
 Linear Systems Theory: HW5   

（Due: Oct. 24, 2023）  

1. (30’)  Consider the following LTI system 
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where n
x   is the state, p

u  is the input, q
y  is the output. Show that all eigenvalues of 

A BK+  can be arbitrarily assigned (provided the complex conjugate eigenvalues are assigned in pairs ) 

by selecting a real constant matrix K  if and only if ( , )A B  is controllable.  

2. (20’)  Consider the LTI system 
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Try to design a state feedback control law to shift the eigenvalues to -1, -2, -3 by transforming the 

above system to controllable form.  

3. (30’) Consider system (1). Let C  and C  be its controllability matrix and observability matrix. If 

1
( )rank n n= C   and 

2
( )rank n n= C  . Show that system (1) can be equivalently transformed 

into the following canonical form: 
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Further, the state-space equation (1) is zero-state equivalent to the controllable and observable 

state-space equation  
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and has the transfer matrix  
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4. (20’) Consider the system  

𝑥̇ = 𝐴𝑥 + 𝑏𝑢, 𝑦 = 𝑐𝑥                                                   (6) 

where 𝐴 = [
1 0 0
1 1 0

−2 1 1
] , 𝑏 = [

2
0
0

], c=[1 0 1]. 

(a) Is the system observable? 

(b) Compute a matrix 𝐾 such that 𝐴 + 𝐾𝑐 has three eigenvalue at -1. 

(c) Given that 𝐴 + 𝑏𝑓  is asymptotically stable for 𝑓 = ⌈−9 −74 −24⌉ , compute an output 
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feedback controller that stabilizes the system (6). 

  

 


