HOMEWORK 1

1. Gaussian RV: uncorrelatedness implies independence

Show that if two random variables X and Y are jointly normal and are uncorrelated, then they are independent.

Hint: Two random variables X, Y are jointly normal if

 $pdf(X,Y) = f_{X,Y}(x,y) = \frac{1}{2\pi |\det(C_Z)|^{1/2}} \exp\left[-\frac{1}{2}(Z - E(Z))^T C_Z^{-1}(Z - E(Z))\right],$ in which $Z = [X,Y]^T$.

2. WIDE-SENSE STATIONARY

Consider the signal plus noise $\mathbf{z}(n) = \mathbf{s} + \mathbf{v}(n)$, where \mathbf{s} is a RV with $E[\mathbf{s}] = 1, E[\mathbf{s}^2] = 2$, and for each value of $n, \mathbf{v}(n) \sim \mathcal{N}(0, 1)$. It is known that $E[\mathbf{sv}(i)] = 1$ for all i, and $\mathbf{v}(i)$ is independent of $\mathbf{v}(j)$ for all $i \neq j$.

- (1) Compute the autocorrelation function $R_z(i,j)$ of $\boldsymbol{z}(n)$ for all integers i, j.
- (2) Is $\boldsymbol{z}(n)$ WSS(Wide sense stationary)? If so, derive a mathematical expression for $R_z(k)$.