝 二 二 一 一 一 一 一 一 一 一 一 一 一 一 一	A/AI0 A/AI0 0.6 0.7 0.8 间 以還至到贴板 文選至到贴板 文選至到贴板 文選至到加板 文 《 》 ())	A/Al1

图 3-26 波形图像数据存储

- 3. 实验步骤
- (1) 采样保持电路
 - a) 实验接线

采样保持电路模拟电路图:

图 3-27 采样保持电路模拟电路图

根据模拟电路图,实验接线有多种接法,只要能搭建成理论电路既可,注意接线过程切 勿带电操作。

连线提示如下:

- i. 实验所需元器件:
 - 无
- ii. 连接实验电路
 - 将 A/AOO 连接 P203, 使用 ELVIS Ⅲ 的模拟信号输出端 A/AOO 产生正弦信号 作为电路的输入;

- 将 A/PWM0 连接 P204, 使用 ELVIS III 的 PWM 输出脉冲;
- 将 P205 连接 A/Al1,使用 ELVIS Ⅲ 的模拟信号输入端 A/Al1 采集电路的输出;
- 将 A/AOO 连接 A/AIO,跟踪输入信号,能够同时在计算机上看到电路的输入和输出。
- 实验接线完成后,请再次检查电路接线是否正确,确认无误后上电。
- b) 软件设置
 - 该环节设置为连续采样,如下图 A;
 - 设置采样率为 1kHz, 如下图 B;
 - 设置采样数为1k,采样时长即为采样长度除以采样率,此处为1秒,如下
 图 C;
 - 设置信号幅值为 1V,如下图 D;
 - 设置正弦/阶跃输出为正弦输,如下图 E;
 - 设置正弦波频率为 5Hz,如下图 F;
 - 设置脉冲周期 T=3ms,如下图 G;
 - 设置脉冲输出,将"脉冲输出"按钮点亮,此时 A/PWM 将会输出脉冲,如
 下图 H;
 - 设置信号输出,将"信号输出"按钮点亮,此时 A/AOO 将会输出正弦信号,如下图 I:

🔁 Mai	n.vi (实验6 离散系统的稳定性分析	实验.lvproj/NI-ELVIS-III-0314861c)	×
测试面积	实验	六 离散系统的稳定性分析实验	
Α			
В	米村率(Hz)	时间	
C D	采样长度 1000 編 <u>備</u>	参数配置	
Ι	信号输出 一 开始		

图 3-28 采样保持电路软件设置

- c) 运行软件并观察实验结果
- 点击"开始"按钮;
- 观察采样保持电路的响应曲线:

图 3-29 采样保持电路响应曲线 T=3ms

- d) 更改脉冲周期 T=30ms,观察采样保持的响应曲线
- e) 点击"结束"按钮

- f) 继续离散系统的稳定性分析实验
- (2) 离散系统的稳定性分析
 - a) 实验接线

离散系统模拟电路图:

图 3-30 离散系统模拟电路图

根据模拟电路图,实验接线有多种接法,只要能搭建成理论电路既可,注意接线过程切 勿带电操作。

连线提示如下:

- 将 A/AOO 连接 P201,使用 ELVIS III 的模拟信号输出端 A/AOO 产生阶跃信号 作为电路的输入;
- 将 A/PWMO 连接 P204, 使用 ELVIS III 的 PWM 输出脉冲;
- 将 P211 连接 A/Al1,使用 ELVIS Ⅲ 的模拟信号输入端 A/Al1 采集电路的输出;
- 将 A/AOO 连接 A/AIO,跟踪输入信号,能够同时在计算机上看到电路的输入和输出。
- 根据电路图完成其余部分接线。实验接线完成后,请再次检查电路接线是
 否正确,确认无误后上电。
- b) 软件设置
 - 该环节设置为单次采样,如下图 A:
 - 设置采样率为 1kHz, 如下图 B:
 - 设置采样长度为 5k,采样时长即为采样数除以采样率,此处为 5 秒,如下

图 C:

- 设置信号幅值为 1V,如下图 D:
- 设置正弦/阶跃输出为阶跃输出,如下图 E;
- 设置脉冲周期 T=10ms,如下图 G;
- 设置脉冲输出,将"脉冲输出"按钮点亮,此时 A/PWM 将会输出脉冲,如
 下图 H;
- 设置信号输出,将"信号输出"按钮点亮,此时 A/AOO 将会输出阶跃信号, 如下图 I:

图 3-31 离散系统软件设置

c) 运行软件并观察实验结果

注意:

在每次点击"开始"按钮进行采集之前都需要手动对电容进行放电,放电方法是按下与电容并联的按键开关,短接电容两端。按下按键持续几秒后松手,并迅速点击"开始"按钮进行采集,如果松手后间隔时间过久再采集,在间隔时间中电容就会充电。对电容放电是为了 避免由于电容充电而导致的输出饱和状态,影响实验结果。

- 点击"开始"按钮;
- 观察系统阶跃信号曲线和响应曲线:

图 3-32 离散系统阶跃响应 T=10ms

d) 改变脉冲周期,观察系统阶跃信号曲线和响应曲线

当 T=30ms、T=50ms 时,观察系统阶跃信号曲线和响应曲线。

e) 改变脉冲周期 T,调节等幅振荡临界点

保持硬件电路不变,改变脉冲周期,调节等幅振荡。具体方法如下:

- i. 软件设置:
 - 设置为连续采样,如下图 A:
 - 设置采样率为 1kHz, 如下图 B:
 - 设置采样长度为 5k, 如下图 C:
 - 设置信号幅值为 1V,如下图 D:
 - 设置正弦/阶跃输出为阶跃输出,如下图 E:
 - 设置脉冲周期为理论临界值;
- 设置脉冲输出,将"脉冲输出"按钮点亮,此时 A/PWM 将会输出脉冲;
- 设置信号输出,将"信号输出"按钮点亮,此时 A/AOO 将会输出阶跃信号, 如下图 E:

D M	ain.vi (实验6 离散系统的稳定性分析家	验.lvproj/NI-ELVIS-III-0314861c)	×
测试面	实验六 ^{诞 实验电路}	■ ■ ■ ■	
AB	通道 A/AO & A/AO0 (N Samples) A/AI & A/AI0 (N Samples) & A/AI1 (N Samples) A/PWMM & A/PWMM & A/PWM & A/PWM		
C D I	菜样长度 5000 每值 ↓ 1 信号输出 开始	参数配置 正弦/前数輸出 正弦波频率 ● 前数輸出 ● 5 数中隔期(ms) ● 40 ● 10 ●	

图 3-33 离散系统调节等幅振荡软件设置

ii. 运行软件

● 确保电容放电后点击"开始"按钮:

iii. 跟据响应状态(发散还是收敛)调整脉冲周期,观察系统等幅振荡的状态

由于个体差异,每个模块的等幅周期不一定一致,此处要在临界稳定理论值基础上慢慢调节,要细致有耐心。脉冲周期增大,系统发散,脉冲周期减小,系统收敛。

由于理想的采样保持电路采样是在瞬间完成,采样时间趋于无穷小,但是在实际实验中是无法得到理想脉冲的。我们通过调节 PWM 的占空比和脉冲周期得到的 实际脉冲,达不到无穷小的理想占空比,这就导致了实验结果的误差。

26

Main.vi (实验6 离散系统的稳定性分析实验 实验 、 实验电路	amproj/NI-ELVIS-III-0314861c) 离散系统的稳定性分析实验	
通道 A/AO 為/AO0 (N Samples) A/AI A/AI0 (N Samples) A/AI1 (N Samples) A/PWMM A/PWMM A/PWMM A/PWMM 法使来样 実祥業型 注读来样 実祥業型 注读来年 1000		A/AI0 A/AI1
采祥长度 5000 幅值 ① 1 信号输出 近束	参数配置 正弦/約款編出 正弦波频率 ・ 約款編出 ・ 5 該中周期(ms) 該中編出 ・ 44 ●	□游标可见

图 3-34 离散系统等幅振荡

- f) 本实验结束,关闭 ELVIS III 试验台电源,并整理好导线。
- 4. 实验结果
- (1) 信号的采样保持
 - a) 当输入角频率为ω = 2π×5的正弦波,将采样后离散信号X*(t)能够复原为连续
 信号的条件填入表1中。

	表 1	信号	采样	保持	条件
--	-----	----	----	----	----

采样角频率ws	
采样周期Ts	

b) 将采样周期Ts分别取 3ms、30ms 的响应曲线填入表 2 中。

表 2 采样保持电路响应曲线

$$T_s = 30ms$$

- (2) 离散系统的稳定性分析
 - a) 根据图 6-4 的闭环采样系统方框图,计算闭环系统的开环脉冲传递函数、闭环脉 冲传递函数,并计算系统处于临界等幅状态时 T 的值。
 - b) 将系统在不同采样周期下的响应曲线填入表 3 中。

表 3 离散系统在不同采样周期下的阶跃响应曲线

采样周期	离散系统阶跃响应曲线	稳定性
T=10ms		
T=30ms		
T=50ms		
T=ms		调节等幅震荡

六、维护保养

- 在插拔实验模块时,尽量做到垂直插拔,避免因为插拔不当而引起的接插件 弯曲受损,影响模块使用。
- 2. 更换模块和进行电路接线操作前应关闭电源。
- 开始实验前,认真检查电阻连接,避免连接错误而导致的输出电压超量程,否则 会损坏数据采集卡。
- 4. 产品在存放或运输过程中不得重压和有剧烈的振动。
- 5. 产品出现任何问题,请勿自行拆开外壳,应及时与供应商或生产厂家联系。