(Due: Sep. 19, 2023)

1. $\left(5^{\prime}+10^{\prime}\right)$ Consider the following system

$$
\begin{equation*}
\ddot{y}+0.1 \dot{y}+y^{5}=6 \sin t \tag{1}
\end{equation*}
$$

(1) Let $x_{1}=y, x_{2}=\dot{y}$. Put system into state space model.
(2) Using Matlab to plot the trajectories of y under two initial conditions, i.e., $\left[x_{1}(0), x_{2}(0)\right]^{T}=[2,3]^{T}$ and $\left[x_{1}(0), x_{2}(0)\right]^{T}=[2.01,3.01]^{T}$. Is there significant difference when $0 \leq t<10 s$? How about when $t \geq 40 s$?
2. $\left(5^{\prime}+5^{\prime}+5^{\prime}\right)$

Consider the electrical network shown in Fig. 2. Find its state space model when the state are chosen to be $x=\left[v_{c}, i_{L}\right]^{T}$ and $x=\left[v_{c}, v_{o}\right]^{T}$, respectively. What is the relation between these two models?

Fig. 2 An electrical network
3. $\left(20^{\prime}\right)$

Let the eigenvalues of A be distinct and let $q_{i} \in \mathbb{R}^{n}$ be a right eigenvector of A associated with the eigenvalue λ_{i}. Define $Q=\left[q_{1}, q_{2}, \cdots, q_{n}\right]$ and define $P=Q^{-1}=\left[p_{1}^{T}, p_{2}^{T}, \cdots, p_{n}^{T}\right]^{T}$ where p_{i} is the i-th row of P. Show that p_{i} is a left eigenvector of A associated with λ_{i}.
4. $\left(40^{\prime}\right)$

Given a matrix $A \in \mathbb{R}^{m \times n}$ and vector $y \in \mathbb{R}^{m}$.
(1). Show that a solution x exists in $A x=y$ if and only if y lies in the range space of A or, equivalently $\operatorname{rank}(A)=\operatorname{rank}\left(\left[\begin{array}{ll}A & y\end{array}\right]\right)$ where $\left[\begin{array}{ll}A & y\end{array}\right]$ is an augmented matrix.
(2). Show that a solution x exists in $A x=y$ for every y if and only if A have a rank m (full row rank).
5. (10^{\prime}) (C.T.Chen 1984, Problem 2-13)

Show that similar matrices have the same characteristic polynomials, and consequently the same set of eigenvalues. (Hint: $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B))$

