Machine Vision Revision (Summarized from lessons) Prof. Hu Liang Version 1.0 200320721 Tang Longbin 2023/5/4 欢迎补充!

Lec 1 Introduction

What can Machine Vision do?

- Increase profits
- Reduce defects
- Increase yield
- Track, Trace and Control

How?

- Measurement (Gauging)
- Counting
- Location
- Decoding
- Inspection (Defect detection)

Key parts of a Machine Vision System

- Lighting
- Lens
- Sensor (CCD/CMOS)
- Vision Processing (Algorithm & Software)
- Communication

Lec 2 How to design a MV system

Machine Vision System Design

Specialization of the task

- Task and Benefit
- Part (Shape and features)
 - Part Presentation
 - Part motion (Indexed positioning / Continuous movement)
- Performance Requirements
 - Accuracy
 - Time performance
- Information Interface

- Installation Space
- Environment
- Checklist

Design of the system

- Camera Type
- Field of View (FOV)
- Resolution
 - camera sensor resolution (R*C)
 - $\circ~$ Spatial Resolution (Depends on the camera sensor and FOV)
 - Measurement Accuracy (Depends on spatial resolution, feature contrast and software algorithms)
 - Calculation of Resolution
- Choice of Camera, Frame Grabber and Hardware Platform
- Lens Design
 - Focal length
 - Lens Flange Focal Distance (法兰距)
 - Lens Diameter and Sensor Size
- Choice of Illumination
- Mechanical Design
- Electrical Design
- Software
 - ROI (Region Of Interest)

Calculation of costs

Development and installation of the system

Field of View (FOV)

FOV = maximum part size + tolerance in positioning + margin + adaption to the aspect of the camera sensor

Calculation of Resolution

$$R_s = \frac{FOV}{R_c} = \frac{S_f}{N_f}$$

$$R_c = \frac{FOV}{R_s} = FOV * \frac{N_f}{S_f}$$

Name	Variable	Unit
Camera resolution	R_c	pixel
Spatial resolution	R_s	mm/pixel
Field of View	FOV	mm
Size of the smallest feature	S_f	mm
Number of pixels to map the smallest feature	N_f	pixel

Pixel Rate

Name	Variable	Unit
Pixel Rate	PR	pixel/s
Camera resolution horizontal	Rc_{hor}	pixel
Camera resolution vertical	Rc_{ver}	pixel
Frame Rate (帧率)	fr	Hz
Camera resolution	R_c	pixel
Line Frequency	fs	Hz

 $PR = Rc_{hor} * Rc_{ver} * fr + overhead(10\% - 20\%)$

Focal length

$$\frac{1}{f'} = \frac{1}{a'} - \frac{1}{a}$$

 f^\prime : focal length

a : standoff distance (work distance)

 a^\prime : distance between the lens and the image sensor

The magification β

$$eta=rac{y'}{y}=rac{a'}{a}$$

y : size of real-world object

y' : size of the image object

$$\beta = -\frac{sensor\ size}{FOV}$$

so

$$f' = a * rac{eta}{1-eta} \ a = f' * rac{1-eta}{eta}$$

Example

shown in the pdf (end of the lec2)

Lec 3 Camera Sensor

Light and CCD/CMOS sensor

- Quantum Efficiency (QE, 量子效率) : the ratio of light that the sensor converts into charge.
- The Full Well Capacity (满井容量): the maximum number of electron that register a signal in a pixel.
 - 4,000 electrons --- small pixels
 - 10,000 electrons --- medium pixels
 - 50,000 electrons --- large pixels
- CCD and CMOS (The difference is how they transfer the charge out of the pixel and into the camera's electronic "read out".)
 - CCD : high image quality, low speed.
 - CMOS : low image quality, high speed.

Digital Cameras: Basics

- Camera Controls (What can affect the quality of images?)
 - Gain
 - Exposure
 - Trigger
 - Image Format
 - Resolution
- Shutter
 - 。 Global shutter (全局快门)
 - 。 Rolling shutter (卷帘快门)
- Trigger
 - Hardware trigger (external)
 - Strobe (频闪)
 - Software trigger (internal)

Camera Type

Area Camera

- Fixed aspect ratio
- Easy image processing
- Longer intergration time possible
- Skipping and Binning (将相邻像元感应的电荷加在一起,以单个像素的模式读出)

Color Area Camera

- 3-CCD (using a separate CCD for each color)
 - great image quality
 - expensive
- 1-CCD (Bayer Pattern)
 - $\circ~$ Green 50%, Blue 25%, Red 25%
 - Lower color spatial resolution
 - Lower manufacturing cost

Line Scan Camera

- · 2nd dimension comes by movement
- Very good price/pixel performance
- High pixel fill-factor (typically 100%)
- Very short intergration time
- Difficult design in image processing
- $\frac{L_o}{H_c} = \frac{V_o}{V_c}$ (图像不拉伸或者压缩的条件)

Camera Interfaces

- GigE Vision Standard
- IEEE 1394 (Vision Standard : DCAM)
- Camera Link
- USB
- Interface Comparison and the GenICam Standard

GigE Vision

- Main advantages
 - Cable length and cost effective components
 - Accessories are reliable

IEEE 1394

- Invented by Apple and TI in the late 1980s
 - Apple's original name : "FireWire"
- Standardized by IEEE in 1995

Camera Link (CL)

- Require a "camera file"
- High Speed

USB

• Maximum cable length is 5m

vInterface Comparison and the GenICam Standard (相机通用接口)

Smart Camera

Lec 4 Lens

• Pinhole camera model (小孔成像)

Gaussian Optics

- Light Refraction ($n_1 \sin lpha_1 = n_2 \sin lpha_2$)
- ・ Paraxial Approximation (近轴近似) when lpha is small ($\sin i pprox i$)

Glossary of Terms for Lens

- Field of View (FOV)
- Depth of Field (DOF)
- Work Distance (WD)
- Resolution
- Sensor Size
- Primary Magnification (Pmag)

Resolution

Contrast

 $Contrast = rac{I_{max} - I_{min}}{I_{max} + I_{min}}$

• Resolution is defined at a specific contrast

Modulation Transfer Function (MTF)

$$F_{MTF}=rac{g_1-g_2}{255}$$

Depth of Field (DoF)

• F# and Aperture (光圈)

$$F\#=rac{f}{D}$$

• 大光圈, 小景深; 小光圈, 大景深

Distortion (畸变)

$$Distortion = rac{AD - PD}{PD} * 100\%$$

AD : Actual distance

PD : Predicted distance

- Distortion < 0: 负畸变 (桶形畸变)
- Distortion > 0: 正畸变 (枕形畸变)

Lec 5 Lighting

Vision Lighting Sources

- LED-Light Emitting Diode
- Quartz Halogen-W/Fiber Optics
- Fluorescent
- Xenon

- Metal Halide
- High Pressure Sodium

Solid Angle

 $d\Omega = rac{dA\cos heta}{r^2}$

Measuring LED light power

- ・光通量 Flux (Φ)
 - 。 单位: 流明 (lm)
- 光强 (I)
 - $\circ~I=rac{d\Phi}{d\Omega}$
 - 。 单位:坎德拉 (cd)
- 照度 (E)
 - $E = \frac{d\Phi}{dS}$
 - 。 单位: 勒克斯 (lx)
- 亮度 (L)
 - $L = \frac{d\Phi}{dSd\Omega\cos\theta}$
 - 。单位: 尼特 (nit)

How to change contrast

- Light Pattern (Structure)
- Direction (Geometry)
- Spectrum (Color/WaveLength)
- Light Character (Filtering)

Basic Lighting Techniques

- Bright Field (亮场照明) : greater than 45°
- Dark Field Lighting (暗场照明):less than 45°
 - 。 表面凹凸表现力强
- Vertical Lighting
- Back Lighting
- Multi-angle Lighting
- Diffuse Dome
- On-axis Diffuse
- Flat Diffuse
- Point Source1
- Strobe

Pass Filters and Polarization Filters

Shown in the end of the pdf (lec 5)

Lec 6 Introduction of MV Software

略

Lec 7 Algorithm

Binary Image

- Component Labeling
 - Row-by-Row (most common)
 - 。 行程编码 DFS
- Size Filter
- Euler Number (Genus)
 - $\circ \ E = C H$
 - $\circ~$ C : the number of components
 - H : the number of holes
- Boundary
- Distance
 - Euclidean
 - city block
 - chessboard

Image Enhancement

- Gray Value Transformations (GVT)
 - can use LUT (Lookup Table) to increase the speed
- Radiometric Calibration
- Image Smoothing
 - 。 Temporal averaging (时域平均)
 - 。 Mean Filter (均值滤波)
 - Gaussian Filter
 - Median and Rank Filter
- Fourier Transform
 - DFT
 - FFT

Lec 8 Algorithm Fundamentals

Geometric Transformations

Affine Transformations (仿射变换)

- rotation and translation (平移)
- apparent change in size

$$\begin{bmatrix} \hat{r} \\ \hat{c} \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} r \\ c \\ 1 \end{bmatrix}$$
Translation
$$\begin{bmatrix} 1 & 0 & t_r \\ 0 & 1 & t_c \end{bmatrix}$$
Scaling
$$\begin{bmatrix} s_r & 0 & 0 \\ 0 & s_c & 0 \end{bmatrix}$$
Rotation by α

$$\begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \end{bmatrix}$$

Skew (倾斜) of the vertical axis by heta

 $\begin{bmatrix} \cos\theta & 0 & 0\\ \sin\theta & 1 & 0 \end{bmatrix}$

Projective Transformations (投影变换)

• H : homography (单应), DoF = 8

$$egin{bmatrix} \hat{r} \ \hat{c} \ 1 \end{bmatrix} = egin{bmatrix} h_{11} & h_{12} & h_{13} \ h_{21} & h_{22} & h_{23} \ h_{31} & h_{32} & h_{33} \end{bmatrix} * egin{bmatrix} r \ c \ w \end{bmatrix}$$

Nearest-Neighbor Interpolation

• the closest of the four adjacent pixel centers

Bilinear Interpolation

• use four corresponding gray values and weights them appropriately

Bicubic Interpolation

Smoothing to avoid aliasing

Polar Transformations

Image Segmentation

Subpixel-Precise Thresholding

• 插值得到二维曲面, 然后二值化

Feature Extraction

Region Features

- Area
- Moments (矩)
 - $\circ m_{p,q} = \Sigma g_{r,c} r^p c^q$
 - 。 通过二阶中心矩的长轴短轴比可以判断圆与椭圆
- Ellipse Parameters
- Enclosing Rectangles and Circles
- Contour Length
 - Compactness of a region : $c=rac{l^2}{4\pi a}$
- · Rectangularity
 - $\circ~R=rac{A_0}{A_{MER}}$
- Roundness
 - $C = \frac{P^2}{4\pi A}$
 - P is the perimeter
 - A is the area
- Circularity
 - $egin{array}{lll} \circ & C = \min(1,C') \ \circ & C' = rac{A}{\pi d_{max}^2} \end{array}$
- Statistical Features
 - minimum and maximum gray value in a region
 - · mean gray value within the region
 - the variance of the gray values
 - standard deviation

Morphology

略

Blob analysis

• Blob 是指对一个提取的 Region 进行特征分析的过程

Lec 9 NCC Template Matching

- · To descrip the object to be found by a template
- · By computing the similarity between the template and the image

Gray-Value-Based Template Matching

Similarity Measures Based on Gray Value Differences

- $SAD(r,c) = \frac{1}{n} \Sigma_{(u,v)} |t(u,v) f(r+u,c+v)|$ $SSD(r,c) = \frac{1}{n} \Sigma_{(u,v)} (t(u,v) f(r+u,c+v))^2$
- We can find instances with a certain upper threshold. Disadvantage : Affected by the lighting.

Normalized Cross-Correlation (NCC)

$$NCC(r,c) = rac{1}{n} \Sigma_{(u,v)} rac{t(u,v) - m_t}{\sqrt{s_t^2}} * rac{f(r+u,c+v) - m_f(r,c)}{\sqrt{s_f^2(r,c)}}$$

$$m_t = rac{1}{n} \Sigma_{(u,v)} t(u,v)$$

$$s_t^2=rac{1}{n}\Sigma_{(u,v)}(t(u,v)-m_t)^2$$

$$m_f = rac{1}{n} \Sigma_{(u,v)} f(r+u,c+v)$$

$$s_f^2 = rac{1}{n} \Sigma_{(u,v)}(f(r+u,c+v) - m_f(r,c)^2)$$

Matching Using Image Pyramids

• Image Pyramids --- Sub-sampling

Robust Template Matching

- Mean squared edge distance
- Hausdorff distance

Lec 10 Robust Template Matching

Generalized Hough Transform (广义霍夫变换)

- Compute centroid (x_c, y_c)
- For each egde point (x,y), compute its distance to centroid $r(x-x_c,y-y_c)^T$
- Find edge orientation (gradient angle ϕ)
- Construct a table (R-table) of angle and r values

Detection precedures

- For each edge point
 - $\circ\;$ create an accumulator array of 2D (x,y)
 - $\circ\,$ For each edge point (x_i,y_i,ϕ_i) , to use its gradient orient to index stored table
 - For each entry r_k^i in table, compute:

•
$$x_c = x_i + r_k^i \cos heta_k^{ii}$$

•
$$y_c = y_i + r_k^i \sin heta_k^i$$

- \circ Incremental accumulator : $A(x_c,y_c) = A(x_c,y_c) + 1$
- Find local maxima in $A(x_c,y_c)$

Handle Scale and Rotation

- Use accumulator array : $A(x_c, y_c, S, \alpha)$
- · S is the scale factor
- α is the rotation factor
- Use
 - $egin{aligned} &\circ x_c = x_i + r_k^i S\cos(heta_k^i + lpha) \ &\circ y_c = y_i + r_k^i S\sin(heta_k^i + lpha) \end{aligned}$

$$\circ \; y_c = y_i + r_k^i S \sin(heta_k^i + d)$$

• $A(x_c, y_c, S, \alpha) = A(x_c, y_c, S, \alpha) + 1$

Shape-Based Matching

- Similar with Gray-Value-Based Template Matching but using gradient
- 略

Deformable Matching

略

Lec 11 Edge Detection and 1D 2D measurement

Definition of Edges

- Definition of Edges of 1D
 - f''(x) = 0
 - f'(x) > 0 : positive edge
 - f'(x) < 0 : negative edge
- Definition of Edges of 2D
 - gradient $\max(|\nabla f(r, c)|)$
 - $\circ\,$ zero-crossings of the Laplacian $\Delta f(r,c)=0$

1D Edge Extraction

- The first derivative is given by : $f_i' = rac{1}{2}(f_{i+1}-f_{i-1})$
- The second derivative is given by : $f_i'' = rac{1}{2}(f_{i+1} 2f_i + f_{i-1})$
- Using two convolution masks $rac{1}{2}(1\ 0\ -1)$ and $rac{1}{2}(1\ -2\ 1)$

2D Edge Extraction

Discrete derivatives are given in 2D

$$\begin{array}{l} \circ \ f_{r;i,j}' = \frac{1}{2}(f_{i+1,j} - f_{i-1,j}) \\ \circ \ f_{c;i,j}' = \frac{1}{2}(f_{i,j+1} - f_{i,j-1}) \\ \circ \ f_r = \begin{bmatrix} -1 & -a & -1 \\ 0 & 0 & 0 \\ 1 & a & 1 \end{bmatrix} f_c = \begin{bmatrix} -1 & 0 & 1 \\ -a & 0 & a \\ -1 & 0 & 1 \end{bmatrix} \\ \circ \ a = 1 : \text{Prewitt Filter} \\ \circ \ a = \sqrt{2} : \text{Frei Filter} \\ \circ \ a = 2 : \text{Sobel Filter} \end{array}$$

• Non-Maximum Supression

Accuracy and Precision of Edges

- Precision : how repeatable we can extract the value; the official name for precision is **repeatability**. Given by the variance $V[x] = \sigma_x^2$.
- Accuracy : how close on average the extracted value is to its true value. Discripted by the difference of the expected value E(x) of the value to the true value T : [E(x) T].

补充内容 Segmentation and Fitting of Geometric Primitives

Fitting Lines

- Line equation : y = mx + b
- Hessian normal form of the line : $lpha r + eta c + \gamma = 0$ with $lpha^2 + eta^2 = 1$
- Least-Squares Line Fitting
 - $\circ \ \min \epsilon^2 = \Sigma (lpha r_i + eta c_i + \gamma)^2 \lambda (lpha^2 + eta^2 1) n$
- Robust Line Fitting
 - $\circ~$ weight w_i for each point depending on the distance $\delta_i = |lpha r_i + eta c_i + \gamma|.$
 - 。 首先令 $w_i=1,$ 计算出当前 lpha 和 eta, 然后得出新 w_i 进行迭代。

Fitting Circles

Least-Squares Circle Fitting

$$\circ \min \epsilon^2 = \Sigma (\sqrt{(r_i - lpha)^2 + (c_i - eta)^2} -
ho)^2$$

- Robust Circle Fitting
 - same as line fitting

Fitting Ellipses

• similar with circles fitting

Segmentation of contours

• 略

Camera Calibration

• 略