Homework 5

(Due time: 10:00, May. 3, 2024)

- 1. Calculate $\dot{\theta}_{12}$, $\dot{\theta}_{23}$, t_1 , t_2 , and t_3 for a two-segment linear function with parabolic blends (LFPB). For this joint, $\theta_1 = 5.0^\circ$, $\theta_2 = 15.0^\circ$, $\theta_3 = 40.0^\circ$. Assume that $t_{d12} = t_{d23} = 1.0$ seconds and that the default acceleration to use during blends is 80 degrees/second². Use Matlab to sketch plots of position, velocity, and acceleration of θ . The derivation, Matlab code, and result graphs are required.
- 2. Use Matlab to sketch graphs of position, velocity, and acceleration for a twosegment spline where each segment is a cubic. Sketch them for a joint where $\theta_0 = 5.0^{\circ}$ for the initial point, $\theta_v = 15.0^{\circ}$ is a via point, and $\theta_g = -10.0^{\circ}$ is the goal point. Assume that each segment has a duration of 2.0 seconds and that the velocity at the via point is to be 0.0 degrees/second. The derivation, Matlab code, and result graphs are required.
- 3. A single cubic trajectory is given by

$$\theta(t) = 10 + 90t^2 - 60t^3$$

and is used over the time interval from t = 0 to t = 1. What are the starting and final positions, velocities, and accelerations?

4. It is desired for the tool point to follow a linear trajectory with parabolic blends that starts at $P_1 = \begin{bmatrix} 0.0 & 0.0 \end{bmatrix}^T$ and ends at $P_3 = \begin{bmatrix} 3.0 & 3.0 \end{bmatrix}^T$, with $P_2 = \begin{bmatrix} 2.0 & 1.0 \end{bmatrix}^T$ as a via point. The desired segment durations are $t_{d12} = t_{d23} = 1$ and the acceleration magnitudes are $\ddot{x} = \ddot{y} = 6$. Plot the x-y coordinates of this trajectory. The derivation, Matlab code, and result graphs are required.