Chapter 2 Rigid Body Motion

Lecture Notes for
 A Geometrical Introduction to Robotics and Manipulation

Richard Murray and Zexiang Li and Shankar S. Sastry CRC Press

Zexiang Li^{1} and Yuanqing Wu^{1}
${ }^{1}$ ECE, Hong Kong University of Science \& Technology

June 28, 2012

Table of Contents

Chapter 2 Rigid Body Motion

(1) Rigid Body Transformations
(2) Rotational motion in \mathbb{R}^{3}
(3) Rigid Motion in \mathbb{R}^{3}
(4) Velocity of a Rigid Body
(5) Wrenches and Reciprocal Screws

Notations

$$
p=\left[\begin{array}{l}
p_{x} \\
p_{y} \\
p_{z}
\end{array}\right] \text { or } p=\left[\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]
$$

For $p \in \mathbb{R}^{n}, n=2,3(2$ for planar, 3 for spatial)
Point: $p=\left[\begin{array}{c}p_{1} \\ p_{2} \\ \vdots \\ p_{n}\end{array}\right],\|p\|=\sqrt{p_{1}^{2}+\cdots+p_{n}^{2}}$
Vector: $v=p-q=\left[\begin{array}{c}p_{1}-q_{1} \\ p_{2}-q_{2} \\ \vdots \\ p_{n}-q_{n}\end{array}\right]=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right],\|v\|=\sqrt{v_{1}^{2}+\cdots+v_{n}^{2}}$
Matrix: $A \in \mathbb{R}^{n \times m}, A=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 m} \\ \vdots & & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n m}\end{array}\right]$

Description of point-mass motion

$$
\begin{aligned}
& p(0)=\left[\begin{array}{l}
x(0) \\
y(0) \\
z(0)
\end{array}\right] \text { : initial position } \\
& p(t)=\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right], t \in(-\varepsilon, \varepsilon)
\end{aligned}
$$

Figure 2.1

Definition: Trajectory
A trajectory is a curve $p:(-\varepsilon, \varepsilon) \mapsto \mathbb{R}^{3}, p(t)=\left[\begin{array}{c}x(t) \\ y(t) \\ z(t)\end{array}\right]$

Rigid Body Motion

Figure 2.2

$$
\|p(t)-q(t)\|=\|p(0)-q(0)\|=\mathrm{constant}
$$

Definition: Rigid body transformation

$$
g: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}
$$

s.t.
(1) Length preserving: $\|g(p)-g(q)\|=\|p-q\|$
(2) Orientation preserving: $g_{*}(v \times \omega)=g_{*}(v) \times g_{*}(\omega)$

Rotational Motion in \mathbb{R}^{3}

11 Choose a reference frame A (spatial frame)
12. Attach a frame B to the body (body frame)

Figure 2.3
$\begin{array}{ll}x_{a b} \in \mathbb{R}^{3}: & \begin{array}{l}\text { coordinates of } x_{b} \text { in frame } A \\ R_{a b}=\left[\begin{array}{lll}x_{a b} & y_{a b} & z_{a b}\end{array}\right] \in \mathbb{R}^{3 \times 3}:\end{array} \begin{array}{l}\text { Rotation (or orientation) matrix of } B \\ \text { w.r.t. } A\end{array}\end{array}$

Property of a Rotation Matrix

Let $R=\left[\begin{array}{lll}r_{1} & r_{2} & r_{3}\end{array}\right]$ be a rotation matrix

$$
\Rightarrow r_{i}^{T} \cdot r_{j}= \begin{cases}0 & i \neq j \\ 1 & i=j\end{cases}
$$

or

$$
R^{T} \cdot R=\left[\begin{array}{c}
r_{1}^{T} \\
r_{2}^{T} \\
r_{3}^{T}
\end{array}\right]\left[\begin{array}{lll}
r_{1} & r_{2} & r_{3}
\end{array}\right]=I
$$

or $R \cdot R^{T}=I$
We have:

$$
\operatorname{det}\left(R^{T} R\right)=\operatorname{det} R^{T} \cdot \operatorname{det} R=(\operatorname{det} R)^{2}=1, \operatorname{det} R= \pm 1
$$

As $\operatorname{det} R=r_{1}^{T}\left(r_{2} \times r_{3}\right)=1 \Rightarrow \operatorname{det} R=1$

Definition:

$$
S O(3)=\left\{R \in \mathbb{R}^{3 \times 3} \mid R^{T} R=I, \operatorname{det} R=1\right\}
$$

and

$$
S O(n)=\left\{R \in \mathbb{R}^{n \times n} \mid R^{T} R=I, \operatorname{det} R=1\right\}
$$

\diamond Review: Group

(G, \cdot) is a group if:
(1) $g_{1}, g_{2} \in G \Rightarrow g_{1} \cdot g_{2} \in G$
(2) \exists ! $e \in G$, s.t. $g \cdot e=e \cdot g=g, \forall g \in G$
(3) $\forall g \in G, \exists!g^{-1} \in G$, s.t. $g \cdot g^{-1}=g^{-1} \cdot g=e$
(3) $g_{1} \cdot\left(g_{2} \cdot g_{3}\right)=\left(g_{1} \cdot g_{2}\right) \cdot g_{3}$

Examples of group

(1) $\left(\mathbb{R}^{3},+\right)$
(2) $(\{0,1\},+\bmod 2)$
(3) (\mathbb{R}, \times) Not a group (Why?)
(9) $\left(\mathbb{R}_{*}: \mathbb{R}-\{0\}, \times\right)$
(3) $S^{1} \triangleq\{z \in \mathbb{C}|z|=1\}$

Property 1: $S O(3)$ is a group under matrix multiplication.

Proof :

(1) If $R_{1}, R_{2} \in S O(3)$, then $R_{1} \cdot R_{2} \in S O(3)$, because

- $\left(R_{1} R_{2}\right)^{T}\left(R_{1} R_{2}\right)=R_{2}^{T}\left(R_{1}^{T} R_{1}\right) R_{2}=R_{2}^{T} R_{2}=I$
- $\operatorname{det}\left(R_{1} \cdot R_{2}\right)=\operatorname{det}\left(R_{1}\right) \cdot \operatorname{det}\left(R_{2}\right)=1$
(2) $e=I_{3 \times 3}$
(3) $R^{T} \cdot R=I \Rightarrow R^{-1}=R^{T}$

Configuration and rigid transformation

- $R_{a b}=\left[\begin{array}{lll}x_{a b} & y_{a b} & z_{a b}\end{array}\right] \in S O(3)$

Configuration Space

- Let $q_{b}=\left[\begin{array}{l}x_{b} \\ y_{b} \\ z_{b}\end{array}\right] \in \mathbb{R}^{3}$: coordinates of q in B.

$$
\begin{aligned}
q_{a} & =x_{a b} \cdot x_{b}+y_{a b} \cdot y_{b}+z_{a b} \cdot z_{b} \\
& =\left[\begin{array}{lll}
x_{a b} & y_{a b} & z_{a b}
\end{array}\right]\left[\begin{array}{c}
x_{b} \\
y_{b} \\
z_{b}
\end{array}\right]=R_{a b} \cdot q_{b}
\end{aligned}
$$

Figure 2.3

- A configuration $R_{a b} \in S O(3)$ is also a transformation:

$$
R_{a b}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, R_{a b}\left(q_{b}\right)=R_{a b} \cdot q_{b}=q_{a}
$$

A config. \Leftrightarrow A transformation in $S O(3)$

Property 2: $R_{a b}$ preserves distance between points and orientation.
(1) $\left\|R_{a b} \cdot\left(p_{b}-q_{b}\right)\right\|=\left\|p_{a}-q_{a}\right\|$
(2) $R(v \times \omega)=(R v) \times R \omega$

Proof :

For $a \in \mathbb{R}^{3}$, let $\hat{a}=\left[\begin{array}{ccc}0 & -a_{3} & a_{2} \\ a_{3} & 0 & -a_{1} \\ -a_{2} & a_{1} & 0\end{array}\right]$
Note that $\hat{a} \cdot b=a \times b$
III follows from $\left\|R_{a b}\left(p_{b}-p_{a}\right)\right\|^{2}=\left(R_{a b}\left(p_{b}-p_{a}\right)\right)^{T} R_{a b}\left(p_{b}-p_{a}\right)$

$$
\begin{aligned}
& =\left(p_{b}-p_{a}\right)^{T} R_{a b}^{T} R_{a b}\left(p_{b}-p_{a}\right) \\
& =\left\|p_{b}-p_{a}\right\|^{2}
\end{aligned}
$$

122 follows from $R \hat{v} R^{T}=(R v)^{\wedge}$ (prove it yourself)

Parametrization of $S O(3)$ (the exponential coordinate)

\diamond Review: $S^{1}=\{z \in \mathbb{C}| | z \mid=1\}$

Euler's Formula

"One of the most remarkable, almost astounding, formulas in all of mathematics."
R. Feynman

Figure 2.4

\diamond Review:

$$
\left\{\begin{array}{l}
\dot{x}(t)=a x(t) \\
x(0)=x_{0}
\end{array} \Rightarrow x(t)=e^{a t} x_{0}\right.
$$

$$
\begin{aligned}
& R \in S O(3), R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right] \\
& r_{i} \cdot r_{j}=\left\{\begin{array}{ll}
0, & i \neq j \\
1, & i=j
\end{array} \leftarrow 6\right. \text { constraints }
\end{aligned}
$$

$$
\Rightarrow 3 \text { independent parameters! }
$$

Consider motion of a point q on a rotating link

$$
\left\{\begin{aligned}
\dot{q}(t) & =\omega \times q(t)=\hat{\omega} q(t) \\
q(0) & \text { Initial coordinates } \\
& \Rightarrow q(t)=e^{\hat{\omega} t} q_{0} \text { where } e^{\hat{\omega} t}=I+\hat{\omega} t+\frac{(\hat{\omega} t)^{2}}{2!}+\frac{(\hat{\omega} t)^{3}}{3!}+\cdots
\end{aligned}\right.
$$

By the definition of rigid transformation, $R(\omega, \theta)=e^{\hat{\omega} \theta}$. Let $s o(3)=\{\hat{\omega} \mid \omega \in$ $\left.\mathbb{R}^{3}\right\}$ or $s o(n)=\left\{S \in \mathbb{R}^{n \times n} \mid S^{T}=-S\right\}$ where $\wedge: \mathbb{R}^{3} \mapsto s o(3): \omega \mapsto \hat{\omega}$, we have:

Property 3: $\exp : s o(3) \mapsto S O(3), \hat{\omega} \theta \mapsto e^{\hat{\omega} \theta}$

Rodrigues formula

Rodrigues' formula ($\|\omega\|=1$):

$$
e^{\grave{\omega} \theta}=I+\hat{\omega} \sin \theta+\hat{\omega}^{2}(1-\cos \theta)
$$

Proof :

Let $a \in \mathbb{R}^{3}$, write

$$
\begin{gathered}
a=\omega \theta, \omega=\frac{a}{\|a\|}(\text { or }\|\omega\|=1) \text {, and } \theta=\|a\| \\
e^{\hat{\omega} \theta}=I+\hat{\omega} \theta+\frac{(\hat{\omega} \theta)^{2}}{2!}+\frac{(\hat{\omega} \theta)^{3}}{3!}+\cdots
\end{gathered}
$$

As

$$
\hat{a}^{2}=a a^{T}-\|a\|^{2} I, \hat{a}^{3} \stackrel{0}{=}-\|a\|^{2} \hat{a}
$$

we have:

$$
\begin{aligned}
e^{\hat{\omega} \theta} & =I+\left(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{3}}{5!}-\cdots\right) \hat{\omega}+\left(\frac{\theta^{2}}{2!}-\frac{\theta^{4}}{4!}+\cdots\right) \hat{\omega}^{2} \\
& =I+\hat{\omega} \sin \theta+\hat{\omega}^{2}(1-\cos \theta)
\end{aligned}
$$

Rodrigues formula

Rodrigues' formula for $\|\omega\| \neq 1$:

$$
e^{\hat{\omega} \theta}=I+\frac{\hat{\omega}}{\|\omega\|} \sin \|\omega\| \theta+\frac{\hat{\omega}^{2}}{\|\omega\|^{2}}(1-\cos \|\omega\| \theta)
$$

Proof for Property 3:

Let $R \triangleq e^{\hat{\omega} \theta}$, then:

$$
\begin{aligned}
\left(e^{\hat{\omega} \theta}\right)^{-1} & =e^{-\hat{\omega} \theta}=e^{\hat{\omega}^{T} \theta}=\left(e^{\hat{\omega} \theta}\right)^{T} \\
\Rightarrow R^{-1} & =R^{T} \Rightarrow R^{T} R=I \Rightarrow \operatorname{det} R= \pm 1
\end{aligned}
$$

From $\operatorname{det} \exp (0)=1$, and the continuity of det function w.r.t. θ, we have $\operatorname{det} e^{\hat{\omega} \theta}=1, \forall \theta \in \mathbb{R}$

Property 4: The exponential map is onto.

Proof:

Given $R \in S O(3)$, to show $\exists \omega \in \mathbb{R}^{3},\|\omega\|=1$ and θ s.t. $R=e^{\hat{\omega} \theta}$ Let

$$
R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

and

$$
v_{\theta}=1-\cos \theta, c_{\theta}=\cos \theta, s_{\theta}=\sin \theta
$$

By Rodrigues' formula

$$
e^{\hat{\omega} \theta}=\left[\begin{array}{ccc}
\omega_{1}^{2} v_{\theta}+c_{\theta} & \omega_{1} \omega_{2} v_{\theta}-\omega_{3} s_{\theta} & \omega_{1} \omega_{3} v_{\theta}+\omega_{2} s_{\theta} \\
\omega_{1} \omega_{2} v_{\theta}+\omega_{3} s_{\theta} & \omega_{2}^{2} v_{\theta}+c_{\theta} & \omega_{2} \omega_{3} v_{\theta}-\omega_{1} s_{\theta} \\
\omega_{1} \omega_{3} v_{\theta}-\omega_{2} s_{\theta} & \omega_{2} \omega_{3} v_{\theta}+\omega_{1} s_{\theta} & \omega_{3}^{2} v_{\theta}+c_{\theta}
\end{array}\right]
$$

(continues next slide)

Taking the trace of both sides,

$$
\operatorname{tr}(R)=r_{11}+r_{22}+r_{33}=1+2 \cos \theta=\sum_{i=1}^{3} \lambda_{i}
$$

where λ_{i} is the eigenvalue of $R, i=1,2,3$
Case 1: $\operatorname{tr}(R)=3$ or $R=I, \theta=0 \Rightarrow \omega \theta=0$
Case 2: $-1<\operatorname{tr}(R)<3$,

$$
\theta=\arccos \frac{\operatorname{tr}(R)-1}{2} \Rightarrow \omega=\frac{1}{2 s_{\theta}}\left[\begin{array}{l}
r_{32}-r_{23} \\
r_{13}-r_{31} \\
r_{21}-r_{12}
\end{array}\right]
$$

Case 3: $\operatorname{tr}(R)=-1 \Rightarrow \cos \theta=-1 \Rightarrow \theta= \pm \pi$

Following are 3 possibilities:
$\begin{aligned} & R=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right] \Rightarrow \omega=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \\ & R=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right] \Rightarrow \omega=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \\ & R=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right] \Rightarrow \omega=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\end{aligned}$

Note that if $\omega \theta$ is a solution, then $\omega(\theta \pm n \pi), n=0, \pm 1, \pm 2, \ldots$ is also a solution.

Definition: Exponential coordinate

 $\omega \theta \in \mathbb{R}^{3}$, with $e^{\hat{\omega} \theta}=R$ is called the exponential coordinates of R

Figure 2.6
Property 5: \exp is $1-1$ when restricted to an open ball in \mathbb{R}^{3} of radius π.

Euler's rotation theorem

Theorem 1 (Euler):

Any orientation is equivalent to a rotation about a fixed axis $\omega \in \mathbb{R}^{3}$ through an angle $\theta \in[-\pi, \pi]$.

Figure 2.7
$S O(3)$ can be visualized as a solid ball of radius π.

Other Parametrizations of $S O(3)$

- $X Y Z$ fixed angles (or Roll-Pitch-Yaw angle)

Figure 2.8
(continues next slide)

Other Parametrizations of $S O(3)$

- XYZ fixed angles (or Roll-Pitch-Yaw angle) Continued

$$
\begin{aligned}
& R_{x}(\varphi):=e^{\hat{x} \varphi}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \varphi & -\sin \varphi \\
0 & \sin \varphi & \cos \varphi
\end{array}\right] \\
& R_{y}(\theta):=e^{\hat{y} \theta}=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \\
& R_{z}(\psi):=e^{\hat{z} \psi}=\left[\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right] \\
& R_{a b}= R_{x}(\varphi) R_{y}(\theta) R_{z}(\psi) \\
&= {\left[\begin{array}{ccc}
c_{\theta} c_{\psi} & -c_{\theta} s_{\psi} & s_{\theta} \\
s_{\varphi} s_{\theta} c_{\psi}+c_{\varphi} s_{\psi} & -s_{\varphi} s_{\theta} s_{\psi}+c_{\varphi} c_{\psi} & -s_{\varphi} c_{\theta} \\
-c_{\varphi} s_{\theta} c_{\psi}+s_{\varphi} s_{\psi} & c_{\varphi} s_{\theta} s_{\psi}+s_{\varphi} c_{\psi} & c_{\varphi} c_{\theta}
\end{array}\right] }
\end{aligned}
$$

Other Parametrizations of $S O(3)$

- $Z Y X$ Euler angle

Figure 2.9

$$
\begin{array}{lll}
R_{a a^{\prime}}=R_{z}(\alpha) & R_{a^{\prime} a^{\prime \prime}}=R_{y}(\beta) & R_{a^{\prime \prime} b}=R_{x}(\gamma) \\
& R_{a b}=R_{z}(\alpha) R_{y}(\beta) R_{x}(\gamma) &
\end{array}
$$

(continues next slide)

Other Parametrizations of $S O(3)$

- $Z Y X$ Euler angle (continued)

$$
R_{a b}(\alpha, \beta, \gamma)=\left[\begin{array}{ccc}
c_{\alpha} c_{\beta} & -s_{\alpha} c_{\gamma}+c_{\alpha} s_{\beta} s_{\gamma} & s_{\alpha} s_{\gamma}+c_{\alpha} s_{\beta} c_{\gamma} \\
s_{\alpha} c_{\beta} & c_{\alpha} c_{\gamma}+s_{\alpha} s_{\beta} s_{\gamma} & -c_{\alpha} s_{\gamma}+s_{\alpha} s_{\beta} c_{\gamma} \\
-s_{\beta} & c_{\beta} s_{\gamma} & c_{\beta} c_{\gamma}
\end{array}\right]
$$

Note: When $\beta=\frac{\pi}{2}, \cos \beta=0, \alpha+\gamma=$ const \Rightarrow singularity!
$\beta=\operatorname{atan} 2\left(-r_{31}, \sqrt{r_{32}^{2}+r_{33}^{2}}\right)$
$\alpha=\operatorname{atan} 2\left(r_{21} / c_{\beta}, r_{11} / c_{\beta}\right)$
$\gamma=\operatorname{atan} 2\left(r_{32} / c_{\beta}, r_{33} / c_{\beta}\right)$

Figure 2.10

Other Parametrizations of $S O$ (3)

§ Quaternions:

$Q=q_{0}+q_{1} i+q_{2} j+q_{3} k$
where $i^{2}=j^{2}=k^{2}=-1, i \cdot j=k, j \cdot k=i, k \cdot i=j$
Property 1: Define $Q^{*}=\left(q_{0}, q\right)^{*}=\left(q_{0},-q\right), q_{0} \in \mathbb{R}, q \in \mathbb{R}^{3}$
$\|Q\|^{2}=Q Q^{*}=q_{0}{ }^{2}+q_{1}{ }^{2}+q_{2}{ }^{2}+q_{3}{ }^{2}$
$\begin{array}{ll}\text { Property 2: } & Q=\left(q_{0}, q\right), P=\left(p_{0}, p\right) \\ & Q P=\left(q_{0} p_{0}-q \cdot p, q_{0} p+p_{0} q+q \times p\right)\end{array}$
Property 3: (a) The set of unit quaternions forms a group
(b) If $R=e^{\hat{\omega} \theta}$, then $Q=\left(\cos \frac{\theta}{2}, \omega \sin \frac{\theta}{2}\right)$
(c) Q acts on $x \in \mathbb{R}^{3}$ by $Q X Q^{*}$, where $X=(0, x)$

Other Parametrizations of $S O(3)$

\square Unit Quaternions:

Given $Q=\left(q_{0}, q\right), q_{0} \in \mathbb{R}, q \in \mathbb{R}^{3}$, the vector part of $Q X Q^{*}$ is given by $R(Q) x$, recall that

$$
q_{0}=\cos \frac{\theta}{2}, q=\omega \sin \frac{\theta}{2}
$$

and the Rodrigues' formula:

$$
e^{\hat{\omega} \theta}=I+\hat{\omega} \sin \theta+\hat{\omega}^{2}(1-\cos \theta)
$$

then

$$
\begin{aligned}
R(Q) & =I+2 q_{0} \hat{q}+2 \hat{q}^{2} \\
& =\left[\begin{array}{ccc}
1-2\left(q_{2}^{2}+q_{3}^{2}\right) & -2 q_{0} q_{3}+2 q_{1} q_{2} & 2 q_{0} q_{2}+2 q_{1} q_{3} \\
2 q_{0} q_{3}+2 q_{1} q_{2} & 1-2\left(q_{1}^{2}+q_{3}^{2}\right) & -2 q_{0} q_{1}+2 q_{2} q_{3} \\
-2 q_{0} q_{2}+2 q_{1} q_{3} & 2 q_{0} q_{1}+2 q_{2} q_{3} & 1-2\left(q_{1}^{2}+q_{2}^{2}\right)
\end{array}\right]
\end{aligned}
$$

where $\|Q\| \triangleq q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}=1$
(continues next slide)

Other Parametrizations of $S O(3)$

\square Quaternions (continued):

Conversion from Roll-Pitch-Yaw angle to unit quaternions:

$$
\begin{aligned}
Q & =\left(\cos \frac{\varphi}{2}, x \sin \frac{\varphi}{2}\right)\left(\cos \frac{\theta}{2}, y \sin \frac{\theta}{2}\right)\left(\cos \frac{\psi}{2}, z \sin \frac{\psi}{2}\right) \Rightarrow \\
q_{0} & =\cos \frac{\varphi}{2} \cos \frac{\theta}{2} \cos \frac{\psi}{2}-\sin \frac{\varphi}{2} \sin \frac{\theta}{2} \sin \frac{\psi}{2} \\
q & =\left[\begin{array}{c}
\cos \frac{\varphi}{2} \sin \frac{\theta}{2} \sin \frac{\psi}{2}+\sin \frac{\varphi}{2} \cos \frac{\theta}{2} \cos \frac{\psi}{2} \\
\cos \frac{\varphi}{2} \sin \frac{\theta}{2} \cos \frac{\psi}{2}-\sin \frac{\varphi}{2} \cos \frac{\theta}{2} \sin \frac{\psi}{2} \\
\cos \frac{\varphi}{2} \cos \frac{\theta}{2} \sin \frac{\psi}{2}+\sin \frac{\varphi}{2} \sin \frac{\theta}{2} \cos \frac{\psi}{2}
\end{array}\right]
\end{aligned}
$$

Conversion from unit quaternions to roll-pitch-yaw angles (?)
\dagger End of Section \dagger

Rigid motion in \mathbb{R}^{3}

Figure 2.11
$p_{a b} \in \mathbb{R}^{3}$: Coordinates of the origin of B $R_{a b} \in S O(3)$: Orientation of B relative to A $S E(3):\left\{\left.\left[\begin{array}{cc}R & p \\ 0 & 1\end{array}\right] \right\rvert\, p \in \mathbb{R}^{3}, R \in S O(3)\right\}$: Orientation of B relative to A Or...as a transformation:

$$
\begin{aligned}
g_{a b}=\left(p_{a b}, R_{a b}\right): \mathbb{R}^{3} & \mapsto \mathbb{R}^{3} \\
q_{b} & \mapsto q_{a}=p_{a b}+R_{a b} \cdot q_{b}
\end{aligned}
$$

Homogeneous Representation

Points:

$$
q=\left[\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right] \in \mathbb{R}^{3}
$$

Vectors:

$v=p-q=\left[\begin{array}{l}p_{1}-q_{1} \\ p_{2}-q_{2} \\ p_{3}-q_{3}\end{array}\right]=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$
(1) Point-Point $=$ Vector
(2) Vector + Point $=$ Point
(3) Vector+Vector $=$ Vector
(3) Point+Point: Meaningless
(continues next slide)

Homogeneous Representation

$$
q_{a}=p_{a b}+R_{a b} \cdot q_{b}
$$

$$
g_{a b}=\left(p_{a b}, R_{a b}\right)
$$

$$
\left[\begin{array}{c}
q_{a} \\
1
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
R_{a b} & p_{a b} \\
0 & 1
\end{array}\right]}_{\bar{g}_{a b}}\left[\begin{array}{c}
q_{b} \\
1
\end{array}\right]
$$

\square Composition Rule:

$$
\bar{q}_{a}=\bar{g}_{a b} \cdot \bar{q}_{b}
$$

$$
\bar{g}_{a b}=\left[\begin{array}{cc}
R_{a b} & p_{a b} \\
0 & 1
\end{array}\right]
$$

$$
\bar{q}_{b}=\bar{g}_{b c} \cdot \bar{q}_{c}
$$

$$
\bar{q}_{a}=\bar{g}_{a b} \cdot \bar{q}_{b}=\underbrace{\bar{g}_{a b} \cdot \bar{g}_{b c} \cdot \bar{q}_{c}}_{\bar{g}_{a c}}
$$

$\bar{g}_{a c}=\bar{g}_{a b} \cdot \bar{g}_{b c}=\left[\begin{array}{cc}R_{a b} R_{b c} & R_{a b} p_{b c}+p_{a b} \\ 0 & 1\end{array}\right]$
Figure 2.12

Special Euclidean Group

$$
S E(3)=\left\{\left.\left[\begin{array}{cc}
R & p \\
0 & 1
\end{array}\right] \in \mathbb{R}^{4 \times 4} \right\rvert\, p \in \mathbb{R}^{3}, R \in S O(3)\right\}
$$

Property 4: $S E(3)$ forms a group.

Proof :

(1) $g_{1} \cdot g_{2} \in S E(3)$
(2) $e=I_{4}$
(3) $(\bar{g})^{-1}=\left[\begin{array}{cc}R^{T} & -R^{T} p \\ 0 & 1\end{array}\right]$
(1) Associativity: Follows from property of matrix multiplication

$$
\bar{v}=s-r=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
0
\end{array}\right], \bar{g}_{*} \bar{v}=\bar{g} s-\bar{g} r=\left[\begin{array}{cc}
R & p \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
0
\end{array}\right]=\left[\begin{array}{c}
R v \\
0
\end{array}\right]
$$

The bar will be dropped to simplify notations
Property 5: An element of $S E(3)$ is a rigid transformation.

Exponential coordinates of $S E(3)$

For rotational motion:

$$
\begin{aligned}
& \dot{p}(t)=\omega \times(p(t)-q) \\
& {\left[\begin{array}{c}
\dot{p} \\
0
\end{array}\right]=\left[\begin{array}{cc}
\hat{\omega} & -\omega \times q \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
p \\
1
\end{array}\right]} \\
& \text { or } \dot{\bar{p}}=\hat{\xi} \cdot \bar{p} \Rightarrow \bar{p}(t)=e^{\hat{\xi} t} \bar{p}(0)
\end{aligned}
$$

where $e^{\hat{\xi} t}=I+\hat{\xi} t+\frac{(\hat{\xi} t)^{2}}{2!}+\cdots$

For translational motion:

$$
\dot{p}(t)=v
$$

$\left[\begin{array}{c}\dot{p}(t) \\ 0\end{array}\right]=\left[\begin{array}{ll}0 & v \\ 0 & 0\end{array}\right]\left[\begin{array}{l}p \\ 1\end{array}\right]$

$$
\dot{\bar{p}}(t)=\hat{\xi} \cdot \bar{p}(t) \Rightarrow \bar{p}(t)=e^{\hat{\xi}} t \bar{p}(0)
$$

$$
\hat{\xi}=\left[\begin{array}{ll}
0 & v \\
0 & 0
\end{array}\right]
$$

Figure 2.13

Exponential coordinates of $S E(3)$

Definition:

$$
s e(3)=\left\{\left.\left[\begin{array}{cc}
\hat{\omega} & v \\
0 & 0
\end{array}\right] \in \mathbb{R}^{4 \times 4} \right\rvert\, v, \omega \in \mathbb{R}^{3}\right\}
$$

is called the twist space. There exists a 1-1 correspondence between $s e(3)$ and \mathbb{R}^{6}, defined by $\wedge: \mathbb{R}^{6} \mapsto s e(3)$

$$
\xi:=\left[\begin{array}{c}
v \\
\omega
\end{array}\right] \mapsto \hat{\xi}=\left[\begin{array}{cc}
\hat{\omega} & v \\
0 & 0
\end{array}\right]
$$

Property 6: $\exp : \operatorname{se}(3) \mapsto S E(3), \hat{\xi} \theta \mapsto e^{\hat{\xi} \theta}$

Proof :

Let $\hat{\xi}=\left[\begin{array}{ll}\hat{\omega} & v \\ 0 & 0\end{array}\right]$

- If $\omega=0$, then $\hat{\xi}^{2}=\hat{\xi}^{3}=\cdots=0, e^{\hat{\xi} \theta}=\left[\begin{array}{cc}I & v \theta \\ 0 & 1\end{array}\right] \in S E(3)$
(continues next slide)

Exponential coordinates of $S E(3)$

- If ω is not 0 , assume $\|\omega\|=1$.

Define:

$$
g_{0}=\left[\begin{array}{cc}
I & \omega \times v \\
0 & 1
\end{array}\right], \hat{\xi}^{\prime}=g_{0}^{-1} \cdot \hat{\xi} \cdot g_{0}=\left[\begin{array}{cc}
\hat{\omega} & h \omega \\
0 & 0
\end{array}\right]
$$

where $h=\omega^{T} \cdot v$.

$$
e^{\hat{\xi} \theta}=e^{g_{0} \cdot \hat{\xi}^{\prime} \cdot g_{0}^{-1}}=g_{0} \cdot e^{\hat{\xi}^{\prime} \theta} \cdot g_{0}^{-1}
$$

and as

$$
\hat{\xi}^{\prime 2}=\left[\begin{array}{cc}
\hat{\omega}^{2} & 0 \\
0 & 0
\end{array}\right], \hat{\xi}^{\prime 3}=\left[\begin{array}{cc}
\hat{\omega}^{3} & 0 \\
0 & 0
\end{array}\right]
$$

we have

$$
e^{\hat{\xi}^{\prime} \theta}=\left[\begin{array}{cc}
e^{\hat{\omega} \theta} & h \omega \theta \\
0 & 1
\end{array}\right] \Rightarrow e^{\hat{\xi} \theta}=\left[\begin{array}{cc}
e^{\hat{\omega} \theta} & \left(I-e^{\hat{\omega} \theta}\right) \hat{\omega} v+\omega \omega^{T} v \theta \\
0 & 1
\end{array}\right]
$$

Exponential coordinates of $S E(3)$

$$
p(\theta)=e^{\hat{\xi} \theta} \cdot p(0) \Rightarrow g_{a b}(\theta)=e^{\hat{\xi} \theta}
$$

If there is offset,

$$
g_{a b}(\theta)=e^{\hat{\xi} \theta} g_{a b}(0)(\text { Why? })
$$

Figure 2.14

Exponential coordinates of $S E(3)$

Property 7: $\exp : \operatorname{se}(3) \mapsto S E(3)$ is onto.

Proof:

$$
\text { Let } g=(p, R), R \in S O(3), p \in \mathbb{R}^{3}
$$

Case 1: $\quad(R=I)$ Let

$$
\hat{\xi}=\left[\begin{array}{cc}
0 & \frac{p}{\eta \|} \\
0 & 0
\end{array}\right], \theta=\|p\| \Rightarrow e^{\hat{\xi} \theta}=g=\left[\begin{array}{ll}
I & p \\
0 & 1
\end{array}\right]
$$

Case 2: $\quad(R \neq I)$

$$
\begin{aligned}
& e^{\hat{\xi} \theta}=\left[\begin{array}{cc}
e^{\hat{\omega} \theta} \\
0 & \left(I-e^{\hat{\omega} \theta}\right)(\omega \times v)+\omega \omega^{T} v \theta \\
1
\end{array}\right]=\left[\begin{array}{cc}
R & p \\
0 & 1
\end{array}\right] \\
& \Rightarrow\left\{\begin{array}{l}
e^{\hat{\omega} \theta}=R \\
\left(I-e^{\hat{\omega} \theta}\right)(\omega \times v)+\omega \omega^{T} v \theta=p
\end{array}\right.
\end{aligned}
$$

Solve for $\omega \theta$ from previous section. Let $A=\left(I-e^{\hat{\omega} \theta}\right) \hat{\omega}+w w^{T} \theta, A v=p$. Claim:

$$
\begin{gathered}
A=\left(I-e^{\hat{\omega} \theta}\right) \hat{\omega}+w w^{T} \theta:=A_{1}+A_{2} \\
\operatorname{ker} A_{1} \cap \operatorname{ker} A_{2}=\phi \Rightarrow v=A^{-1} p
\end{gathered}
$$

$\overline{\xi \theta \in \mathbb{R}^{6}: \text { Exponential coordinates of } g \in S E(3)}$

Screws, twists and screw motion

Screw attributes

Figure 2.15

Pitch: $\quad h=\frac{d}{\theta}(\theta=0, h=\infty), d=h \cdot \theta$
Axis: $\quad l=\{q+\lambda \omega \mid \lambda \in \mathbb{R}\}$
Maønitude: $\quad M=\theta$

Definition:

A screw S consists of an axis l, pitch h, and magnitude M. A screw motion is a rotation by $\theta=M$ about l, followed by translation by $h \theta$, parallel to l. If $h=\infty$, then, translation about v by $\theta=M$

Screws, twists and screw motion

Corresponding $g \in S E(3)$:

$$
\begin{aligned}
& g \cdot p=q+e^{\hat{\omega} \theta}(p-q)+h \theta \omega \\
& g \cdot\left[\begin{array}{c}
p \\
1
\end{array}\right]=\left[\begin{array}{cc}
e^{\hat{\omega} \theta} & \left(I-e^{\hat{\omega} \theta}\right) q+h \theta \omega \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
p \\
1
\end{array}\right] \Rightarrow \\
& g=\left[\begin{array}{cc}
e^{\hat{\omega} \theta} & \left(I-e^{\hat{\omega} \theta}\right) q+h \theta \omega \\
0 & 1
\end{array}\right]
\end{aligned}
$$

On the other hand...

$$
e^{\hat{\xi} \theta}=\left[\begin{array}{cc}
e^{\hat{\omega} \theta} & \left(I-e^{\hat{\omega} \theta}\right) \omega \times v+\omega \omega^{T} v \theta \\
0 & 1
\end{array}\right]
$$

If we let $v=-\omega \times q+h \omega$, then

$$
\left(I-e^{\hat{\omega} \theta}\right)\left(-\hat{\omega}^{2} q\right)=\left(I-e^{\hat{\omega} \theta}\right)\left(-\omega \omega^{T} q+q\right)=\left(I-e^{\hat{\omega} \theta}\right) q
$$

Thus, $e^{\hat{\xi} \theta}=g$
For pure rotation $(h=0): \xi=(-\omega \times q, \omega)$
For pure translation: $g=\left[\begin{array}{cc}I & v \theta \\ 0 & 1\end{array}\right], \Rightarrow \xi=(v, 0)$, and $e^{\hat{\xi} \theta}=g$

Screw associated with a twist

$\xi=(v, \omega) \in \mathbb{R}^{6}$
(1) Pitch: $h= \begin{cases}\frac{\omega^{T} v}{\|\omega\|^{2}}, & \text { if } \omega \neq 0 \\ \infty, & \text { if } \omega=0\end{cases}$
(2) Axis: $l= \begin{cases}\frac{\omega \times v}{\|\omega\|^{2}}+\lambda \omega, & \lambda \in \mathbb{R}, \text { if } \omega \neq 0 \\ 0+\lambda v & \lambda \in \mathbb{R}, \text { if } \omega=0\end{cases}$
(- Magnitude: $M= \begin{cases}\|\omega\|, & \text { if } \omega \neq 0 \\ \|v\|, & \text { if } \omega=0\end{cases}$

Special cases:

(3) $h=\infty$, Pure translation (prismatic joint)
(2) $h=0$, Pure rotation (revolute joint)

Screw associated with a twist

Screw	Twist: $\hat{\xi} \theta$		
Case 1:			
Pitch: $h=\infty$	$\theta=M$,		
Axis: $l=\{q+\lambda v \mid\\|v\\|=1, \lambda \in \mathbb{R}\}$	$\hat{\xi}=\left[\begin{array}{ll}0 & v \\ 0 & 0\end{array}\right]$		
Magnitude: M	$\theta=M$,		
Case 2:			
Pitch: $h \neq \infty$			
Axis: $l=\{q+\lambda \omega \mid\\|\omega\\|=1, \lambda \in \mathbb{R}\}$	$\hat{\xi}=\left[\begin{array}{cc}\hat{\omega} & -\hat{\omega} q+h \omega \\ 0 & 0\end{array}\right]$		
Magnitude: M			

Definition: Screw Motion
Rotation about an axis by $\theta=M$, followed by translation about the same axis by $h \theta$

Chasles Theorem

Theorem 2 (Chasles):
 Every rigid body motion can be realized by a rotation about an axis combined with a translation parallel to that axis.

1793-1880

Proof:

For $\hat{\xi} \in s e(3)$:

$$
\begin{gathered}
\hat{\xi}=\hat{\xi}_{1}+\hat{\xi}_{2}=\left[\begin{array}{cc}
\hat{\omega} & -\omega \times q \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & h \omega \\
0 & 0
\end{array}\right] \\
{\left[\hat{\xi}_{1}, \hat{\xi}_{2}\right]=0 \Rightarrow e^{\hat{\xi} \theta}=e^{\hat{\xi}_{1} \theta} e^{\hat{\xi}_{2} \theta}}
\end{gathered}
$$

\dagger End of Section \dagger

Velocity of a Rigid Body

\diamond Review: Point-mass velocity

$$
q(t) \in \mathbb{R}^{3}, t \in(-\varepsilon, \varepsilon), v=\frac{\mathrm{d}}{\mathrm{~d} t} q(t) \in \mathbb{R}^{3}, a=\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} q(t)=\frac{\mathrm{d}}{\mathrm{~d} t} v(t) \in \mathbb{R}^{3}
$$

\square Velocity of Rotational Motion:

$$
\begin{aligned}
& R_{a b}(t) \in S O(3), t \in(-\varepsilon, \varepsilon), \quad q_{a}(t)=R_{a b}(t) q_{b} \\
& V^{a}=\frac{\mathrm{d}}{\mathrm{~d} t} q_{a}(t)=\dot{R}_{a b}(t) q_{b}=\dot{R}_{a b}(t) R_{a b}^{T}(t) R_{a b}(t) q_{b}=\dot{R}_{a b} R_{a b}^{T} q_{a}
\end{aligned}
$$

$$
R_{a b}(t) R_{a b}^{T}(t)=I \Rightarrow \dot{R}_{a b} R_{a b}^{T}+R_{a b} \dot{R}_{a b}^{T}=0, \dot{R}_{a b} R_{a b}^{T}=-\left(\dot{R}_{a b} R_{a b}^{T}\right)^{T}
$$

Figure 2.1

Figure 2.3

Velocity of a Rigid Body

Denote spatial angular velocity by:

$$
\hat{\omega}_{a b}^{s}=\dot{R}_{a b} R_{a b}^{T}, \omega_{a b} \in \mathbb{R}^{3}
$$

Then

$$
V^{a}=\hat{\omega}_{a b}^{s} \cdot q_{a}=\omega_{a b}^{s} \times q_{a}
$$

Body angular velocity:

$$
\hat{\omega}_{a b}^{b}=R_{a b}^{T} \cdot \dot{R}_{a b}, v^{b} \triangleq R_{a b}^{T} \cdot v^{a}=\omega_{a b}^{b} \times q_{b}
$$

Relation between body and spatial angular velocity:

$$
\omega_{a b}^{b}=R_{a b}^{T} \cdot \omega_{a b}^{s} \text { or } \hat{\omega}_{a b}^{b}=R_{a b}^{T} \hat{\omega}_{a b}^{s} R_{a b}
$$

Velocity of a Rigid Body

\square Generalized Velocity:

$$
\begin{aligned}
& g_{a b}=\left[\begin{array}{cc}
R_{a b}(t) & p_{a b}(t) \\
0 & 1
\end{array}\right], q_{a}(t)=g_{a b}(t) q_{b} \\
& \frac{\mathrm{~d}}{\mathrm{~d} t} q_{a}(t)=\dot{g}_{a b}(t) q_{b}=\dot{g}_{a b} \cdot g_{a b}^{-1} \cdot g_{a b} \cdot q_{b}=\hat{V}_{a b}^{s} \cdot q_{a} \\
& \hat{V}_{a b}^{s}=\dot{g}_{a b} \cdot g_{a b}^{-1}=\left[\begin{array}{cc}
\dot{R}_{a b} & \dot{p}_{a b} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
R_{a b}^{T} & -R_{a b}^{T} p_{a b} \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
\dot{R}_{a b} R_{a b}^{T} & -\dot{R}_{a b} R_{a b}^{T} p_{a b}+\dot{p}_{a b} \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
\hat{\omega}_{a b}^{s} & -\omega_{a b}^{s} \times p_{a b}+\dot{p}_{a b} \\
0 & 0
\end{array}\right] \triangleq\left[\begin{array}{cc}
\hat{\omega}_{a b}^{s} & v_{a b}^{s} \\
0 & 0
\end{array}\right]
\end{aligned}
$$

2.4 Velocity of a Rigid Body

\square (Generalized) Spatial Velocity:

$$
\begin{aligned}
V_{a b}^{s} & =\left[\begin{array}{c}
v_{a b}^{s} \\
\omega_{a b}^{s}
\end{array}\right]=\left[\begin{array}{c}
-\omega_{a b}^{s} \times p_{a b}+\dot{p}_{a b} \\
\\
\left(\dot{R}_{a b} R_{a b}^{T}\right)^{\vee}
\end{array}\right] \\
v_{q_{a}} & =\omega_{a b}^{s} \times q_{a}+v_{a b}^{s}
\end{aligned}
$$

Note: $\quad v_{q_{b}}=g_{a b}^{-1} \cdot v_{q_{a}}=g_{a b}^{-1} \cdot \dot{g}_{a b} \cdot q_{b}=\hat{V}_{a b}^{b} \cdot q_{b}$
\square (Generalized) Body Velocity:

$$
\begin{aligned}
& \hat{V}_{a b}^{b}=g_{a b}^{-1} \dot{g}_{a b}=\left[\begin{array}{cc}
R_{a b}^{T} \dot{R}_{a b} & R_{a b}^{T} \dot{p}_{a b} \\
0 & 0
\end{array}\right] \triangleq\left[\begin{array}{cc}
\hat{\omega}_{a b}^{b} & v_{a b}^{b} \\
0 & 0
\end{array}\right] \\
& V_{a b}^{b}=\left[\begin{array}{c}
v_{a b}^{b} \\
\omega_{a b}^{b}
\end{array}\right]=\left[\begin{array}{c}
R_{a b}^{T} \dot{p}_{a b} \\
\left(R_{a b}^{T} \dot{R}_{a b}\right)^{\vee}
\end{array}\right]
\end{aligned}
$$

Relation between body and spatial velocity

$$
\begin{aligned}
& \hat{V}_{a b}^{s}=\dot{g}_{a b} \cdot g_{a b}^{-1}=g_{a b} \cdot g_{a b}^{-1} \cdot \dot{g}_{a b} \cdot g_{a b}^{-1}=g_{a b} \cdot \hat{V}_{a b}^{b} \cdot g_{a b}^{-1} \\
& =\left[\begin{array}{cc}
R_{a b} & p_{a b} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\hat{\omega}_{a b}^{b} & v_{a b}^{b} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
R_{a b}^{T} & -R_{a b}^{T} p_{a b} \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
R_{a b} & p_{a b} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\hat{\omega}_{a b}^{b} R_{a b}^{T} & -\hat{\omega}_{a b}^{b} R_{a b}^{T} p_{a b}+v_{a b}^{b} \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
R_{a b} \hat{\omega}_{a b}^{b} R_{a b}^{T} & -R_{a b} \hat{\omega}_{a b}^{b} R_{a b}^{T} p_{a b}+R_{a b} v_{a b}^{b} \\
0
\end{array}\right] \\
& V_{a b}^{s}=\left[\begin{array}{c}
v_{a b}^{s} \\
\omega_{a b}^{b}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
R_{a b} & \hat{p}_{a b} R_{a b} \\
0 & R_{a b}
\end{array}\right]}_{\operatorname{Ad}_{g}} V_{a b}^{b} \\
& \operatorname{Ad}_{g}=\left[\begin{array}{cc}
R & \hat{p} R \\
0 & R
\end{array}\right] \in \mathbb{R}^{6 \times 6} \text {, for } g=(p, R)
\end{aligned}
$$

Properties of Adjoint mapping

$$
\begin{aligned}
g^{-1} & =\left[\begin{array}{cc}
R^{T} & -R^{T} p \\
0 & 1
\end{array}\right] \Rightarrow \\
\mathrm{Ad}_{g^{-1}} & =\left[\begin{array}{cc}
R^{T} & \left(-R^{T} p\right)^{\wedge} R^{T} \\
0 & R^{T}
\end{array}\right] \\
& =\left[\begin{array}{cc}
R^{T} & -R^{T} \hat{p} \\
0 & R^{T}
\end{array}\right]=\left(\operatorname{Ad}_{g}\right)^{-1} \\
\text { and } \mathrm{Ad}_{g_{1} \cdot g_{2}} & =\operatorname{Ad}_{g_{1}} \cdot \operatorname{Ad}_{g_{2}}
\end{aligned}
$$

The map $\operatorname{Ad}: S E(3) \mapsto G L\left(\mathbb{R}^{6}\right), \operatorname{Ad}(g)=\mathrm{Ad}_{g}$ is a group homomorphism

Matrix Rep	Vector Rep
$\hat{\xi} \in \operatorname{se}(3)$	$\xi \in \mathbb{R}^{6}$
$g \cdot \hat{\xi} \cdot g^{-1} \in \operatorname{se}(3)$	$\operatorname{Ad}_{g} \xi \in \mathbb{R}^{6}$

Velocity of Screw Motion

$$
\begin{aligned}
g_{a b}(\theta) & =e^{\hat{\xi} \theta(t)} g_{a b}(0), \frac{\mathrm{d}}{\mathrm{~d} t}{ }^{\hat{\epsilon} \theta(t)}=\hat{\xi} \dot{\theta}(t) e^{\hat{\xi} \theta(t)}=\dot{\theta}(t) e^{\hat{\xi} \theta(t)} \hat{\xi} \\
\hat{V}_{a b}^{s} & =\dot{g}_{a b} \cdot g_{a b}^{-1}=\left(\hat{\xi} \dot{\theta} e^{\hat{\xi} \theta(t)} g_{a b}(0)\right) \cdot\left(g_{a b}^{-1}(0) e^{-\hat{\xi} \theta(t)}\right) \\
& =\hat{\xi} \dot{\theta} \Rightarrow V_{a b}^{s}=\xi \dot{\theta} \\
\hat{V}_{a b}^{b} & =g_{a b}^{-1} \cdot \dot{g}_{a b}=g_{a b}^{-1}(0) e^{-\hat{\xi} \theta} \cdot e^{\hat{\xi} \hat{\xi}} \hat{\xi} \dot{\theta} g_{a b}(0) \\
& \left.=g_{a b}^{-1}(0) \hat{\xi} \dot{\theta} g_{a b}(0)=\left(\operatorname{Ad}_{g_{a b}^{-1}(0)}\right)\right)^{\wedge} \dot{\theta} \Rightarrow V_{a b}^{b}=\operatorname{Ad}_{g_{a b}^{-1}(0)} \dot{\xi} \dot{\theta}
\end{aligned}
$$

Metric Property of se(3)

Let $g_{i}(t) \in S E(3), i=1,2$, be representations of the same motion, obtained using coordinate frame A and B. Then,

$$
g_{2}(t)=g_{0} \cdot g_{1}(t) \cdot g_{0}^{-1} \Rightarrow V_{2}^{s}=\operatorname{Ad}_{g_{0}} \cdot V_{1}^{s}
$$

Figure 2.2
(Continues next slide)

Metric Property of se(3)

$$
\begin{aligned}
&\left\|V_{2}^{s}\right\|^{2}=\left(\operatorname{Ad}_{g_{0}} \cdot V_{1}^{s}\right)^{T}\left(\operatorname{Ad}_{g_{0}} \cdot V_{1}^{s}\right)=\left(V_{1}^{s}\right)^{T} \operatorname{Ad}_{g_{0}}^{T} \cdot \operatorname{Ad}_{g_{0}} \cdot V_{1}^{s} \\
& \operatorname{Ad}_{g_{0}}^{T} \cdot \operatorname{Ad}_{g_{0}}=\left[\begin{array}{cc}
R_{0}^{T} & 0 \\
-R_{0}^{T} \hat{p}_{0} & R_{0}^{T}
\end{array}\right]\left[\begin{array}{cc}
R_{0} & \hat{p}_{0} R_{0} \\
0 & R_{0}
\end{array}\right] \\
&=\left[\begin{array}{cc}
I & R_{0}^{T} \hat{p}_{0} R_{0} \\
-R_{0}^{T} \hat{p}_{0} R_{0} & I-R_{0}^{T} \hat{p}_{0}^{2} R_{0}
\end{array}\right]
\end{aligned}
$$

In general, $\left\|V_{2}^{s}\right\| \neq\left\|V_{1}^{s}\right\|$, or there exists no bi-invariant metric on se(3).

Coordinate Transformation

$g_{a c}(t)=g_{a b}(t) \cdot g_{b c}(t)$

$$
\begin{aligned}
\hat{V}_{a c}^{s} & =\dot{g}_{a c} \cdot g_{a c}^{-1} \\
& =\left(\dot{g}_{a b} \cdot g_{b c}+g_{a b} \cdot \dot{g}_{b c}\right. \\
& =\dot{g}_{a b} \cdot g_{a b}^{-1}+g_{a b} \cdot \dot{g}_{b c} \\
\Rightarrow & V_{a c}^{s}=V_{a b}^{s}+A d_{g_{a b}} V_{b c}^{s}
\end{aligned}
$$

$$
=\left(\dot{g}_{a b} \cdot g_{b c}+g_{a b} \cdot \dot{g}_{b c}\right)\left(g_{b c}^{-1} \cdot g_{a b}^{-1}\right)
$$

$$
=\dot{g}_{a b} \cdot g_{a b}^{-1}+g_{a b} \cdot \dot{g}_{b c} \cdot g_{b c}^{-1} \cdot g_{a b}^{-1}=\hat{V}_{a b}^{s}+g_{a b} \hat{V}_{b c}^{s} g_{a b}^{-1}
$$

Similarly: $\quad V_{a c}^{b}=A d_{g_{b c}^{-1}} V_{a b}^{b}+V_{b c}^{b}$
Note: $\quad V_{b c}^{s}=0 \Rightarrow V_{a c}^{s}=V_{a b}^{s}, V_{a b}^{b}=0 \Rightarrow V_{a c}^{b}=V_{b c}^{b}$

Example

$$
\begin{aligned}
& g_{a b}\left(\theta_{1}\right)=\left[\begin{array}{cccc}
c_{\theta_{1}} & -s_{\theta_{1}} & 0 & 0 \\
s_{\theta_{1}} & c_{\theta_{1}} & 0 & 0 \\
0 & 0 & 1 & l_{0} \\
0 & 0 & 0 & 1
\end{array}\right], V_{a b}^{s}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right] \dot{\theta}_{1} \\
& g_{b c}\left(\theta_{2}\right)=\left[\begin{array}{cccc}
c_{\theta_{2}} & -s_{\theta_{2}} & 0 & 0 \\
s_{\theta_{2}} & c_{\theta_{2}} & 0 & l_{1} \\
0 & 0 & 1 & l_{2} \\
0 & 0 & 0 & 1
\end{array}\right], V_{b c}^{s}=\left[\begin{array}{l}
l_{1} \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right] \dot{\theta}_{2} \\
& V_{a c}^{s}=V_{a b}^{s}+A d_{g_{a b}} \cdot V_{b c}^{s}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right] \dot{\theta}_{1}+\left[\begin{array}{c}
l_{1} c_{\theta_{1}} \\
l_{1} s_{\theta_{1}} \\
0 \\
0 \\
0 \\
1
\end{array}\right] \dot{\theta}_{2} \quad \text { Figure 2.16 }
\end{aligned}
$$

Wrenches \& Reciprocal Screws

Let

$$
F_{c}=\left[\begin{array}{l}
f_{c} \\
\tau_{c}
\end{array}\right] \in \mathbb{R}^{6}, f_{c}, \tau_{c} \in \mathbb{R}^{3}
$$

be force
or moment applied at the origin of C Generalized power:

$$
\delta W=F_{c} \cdot V_{a c}^{b}=\left\langle f_{c}, v_{a c}^{b}\right\rangle+\left\langle\tau_{c}, \omega_{a c}^{b}\right\rangle
$$

Work:

$$
W=\int_{t_{1}}^{t_{2}} V_{a c}^{b} \cdot F_{c} \mathrm{~d} t
$$

Figure 2.17

$$
\begin{aligned}
V_{a b}^{b} \cdot F_{b} & =\left(\operatorname{Ad}_{g_{b c}} \cdot V_{a c}^{b}\right)^{T} \cdot F_{b} \\
& =\left(V_{a c}^{b}\right)^{T} \operatorname{Ad}_{g_{b c}}^{T} \cdot F_{b}=\left(V_{a c}^{b}\right)^{T} \cdot F_{c}, \forall V_{a c}^{b} \\
& \Rightarrow F_{c}=\operatorname{Ad}_{g_{b c}}^{T} \cdot F_{b}
\end{aligned}
$$

Wrenches \& Reciprocal Screws

$$
\begin{aligned}
V_{2}^{s} & =\operatorname{Ad}_{g_{0}^{-1}} \cdot V_{1}^{s} \\
\left(V_{2}^{b}\right. & \left.=\operatorname{Ad}_{g_{0}^{-1}} \cdot V_{1}^{b}\right) \\
\Rightarrow V_{1}^{b} & =\operatorname{Ad}_{g_{0}} \cdot V_{2}^{b} \\
F_{2} & =\operatorname{Ad}_{g_{0}}^{*} F_{1}
\end{aligned}
$$

Figure 2.18

Screw coordinates for a wrench

Generate a wrench associated with S :

- $(h \neq \infty)$: force of mag. M along l, and torque of mag. $h M$ about l.
- $(h=\infty)$: pure torque of mag. M about l

$$
F= \begin{cases}M\left[\begin{array}{c}
\omega \\
-\omega \times q+h \omega
\end{array}\right] & h \neq \infty \\
M\left[\begin{array}{c}
0 \\
\omega
\end{array}\right] & h=\infty\end{cases}
$$

F: wrench along the screw S.

Figure 2.19

Screw coordinates for a wrench (Continued)

(1) Pitch:

$$
h= \begin{cases}\frac{f^{T} \tau}{\|f\|^{2}} & \text { if } f \neq 0 \\ \infty & \text { if } f=0\end{cases}
$$

(2) Axis:

$$
l= \begin{cases}\frac{f \times \tau}{\|f\|^{2}}+\lambda f, \lambda \in \mathbb{R} & \text { if } f \neq 0 \\ 0+\lambda \tau, \lambda \in \mathbb{R} & \text { if } f=0\end{cases}
$$

(3) Magnitude:

$$
M= \begin{cases}\|f\| & \text { if } f \neq 0 \\ \|\tau\| & \text { if } f=0\end{cases}
$$

Poinsot Theorem

Theorem 3 (Poinsot):

Every collection of wrenches applied to a rigid body is equivalent to a force applied along a fixed axis plus a torque about the axis.

\square Multi-fingered grasp:

$$
F_{o}=\sum_{i=1}^{k} \operatorname{Ad}_{g_{o_{c}}^{-1}}^{T} \cdot F_{c_{i}}
$$

Figure 2.20

Reciprocal screws

$$
\begin{aligned}
& V=\left[\begin{array}{l}
v \\
\omega
\end{array}\right], F=\left[\begin{array}{c}
f \\
\tau
\end{array}\right] \\
& F \cdot V=f^{T} \cdot v+\tau^{T} \cdot \omega \\
& \downarrow \downarrow \\
& S_{2} S_{1}
\end{aligned}
$$

Figure 2.21

$$
\begin{aligned}
\alpha & =\operatorname{atan} 2\left(\left(\omega_{1} \times \omega_{2}\right) \cdot n, \omega_{1} \cdot \omega_{2}\right) \\
S_{1} \odot S_{2} & =M_{1} M_{2}\left(\left(h_{1}+h_{2}\right) \cos \alpha-d \sin \alpha\right) \\
& =0 \text { if reciprocal }
\end{aligned}
$$

(continues next slide)

Reciprocal screws

Given $V=M_{1}\left[\begin{array}{c}q_{1} \times \omega_{1}+h_{1} \omega_{1} \\ \omega_{1}\end{array}\right], \quad F=M_{2}\left[\begin{array}{c}\omega_{2} \\ q_{2} \times \omega_{2}+h_{2} \omega_{2}\end{array}\right]$,
Let $q_{2}=q_{1}+d n$, then

$$
\begin{aligned}
V \cdot F & =M_{1} M_{2}\left(\omega_{2} \cdot\left(q_{1} \times \omega_{1}+h_{1} \omega_{1}\right)+\omega_{1} \cdot\left(q_{2} \times \omega_{2}+h_{2} \omega_{2}\right)\right) \\
& =M_{1} M_{2}\left(\omega_{2} \cdot\left(q_{1} \times \omega_{1}\right)+h_{1} \omega_{1} \cdot \omega_{2}\right. \\
& \left.+\omega_{1} \cdot\left(\left(q_{1}+d n\right) \times \omega_{2}\right)+h_{2} \omega_{1} \cdot \omega_{2}\right) \\
& =M_{1} M_{2}\left(\left(h_{1}+h_{2}\right) \cos \alpha-d \sin \alpha\right)
\end{aligned}
$$

Example: basic joints

- Revolute joint: $\xi=\left[\begin{array}{c}-\omega \times q \\ \omega\end{array}\right]$
$\xi^{\perp}=\operatorname{span}\left\{\left[\begin{array}{c}\omega_{i} \\ q \times \omega_{i}\end{array}\right],\left[\begin{array}{c}0 \\ v_{j}\end{array}\right] \left\lvert\, \begin{array}{c}\omega_{i} \in S^{2}, i=1,2,3 \\ v_{j} \cdot \omega=0, j=1,2\end{array}\right.\right\}: 5$-system
- Prismatic joint: $\xi=\left[\begin{array}{l}v \\ 0\end{array}\right]$
$\xi^{\perp}=\operatorname{span}\left\{\left[\begin{array}{c}\omega_{i} \\ q \times \omega_{i}\end{array}\right],\left[\begin{array}{c}0 \\ v_{j}\end{array}\right] \left\lvert\, \begin{array}{c}\omega_{i} \cdot v=0, i=1,2 \\ v_{j} \in S^{2}, j=1,2,3\end{array}\right.\right\}: 5$-system

Figure 2.22

Figure 2.23

Basic joints (continued)

- Spherical joint: $\xi=\operatorname{span}\left\{\left.\left[\begin{array}{c}-\omega_{i} \times q \\ \omega_{i}\end{array}\right] \right\rvert\, \omega_{i} \in S^{2}, i=1,2,3\right\}$ $\xi^{\perp}=\operatorname{span}\left\{\left.\left[\begin{array}{c}\omega_{i} \\ q \times \omega_{i}\end{array}\right] \right\rvert\, \omega_{i} \in S^{2}, i=1,2,3\right\}: 3$-system
- Universal joint: $\xi=\operatorname{span}\left\{\left[\begin{array}{c}q \times x \\ x\end{array}\right],\left[\begin{array}{c}q \times y \\ y\end{array}\right]\right\}$ $\xi^{\perp}=\operatorname{span}\left\{\left[\begin{array}{c}\omega_{i} \\ q \times \omega_{i}\end{array}\right], \left.\left[\begin{array}{l}0 \\ z\end{array}\right] \right\rvert\, \omega_{i} \in S^{2}, i=1,2,3\right\}: 4$-system

Figure 2.24

Figure 2.25

Kinematic chains

- Universal-Spherical Dyad:
$\xi=\operatorname{span}\left\{\left[\begin{array}{c}q_{1} \times x \\ x\end{array}\right], \left.\left[\begin{array}{c}q_{1} \times y \\ y\end{array}\right]\left[\begin{array}{c}q_{2} \times \omega_{i} \\ \omega_{i}\end{array}\right] \right\rvert\, \omega_{i} \in S^{2}, i=1,2,3\right\}$
$\xi^{\perp}=\operatorname{span}\left\{\left.\left[\begin{array}{c}v \\ q_{1} \times v\end{array}\right] \right\rvert\, v=\frac{q_{2}-q_{1}}{\left\|q_{2}-q_{1}\right\|}\right\}$
- Revolute-Spherical Dyad: zero pitch screws passing through the center of the sphere, lie on a plane containing the axis of the revolute joint: 2-system

Figure 2.26

Figure $2.27 \dagger$ End of Section \dagger

References

\square Reference:

[1] Murray, R.M. and Li, Z.X. and Sastry, S.S., A mathematical introduction to robotic manipulation. CRC Press, 1994.
[2] Ball, R.S., A treatise on the theory of screws. University Press, 1900.
[3] Bottema, O. and Roth, B. , Theoretical kinematics. Dover Publications, 1990.
[4] Craig, J.J., Introduction to robotics : mechanics and control, 3rd ed. Prentice Hall, 2004.
[5] Fu, K.S. and Gonzalez, R.C. and Lee, C.S.G., Robotics : control, sensing, vision, and intelligence. CAD/CAM, robotics, and computer vision. McGraw-Hill, 1987.
[6] Hunt, K.H., Kinematic geometry of mechanisms. 1978, Oxford, New York: Clarendon Press, 1978.
[7] Paul, R.P., Robot manipulators : mathematics, programming, and control. The MIT Press series in artificial intelligence. MIT Press, 1981.
[8] Park, F. C., A first course in robot mechanics. Available online, 2006.
[9] Tsai, L.-W., Robot analysis : the mechanics of serial and parallel manipulators. Wiley, 1999.
[10] Spong, M.W. and Hutchinson, S. and Vidyasagar, M. , Robot modeling and control. John Wiley \& Sons, 2006.
[11] Selig, J., Geometric Fundamentals of Robotics. Springer, 2008.

