(Due: Oct. 24, 2023)

1. (30') Consider the following LTI system

$$
\begin{align*}
\dot{x} & =A x+B u \\
y & =C x+D u \tag{1}
\end{align*}
$$

where $x \in \mathbb{R}^{n}$ is the state, $u \in \mathbb{R}^{p}$ is the input, $y \in \mathbb{R}^{q}$ is the output. Show that all eigenvalues of $A+B K$ can be arbitrarily assigned (provided the complex conjugate eigenvalues are assigned in pairs) by selecting a real constant matrix K if and only if (A, B) is controllable.
2. (20') Consider the LTI system

$$
\begin{align*}
& \dot{x}=\left[\begin{array}{ccc}
-1 & 1 & -1 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] u \tag{2}\\
& y=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] x
\end{align*}
$$

Try to design a state feedback control law to shift the eigenvalues to $-1,-2,-3$ by transforming the above system to controllable form.
3. (30^{\prime}) Consider system (1). Let C and $\overline{\mathrm{C}}$ be its controllability matrix and observability matrix. If $\operatorname{rank}(\mathrm{C})=n_{1}<n$ and $\operatorname{rank}(\mathrm{C})=n_{2}<n$. Show that system (1) can be equivalently transformed into the following canonical form:

$$
\begin{align*}
{\left[\begin{array}{c}
\dot{\bar{x}}_{c o} \\
\overline{\bar{x}}_{c \bar{o}} \\
\overline{\bar{x}}_{\overline{c o}} \\
\overline{\bar{x}}_{\overline{c o}}
\end{array}\right] } & =\left[\begin{array}{cccc}
\bar{A}_{c o} & 0 & \bar{A}_{13} & 0 \\
\bar{A}_{21} & \bar{A}_{c \bar{o}} & \bar{A}_{23} & \bar{A}_{24} \\
0 & 0 & \bar{A}_{\overline{c o}} & 0 \\
0 & 0 & \bar{A}_{43} & \bar{A}_{\bar{c} \bar{o}}
\end{array}\right]\left[\begin{array}{c}
\bar{x}_{c o} \\
\bar{x}_{c \bar{o}} \\
\bar{x}_{\overline{c o}} \\
\bar{x}_{\overline{c o}}
\end{array}\right]+\left[\begin{array}{c}
\bar{B}_{c o} \\
\bar{B}_{c \bar{o}} \\
0 \\
0
\end{array}\right] u \tag{3}\\
y & =\left[\begin{array}{llll}
\bar{C}_{c o} & 0 & \bar{C}_{\bar{c} o} & 0
\end{array}\right] \bar{x}+D u
\end{align*}
$$

Further, the state-space equation (1) is zero-state equivalent to the controllable and observable state-space equation

$$
\begin{align*}
\dot{\bar{x}}_{c o} & =\bar{A}_{c o} \bar{x}_{c o}+\bar{B}_{c o} u \tag{4}\\
y & =\bar{C}_{c o} \bar{x}_{c o}+D u
\end{align*}
$$

and has the transfer matrix

$$
\begin{equation*}
\hat{G}(s)=\bar{C}_{c o}\left(s I-\bar{A}_{c o}\right)^{-1} \bar{B}_{c o}+D \tag{5}
\end{equation*}
$$

4. (20') Consider the system

$$
\begin{equation*}
\dot{x}=A x+b u, y=c x \tag{6}
\end{equation*}
$$

where $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 0 \\ -2 & 1 & 1\end{array}\right], b=\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right], \mathrm{c}=\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$.
(a) Is the system observable?
(b) Compute a matrix K such that $A+K c$ has three eigenvalue at -1 .
(c) Given that $A+b f$ is asymptotically stable for $f=\left[\begin{array}{lll}-9 & -74 & -24\end{array}\right]$, compute an output

Linear Systems Theory: HW5

feedback controller that stabilizes the system (6).

