(Due: Sept. 26, 2023)

1. $\left(10^{\prime}\right)$

Consider the linear algebraic equation

$$
\left[\begin{array}{cc}
2 & -1 \\
-3 & 3 \\
-1 & 2
\end{array}\right] x=y
$$

Does a solution x exist and unique in the equation when $y=[-1,0,-1]^{T}$? Does a solution exist if $y=[1,1,1]^{T}$. Please give detailed explanation.
2. (20') Find the Jordan canonical form representation of the following matrices:
(1). $A=\left[\begin{array}{ccc}1 & 4 & 10 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$
(2). $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -4 & -3\end{array}\right]$
3. (20') Show that if λ is an eigenvalue of A with eigenvector x, then $f(\lambda)$ is an eigenvalue of $f(A)$ with the same eigenvector A.
4. (20') For matrix $A=\left[\begin{array}{ccc}1 & 4 & 10 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$, compute e^{103} and $e^{A t}$.
5. (20') Show that if all eigenvalues of $A \in \mathbb{R}^{n \times n}$ are distinct, then $(s I-A)^{-1}$ can be expressed as

$$
(s I-A)^{-1}=\sum_{i=1}^{n} \frac{1}{s-\lambda_{i}} q_{i} p_{i}
$$

where q_{i} and p_{i} are the right and left eigenvectors of A associated with eigenvalue λ_{i}.
6. (10') Find the unit step response of the following system.

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{cc}
0 & 1 \\
-2 & -2
\end{array}\right] x+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u \\
& y=\left[\begin{array}{ll}
2 & 3
\end{array}\right] x
\end{aligned}
$$

