HOMEWORK 2

1. CASINO EXAMPLE

Assume the transition matrix is

$$A = \left[\begin{array}{rrr} F & L \\ F & 0.95 & 0.05 \\ L & 0.1 & 0.9 \end{array} \right]$$

and the emission probability matrix is

$$B = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ F & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ L & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{2} \end{bmatrix}$$

in which "F" denotes fair die and "L" represents loaded die. Denote Y as the number of dies, and X the status of the die, i.e., X = 0 means loaded and X = 1 indicates fair. If we have the observation $Y = \{6, 6, 6\}$, use maximum likelihood and maximum *a posteriori* estimate to estimate the status of the die.

2. DIFFERENT ESTIMATES

- (1) Suppose that $\boldsymbol{z} = \boldsymbol{s} + \boldsymbol{v}$, where \boldsymbol{s} and \boldsymbol{v} are independent, jointly distributed RVs with $\boldsymbol{s} \sim \mathcal{N}(\eta, \sigma^2)$ and $\boldsymbol{v} \sim \mathcal{N}(0, V^2)$.
 - (a) Derive an expression for $E[\boldsymbol{s}|\boldsymbol{z}=z]$.
 - (b) Derive an expression for $E[s^2|z=z]$.
- (2) Suppose that $\boldsymbol{z} = \boldsymbol{s} + \boldsymbol{v}$, where \boldsymbol{s} and \boldsymbol{v} are independent, jointly distributed RVs with $\boldsymbol{s} \sim \mathcal{N}(\eta_s, \sigma_s^2)$ and $\boldsymbol{v} \sim \mathcal{N}(0, \sigma_v^2)$. Assume we have measurements $\boldsymbol{z}(1), \ldots, \boldsymbol{z}(n)$,
 - (a) Derive the maximum likelihood estimate for s;
 - (b) Derive the maximum a posteriori estimate for s;
 - (c) Derive the minimum mean square estimate for s;
 - (d) Derive the linear minimum mean square estimate for s;
 - (e) Derive the least squares estimate for s provided measurements $z(1), \ldots, z(n)$;
 - (f) Suppose at each time $k \ (k \in \{1, ..., n\})$, there is a new measurement z(k), derive the recursive least squares estimate for s. (Assume $\hat{s}_0 = E(s)$, the initial error covariance is P_0);
 - (g) Compare all these 6 kinds of estimates.