实验五: 基于 MPC 的双容水箱液位预测控制实验

实验目的

(1) 了解预测控制 MPC 基本原理

(2) 基于 Matlab 的 MPC 控制器实现二阶系统——双容水箱的液位定值控制

实验原理

模型预测控制算法是一类以数学模型为基础的计算机控制算法,采用在线滚动优化策略和反馈自校正方法,能有效地克服被控对象的时变性、非线性、时滞性及耦合性等因素的影响,从而达到预期的控制目标。模型预测控制在实现过程中有3个关键步骤,分别是预测模型、滚动优化和反馈校正。

预网模型:预测模型是模型预测控制的基础,其主要功能是根据对象的 历史信息和未来输入,预测系统未来的输出,状态方程、传递函数都可以作为预 测模型。对于线性时不变系统,阶跃响应、脉冲响应这类非参数模型,可以直接 作为预测模型使用。

② 遠动优化:模型预测控制通过某一性能指标的最优来确定控制作用,但 优化不是一次离线进行,而是反复在线进行的。

③ 反馈校正:为了防止模型失配或者环境干扰引起控制对理想状态的偏离,在新的采样时刻,首先检测对象的实际输出,并利用这一实时信息对基于模型的预测结果进行修正,然后再进行新的优化。

动态矩阵控制 DMC 算法是一种基于被控对象单位阶跃响应的模型预测控制算法。通过反馈校正和滚动优化计算当前和未来时刻的控制量,使输出响应符合预先设定的参考轨迹运行。当 DMC 在线实施时,只涉及模型参数 *a_i*、控制参数 *d_i*和校正参数 *h_i*,除了校正参数 *h_i*可由设计者自由选取,模型参数 *a_i*取决于对象阶跃响应特性及采样周期的选择,控制参数 *d_i*取决于模型参数 *a_i*及优化性能指标,它们都是设计的结果而非直接可调参数。所以对于一般的被控对象,DMC 通常使用试凑法结合仿真,对设计参数进行整定。

实验内容

(1) 建立双容水箱液位控制二阶系统,用阶跃响应测试法得到以系统 TANK3 液 位高度为受控对象的数学模型,具体方法参见实验一。

$$G(s) = \frac{5e^{-10s}}{300s+1}$$

(2) 设计用于该模型控制的模型预测控制器,并在 Simulink 环境下启用该控制器 控制水箱设备。

Simulink 模型预测工具箱有 MPC 控制器,直接可以调用。

图 5-1 Matlab 工具箱 MPC 控制器

MPC 控制器说明如下:

Mo(measured output): 当前可测量的输出信号,实验中为水箱3的液位高度 实测值;

Ref(Reference signa):参考信号,实验中为水箱3的液位高度设定值;

Md(optional measured disturbance signa): 可选的测量干扰信号,本次实验不施加干扰;

Mv(optimal manipulated variables):最优操纵变量,实验中为控制器输出 给执行机构的控制信号;

实验步骤

① 搭建双容水箱液位控制系统,开连通阀1、泄露阀3,关其他各阀。运行 Matlab,打开桌面 TTS20\model prediction.slx。

图 5-2 控制程序界面

② 直接使用由实验一测得的二阶系统动态特性曲线,可以用广义一阶惯性 环节加纯滞后近似得到其开环传递函数:

$$G(s) = \frac{5e^{-10s}}{300s+1}$$

③ 在 Matlab 命令窗口输入: G=tf(5,[300 1],'iodelay',10),回车。然后输入 mpcDesigner,回车,弹出 MPC 控制器设计界面。如图 5-3。

Continuous-time transfer function.

📣 MPC Designe	r				and				9 <u>—9</u>		×
MPC DESIG	NER	TUNI	١G	视图		H HRR	XXXXX		i 9	6	? 💿
	MPC	ĴĴ	Л Ma	Ve				Re			
Open Save Session Session	MPC Structure	I/O Attributes	Import Plant	Import Controller	Plot Scenario 🔻	Edit ✓ Scenario ▼	Compare Controllers	Export Controller 👻			
FILE	STRU	CTURE	IM	PORT	SCEN	NARIO	RE	SULT			
Data Browser	•										
 ✓ Controllers 											
✓ Scenarios		·	- 1	a mlant					5 V (C	-h	

图 5-3 MPC 控制器设计界面

④ 在弹出的界面选择"MPC Structure",选择受控对象模型(G),采样时间建议设置为 5s,如下图 5-4 所示。点击"Define and Import"。

MPC Designer		Define MPC Structure By Importing	
MPC DESIGNER	TUNING	MPC Structure	6 🗗 🕐 🖸
Open Save Session Session FILE	I/O Import Plant JRE IN	O Measured Disturbances Serpoints (reference) MPC O Unmeasured Disturbances O Unmeasured Disturbances	7
✓ Plants 1		Select a plant model or an MPC controller from MATLAB Wo	
		Select Name Type Order Inputs Outputs G G tf 1 1 1 2 Controller Sample Time 3 Specify MPC controller sample time 5	
✓ Controllers		Assign plant i/o channels to desired signal types:	
✓ Scenarios		Manipulated variable (MV) channel indices: 1 Measured disturbance (MD) channel indices: 1 Unmeasured disturbance (UD) channel indices: 1	
		Measured output (MO) channel indices: 1 Unmeasured output (UO) channel indices:	
o get started, select "MPC Stru	icture ⁻ to impor	Cancel Help	channel types.

图 5-4 MPC 结构设计

⑤ 切换到"TUNING"页,预测时域输入 300,控制时域输入 10,回车。视

图区出现输入量仿真结果和输出量仿真结果。

图 5-5 输入量模拟结果

图 5-6 输出量模拟结果

⑥ 点击"Weight",设置输入权值为 0.1, Rate Weight 为 0,输出权值默 认为 1,如下图 5-7 所示。

图 5-7 权值设置

⑦ 点击"MPC DESIGNER"——"Edit Scenario"——"Simulation duration"设置为 500,其他保持默认值。点击"OK"。

MPC Designer - scenario1: Output	— 🗆 X
MPC DESIGNER TUNING 视图 Open Save MPC VO Import Import Plot Edit Session Structure Attributes Plant Controller Scenario Controller FILE STRUCTURE IMPORT Scenario1: Output 2 Data Browser Import Imput scenario1: Output 2	Simulation Secenario: scenario1 Simulation Settings Plant used in simulation: Default (controller internal model) Simulation duration (seconds) [500] Run open-loop simulation 3 Use unconstrained MPC Preview references (look ahead) Preview measured disturbances (look ahead)
	Reference Signals (setpoints for all outputs) Channel Name Nominal Signal Size Time Period r(1) Ref of M 0 Step 1 1 Output Disturbances (added at MO channels)
Controllers mpc1 (current)	Channel Name Nominal Signal Size Time Period y(1) MO1 0 Consta
Q 0.6 -	Channel Name Nominal Signal Size Time Period u(1) MV1 0 Consta ~
▼ Scenarios	lin.

图 5-8 仿真时域设置

⑧ 若仿真结果满意,则保存控制器设置。如下图 5-9 所示,点击"Save Session",保存至默认路径,名字选择默认即可。点击"Export Controller",选择第一项"Export Controller"。

⑨ 双击 simulink 控制程序"model_prediction"界面内的 MPC 控制器, 按如下设置采样时间和预测时域, 点击 "OK"。

Block Parameters: MPC Controller	>
MPC (mask) (link)	
The MPC Controller block lets you design and simulate a mode defined in the Model Predictive Control Toolbox.	l predictive controller
Parameters	
MPC Controller mpc1	Design
Initial Controller State	Review
Block Options	
General Online Features Default Conditions Others	
Controller Information	
Sample time 5 Prediction Horiz	zon 300
Plant Input Signal Sizes	
Number of manipulated variables 1	
Number of unmeasured disturbances 0	
Plant Output Signal Sizes	
Number of measured outputs 1	
Number of unmeasured outputs 0	
No. dram	
OK Cance	el Help Apply

图 5-10 程序中 MPC 控制器设置

10 TANK3 液位设定值为 9,编译程序并运行,建立初稳态后,设定值由 9 阶跃为 10,待系统重新进入稳态后,双击 TANK3 液位示波器观察系统输出曲线。参考曲线如下图 5-11 所示。

图 5-11 TANK3 液位输出变化曲线

 模型预测控制在线计算由初始化模块与实时模块组成,初始化模块是在投入运行的第一步检测对象的实际输出 y(k),并把它设定为预测初值 ŷ₀(k+i|k),i=1,2,...,N,从这里可以看出,过程在系统投入运行前必须处于相对 稳定的状态,否则在投入运行时会引起波动。

注意:

- > 预测时域 P 设置须大于等于控制时域 M (P≥M);
- ▶ M 增大不利于系统稳定性, M 减小使灵活性变弱;
- ▶ 采样时间越小,控制越及时,但会增加控制的计算量和存储量;
- > 实际被控过程存在大量非线性、时变性等不确定原因,基于模型的预测不可 能完全准确地与实际被控过程相符;
- ▶ "Rate Weight"越大,系统柔性越好,鲁棒性变好,但快速性变差;
- ▶ 综上所述, MPC 控制器的参数整定可综合试凑与仿真,观察对已确定数学 模型的系统输出量变化,并且最佳参数不是唯一的。

实验报告

- (1) 附实验中采集曲线,并记录此时响应曲线对应的 MPC 参数设置,分析实际 中使用 MPC 控制器的控制效果受哪些因素影响?可查阅资料给出说明。
- (2) 与 PID 控制比较, MPC 控制有什么优缺点? 可查阅资料给出说明。

附录 实验参考结果曲线

例 1 ——MPC 参数设置及 TANK3 液位变化曲线

📣 MPC Designer - scenario1: Output		– 🗆 X
MPC DESIGNER TUNING	视图	
MPC Controller: mpc1 Internal Plant: mpc1_pla CONTROLLER HO	ime: 5 zon: 12 zon: 4 IZON DESIGN Estimation Models • Slower State PERFORMER	Loop Performance Aggressive Review Store Export tete Estimation Faster Design Controller Controller V MAANCE TUNING ANALYSIS
Data Browser	scenario1: Input ×	scenario1: Output 🛪
▼ Plants		
mpc1_plant	2.5 [mput Response (against internal plant) 2.5 [mmut Response (against internal plant) 2 [mmut Response (against internal plant)	Output Response (against internal plant)
▼ Controllers		
mpc1 (current)	1.5 · · · · · · · · · · · · · · · · · · ·	0.8 0.4
▼ Scenarios scenario1	0.5 0 0 50 Time (seconds)	0.2 0 0 50 100 150 200 Time (seconds)
Weights (mo	-1)	x.

Input Weights (dimensionless)ChannelTypeWeightRate WeightTargetu(1)MV0.20.4nominal控制权参考轨迹参数

Output Weights (dimensionless)

Channel	Туре	Weight
y(1)	MO	1
		误差权
2		
CR Weight (dime	ensionless)	

例 2 ——MPC 参数设置及 TANK3 液位变化曲线(权值设置如图 5-7)

例 3 ——MPC 参数设置及 TANK3 液位变化曲线(权值设置如图 5-7)