## 实验一: 单容/双容水箱液位数学模型的测定实验

#### 实验目的

1、 用阶跃响应曲线法辨识一阶/二阶过程对象的数学模型。

- 2、 学习被控对象动态特性的工程测试方法。
- 3、 掌握被控对象动态特性特征参数的求取方法。

#### 实验要求

- 1、 预习实验指导书中的有关附录和内容。
- 2、 预习被控对象有关章节,作好前期准备。
- 3、 用工程测试的方法绘制被控对象的飞升特性。
- 4、 依据实验曲线求取被控对象动态特性的特征参数。

#### 实验内容

- 1、进入实验软件界面。
- 2、设置单容液位对象(开阀 W1,关闭其它各阀)。
- 3、建立初稳态(手动调整调节器输出,使第一水柱TANK1的液位稳定在某一值)。
- 4、施加阶跃输入(手动调整调节器输出,使其阶跃增加 10%)。
- 5、求取单容液位对象的飞升特性,绘制曲线。
- 6、设置双容对象(开连通阀 V1 和泄露阀 W3,关其它各阀)。
- 7、建立初稳态;施加阶跃输入;求取双容液位对象的飞升特性;绘制曲线。

#### 实验步骤

1、双击桌面"TTS20",打开控制软件。

| 🍯 TTS20 W7<br>File IO-Interface Parameters R | un View Help                       |                                                                                                      | -      |         | × |
|----------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------|--------|---------|---|
| Active Controller<br>no controller           | TTS-M<br>Measurement<br>Not active | onitor                                                                                               |        |         |   |
|                                              |                                    | -10.00 V<br>+ -10.00 V<br>+ -10.00 V<br>-10.00 V<br>-10.00 V<br>-10.00 V<br>+ -10.00 V<br>+ -10.00 V | Tank 1 | Tank 3  | 1 |
|                                              |                                    |                                                                                                      | Tank 2 | 0.49 cm |   |
|                                              |                                    |                                                                                                      |        |         |   |

图1.1 "TTS20"控制软件

2、将适配器控制PUMP1的开关拨到"手动",旋钮控制泵的流量在50%,此时泵流量50ml/s。 如下图所示。泵1开始工作,观察水箱1液位变化。



图1.2 适配器泵1工作模式设置

3、待液位稳定(监视界面液位1稳定在某一值)。如下图(只勾选Level tank 1 cm)所示:



图1.3 水箱液位监视图

4、点击控制软件界面工具栏"Run",选择"Measuring",在弹出的界面设置时间为500s,并 点击"OK"。如下图所示。

| ~ | Open Loop Control<br>Decoupling Controller | þr                                                                                                                                           |                                                                                                                                                       |
|---|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | PI-Controller                              |                                                                                                                                              |                                                                                                                                                       |
|   | Reset PI-Controller                        |                                                                                                                                              |                                                                                                                                                       |
|   | Stop Controller                            |                                                                                                                                              |                                                                                                                                                       |
|   | Adjust Set Point                           |                                                                                                                                              |                                                                                                                                                       |
|   | Measuring                                  | 0.20 m - 7.47 V                                                                                                                              |                                                                                                                                                       |
|   |                                            |                                                                                                                                              |                                                                                                                                                       |
|   |                                            |                                                                                                                                              |                                                                                                                                                       |
|   |                                            |                                                                                                                                              |                                                                                                                                                       |
|   |                                            | -10.00 V<br>Tank 2<br>(0.52 cm                                                                                                               |                                                                                                                                                       |
|   |                                            | Open Loop Control     Decoupling Controller     PI-Controller     Reset PI-Controller     Stop Controller     Adjust Set Point     Measuring | Open Loop Control<br>Decoupling Controller<br>PI-Controller<br>Stop Controller<br>Adjust Set Point<br>Measuring<br>8.20 cm 7.47 V<br>Tank 1<br>Tank 3 |

图1.4 开启软件测量

| Trigger Value 0<br>Prestore (s) 0<br>Trigger Slope:<br>no trigger<br>positive<br>negative | <ul> <li>setpoint tank 1 (cm)</li> <li>setpoint tank 2 (cm)</li> <li>liquid level tank 1 (cm)</li> <li>liquid level tank 2 (cm)</li> <li>liquid level tank 3 (cm)</li> <li>pump 1 flow rate (ml/s)</li> <li>pump 2 flow rate (ml/s)</li> </ul> | 🗸 ок |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|

图1.5 测量时间设置

5、控制软件界面时间进度条开始运行。如下图。

| TTS20 W7                           |                              |                   | -      |         | × |
|------------------------------------|------------------------------|-------------------|--------|---------|---|
| e IO-Interface Parameters          | Run View Help                |                   |        |         |   |
|                                    | TTS-N                        | Ionitor           |        |         |   |
| Active Controller<br>no controller | Measurement<br>Measuring 22% |                   |        |         |   |
|                                    |                              |                   | Tank 1 | 1       |   |
|                                    |                              | €.25 V            |        | Tank 3  |   |
|                                    |                              | -10.00 V          | Tank 2 |         |   |
|                                    |                              | € 1.39 cm 49.42 V |        | 0.55 cm | _ |
|                                    |                              |                   |        | 4       |   |

图1.6 监控界面时间进度显示

6、此时立即将泵1的调节旋钮开度增加10%(整量程的10%),即注水流量增加10%(整量程的10%,此时为60ml/s),给出一阶系统的阶跃输入。计量时间结束,进度条自动关闭。此时可以得到一阶系统的阶跃响应曲线。点击"View",选择"Plot Recorded Data"如下图。

| 🖁 TTS20 W7                     |                                     |          | 6      |   |        | × |
|--------------------------------|-------------------------------------|----------|--------|---|--------|---|
| le IO-Interface Parameters Run | View Help                           |          |        |   |        |   |
|                                | Plot Recorded Data                  |          |        |   |        |   |
| Active Controller              | Plot File Data                      |          |        |   |        |   |
| no controller                  | Parameters from *.PLD File          |          |        |   |        |   |
|                                | Characteristic Liquid Level Sensors |          |        |   |        |   |
|                                | Characteristic Pump Flow Rates      | -10.00 Y | Tank 1 | 2 |        |   |
| - Hornerselienen               | Outflow Coefficients                | -        |        |   |        |   |
|                                | Characteristic Outflow              | _        |        |   |        |   |
|                                | Show Monitor                        | €.52 V   |        | Т | ank 3  |   |
|                                | Stop Monitor                        | _        |        |   |        | 1 |
|                                | →<br>+<br>+<br>1.46 cm              | 10.00 ¥  | Tank 2 |   | .57 cm |   |
|                                |                                     |          |        |   |        |   |

图1.7 根据记录数据绘制曲线

### 阶跃响应曲线如图1.8所示。



图1.8 一阶系统阶跃响应曲线

7、打开连通阀 V1 和泄露阀 W3,关闭其它各阀,建立二阶双容系统。将适配器控制 PUMP1的开关拨到"手动",旋钮控制泵的流量在整量程的50%,使流量为50ml/s。如下图 所示。泵1开始工作,通过监视界面观察水箱3液位变化。



图1.9 适配器设置图示

各个阀的状态如图1.10所示。



图1.10 连通阀状态图

8、通过监控界面观察,待水箱3液位稳定在某一值(此过程需一定时间,约5-7分钟,请耐 心等待),此时重复步骤4-6。此过程须注意:

- 二阶系统测量时间设置为1000s(由软件限制在最大1000s)。如图1.11所示。
- 测量时间设置完成后,应立即将泵1的调节旋钮开度增加10%(满量程的10%),
   即注水流量阶跃增加,作为二阶系统的阶跃输入。此时为流量60ml/s。
- 过程中阀V1、W3开度保持不变。
- 阶跃输入不能取太大,以免TANK1液位超范围报警,影响测试结果;也不能太小,防止对象特性的不真实性。

| Total Time (s)      | n Trigger Channel                        |         |
|---------------------|------------------------------------------|---------|
|                     | <ul> <li>setpoint tank 1 (cm)</li> </ul> |         |
| Trigger Value 0.000 | 📃 🔘 setpoint tank 2 (cm)                 |         |
| Prestore (s) 0.000  | O liquid level tank 1 (cm)               |         |
| Trigger Slope:      | O liquid level tank 2 (cm)               |         |
| no trigger          | O liquid level tank 3 (cm)               |         |
| 🔾 positive          | O pump 1 flow rate (ml/s)                | OK.     |
| 🔿 negative          | O pump 2 flow rate (ml/s)                |         |
|                     |                                          | 🗙 Cance |

图1.11 测量时间设置

9、计时结束, 进度条自动关闭。点击"View", 选择"Plot Recorded Data"——"Liquid Levels" 如下图1.12。

| Channel                           |                |
|-----------------------------------|----------------|
| <ul> <li>Liquid levels</li> </ul> |                |
| O Liquid levels and set points    |                |
| O Pump flow rates                 |                |
| O Pump control signals            | 🗸 ОК           |
| O Levels and flow rates           | 🗙 Cancel       |
| Experiment Exp. No. 1             | ? <u>H</u> elp |

图1.12 根据记录数据绘制曲线

得到二阶系统的阶跃响应曲线,如图1.13,绿色曲线为TANK3液位变化图。



图1.13 二阶系统阶跃响应曲线

10、二阶系统响应曲线输出量是TANK3的液位高度,可以在输出页面按比例只显示TANK3的液位值变化,减小计算误差。主程序"TTS20 W7"中点击"View"——"Plot Recorded Data", 弹出页面选择"Liquid Levels",在弹出的曲线图中右键,会出现如图1.14所示界面。

| Select Curve | Curve Colour            | OK            |
|--------------|-------------------------|---------------|
| Descriptor : | Membership              | Cancel        |
| Level Tank 1 | to Y axis<br>to Y2 axis | Help          |
| _inestyle    | Mark Type               | Curve Layout: |

图1.14 Curves Layout界面

11、在上述界面中选择"to Y2 axis",点击"OK"。曲线显示如下图1.15所示。

I Plot Window 5, Tank Levels [cm], Exp. No. 1



D X

图1.15 TANK3 液位变化曲线

12、上述曲线可打印成清晰的PDF格式文档,方便取点计算。具体方法:"TTS20W7"主界 面选择"File"——"Save Recorded Data",弹出的界面将数据命名,存储为".pld"格式文件— PlotExperiment\_1.pld PlotExperiment\_2.pld
。然后点击"File"——"Load Recorded Data",弹出的对话框内选择 之前已保存的".pld"格式文件,点击"View"——"plot file data",选择相应的曲线类型,本实 验选择"Liquid levels",点击OK。在出现的曲线画面中,重复步骤10-11,并使期望保存的 曲线文件保持打开,然后在"TTS20W7"主界面选择"File"——"Print Plots",出现如下图1.16 所示画面。选择其中一个文件,点击OK,在弹出的对话框中选择路径,并命名文件。



图1.16 选择曲线生成pdf



31.3.2021, 14:35:15

图1.17 打印曲线生成pdf示例

实验报告

1、依据一阶响应曲线求取一阶过程对象动态特性的特征参数(K、T,τ),给出计算过程。

2、依据二阶响应曲线求取二阶过程对象动态特性的特征参数(K、T、τ),给出计算过程。

3、实验测得曲线结果附于报告中。

# 实验设备介绍

三容水箱系统的结构如图 A 所示,水箱主体部分主要由两个水泵、三个水 箱、三个漏水阀门、三个连通阀门以及一个蓄水池构成。

水泵 1 和水泵 2 从蓄水池中抽取水源分别给水箱 1 和水箱 2 直接供水, 由于水的压力,水箱 3 可以通过其底部左右两侧的连通管从水箱 1 和水箱 2 中获得水源,两个连通阀表示为V1、V3,同时三个水箱中又有一部分水通过水 箱 2 底部右侧的连通阀V2流回到蓄水池中。水箱 1、水箱2 和水箱 3 的底部 分别有一个阀门,能够实现对水箱发生泄漏情况的模拟。

三容水箱系统是典型的多输入多输出系统,输入量是水泵 1 和水泵 2 的流 量,输出通常为三个水箱中的液位高度。由于水箱 3 的底部与水箱 1 和水箱 2 的底部互相连通,并且水箱2 底部的连通是常开的状态,导致系统的动态响应过 程所需时间比较长,两个输入与输出量互相之间存在较强的耦合现象,系统内部 也存在着较强的非线性。

水箱T1、T3、T2截面积为A,连通管截面积Sn。Hmax液位最大值,超过此 值水泵自动停止供水。Q1和Q2是泵1和2的流量。技术参数表如表 I 所示。

| 参数含义    | 符号表示                                 | 取值                 | 单位             |
|---------|--------------------------------------|--------------------|----------------|
| 水箱横截面积  | А                                    | 0.0154             | m <sup>2</sup> |
| 连通管横截面积 | Sn                                   | 5*10 <sup>-5</sup> | m <sup>2</sup> |
| 液位最大值   | H <sub>max</sub>                     | 60(±2)             | cm             |
| 泵1/2的流量 | Q <sub>1max</sub> /Q <sub>2max</sub> | 100                | ml/s           |

表 I 技术参数表

11



图A 三容水箱结构图



图B 适配器功能模块图