
Homework 6 (Due time: 10:00, May. 17, 2024)

1. For the two-link planar manipulator shown below.

Model each link as a homogenous rectangular bar with mass $m_1 = m_2 = 12$ Kg, length $l_1 = l_2 = 1.0$ m, $r_1 = r_2 = 0.5$ m and moment of inertia tensor

	[0.0125	0	0]
$I_1 = I_2 =$	0	1.0025	0
	L O	0	1.01

relative to a frame attached at the center of mass of the link and aligned with the principle axes of the bar.

- (a) Derive the dynamic equations of the manipulator (using Lagrange's Equations)
- (b) Derive the dynamic equations of the manipulator (using computation algorithm of Dynamics of Open-chain Manipulators with the Christoffel Symbol)
- (c) Do the position control simulation in joint space of the manipulator with Matlab&Simulink to move the arm along the trajectory of Problem 1&2 in HW5, while the maximum joint torque $\tau_{1max} = \tau_{2max} = 20$ N/m, with the controllers the following three controller. Try to obtain the best performance of the tracking problem, provide the chosen control parameters, K_p and K_v . The torque, position, velocity history graphs are required. Try to compute position error history for both joint angles. Discuss the relationship between the joint position error and the control parameters.
 - i) Computed torque control.
 - ii) PD control
 - iii) Augmented PD control