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Optimal Estimation

Credit hour: 32. Credit: 2.

Final grades=homework×10%+Attendance×10%+Project×

40%+exam×40%

Lecturer: Jun Xu, xujunqgy@hit.edu.cn

Appointments for questions & explanations: send an email

Teaching assistant: Xinyu Geng, g1649468858@163.com
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Reference textbook

1. E. W. Kamen, J. K. Su. Introduction to Optimal Estimation.

Springer-Verlag London, 1999.

2. D. Simon. Optimal state estimation: Kalman, H infinity, and

nonlinear approaches. John Wiley & Sons, 2006.

3. T. D. Barfoot. State estimation for robotics. Cambridge University

Press, 2017.

4. J. L. Crassidis, J. L. Junkins. Optimal Estimation of Dynamic

Systems, Second Edition, CRC Press, 2011.
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Reference textbook
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Reference textbook
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Project

The project is a team project with two people.

The project could be an extension of existing methods in the

literature or, preferably, involve the original research ideas related to

your research interests.
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What is estimation?
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Example: Self-Driving Car
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A little history–the magnetic compass

for divination as early as the Chinese Han Dynasty (since c. 206 BC)

adopted for navigation by the Song Dynasty Chinese (11th century)

the first record in Western Europe and the Islamic world is around

1190.
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A little history–Navigation at sea

In the 15th century, global navigation on the open sea became

possible

following a compass bearing

Latitude determination (using quadrant)

Longitude determination (knowing the time of the day)
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A little history–Estimation in astronomy

the method of least squares was
pioneered by Gauss

1. developed the technique to minimize the

impact of measurement error in the

prediction of orbits

2. used least squares to predict the position

of the dwarf planet when he was 23!

3. proved that the least-squares method is

optimal under the assumption of normally

distributed errors when he was 31!

Introduction 1-14



A little history–Kalman filter

minimize the impact of measurement

error

Kalman published two landmark papers
in 1960

introduced the notion of observability (a

state can be inferred from a set of

measurements in a dynamic system)

introduced an optimal framework for

estimating a systems’s state in the

presence of measurement noise

developed the famous Kalman filter
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A little history–Kalman filter

Application in Apollo 11 lunar module (estimate the module’s position

above the lunar surface based on noisy radar measurements)
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An sketch of Kalman filter
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Early estimation milestones

1654 Pascal and Fermat lay foundations of probability theory

1764 Bayes’ rule

1801 Gauss uses least-squares to estimate the orbit of the planetoid Cares

1805 Legendre publishes “least squares”

1913 Markov chains

1933 (Chapman)-Kolmogorov equations

1949 Wiener filter

1960 Kalman(Bucy) filter

1965 Rauch-Tung-Striebel smoother

1970 Jazwinski coins “Bayes filter”

Introduction 1-18



A little history–new technologies

faster and cheaper computers

digital cameras

laser imaging

the Global Positioning System (GPS)
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Application of estimation

Applicable to virtually all areas of engineering and science

aerospace systems: the estimation of an aircraft’s or spacecraft’s

position and velocity based on radar measurements of position

communications: the estimation of congestion in a computer

communications network

biomedical engineering: the estimation of the health of a person’s

heart based on an electrocardiogram

manufactoring, chemical engineering, robotics, economics, ecology,

and many others
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Medical application
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What is estimation?

A collection of measurements is provided;

The statistical properties of the noise is known (or assumed to be

known);

Estimation is the problem of reconstructing the underlying state

(signal, parameter) of a system given a sequence of measurements as

well as a priori model (information) of the systems.∗

∗Leo Breiman. “Statistical Modeling: The Two Cultures (with comments and a
rejoinder by the author)”. In: Statistical Science 16.3 (Aug. 2001). Publisher:
Institute of Mathematical Statistics, pp. 199–231. issn: 0883-4237, 2168-8745. doi:
10.1214/ss/1009213726.
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Signal Estimation

Sensor

Estimator

Filter
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Signal Estimation

s(t) is a real-valued function of the continuous-time t

z(t) is generated from s(t), v(t) is a noise or disturbance term

explanation 1: in a communications system s(t) may be a transmitted

signal and z(t) is the received signal (a distorted version of s(t))

explanation 2: z(t) may be a measurement of the signal s(t) obtained

from a sensor (s(t) may be the output of a process or system)

objective: estimate the true signal s(t) from z(t), provided that the

distribution of the noise v(t) is known.
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Signal Estimation

Target tracking

z(t) = s(t) + v(t)

z(t) is a noisy measurement of a target’s position provided by a radar
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Signal Estimation

Reconstruction of s(t) from z(t): filtering or estimation

The estimator (filter) is a dynamical system: the estimate ŝ(t) at

time t generated by the estimator is not simply a function of z(t),

rather,

ŝ(t) = f({z(τ)| − ∞ < τ ≤ t}, t)

Objective: let ŝ(t) be as close to s(t) as possible
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State Estimation

A real life example for state estimation:

Introduction 1-28



State Estimation

When I drive into a tunnel, my GPS continues to show me moving

forward, even though it isn’t getting any new position sensing data.

In our case, given

a car with (approximately known) dynamics

noisy sensor data (position and velocity)

control commands (from the driver)

our current estimate of the car’s state

How can we predict the car’s next state? How can we control the car?
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State Estimation

State observer: a special kind of state estimator

lim
t→∞

(x̂(t) − x(t)) = 0
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State Estimation

Linear time-invariant continuous-time system:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

Corresponding state observer:

˙̂x(t) = Ax̂(t) + Bu(t) + H(y(t) − ŷ(t))

ŷ(t) = Cx̂(t)
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Parameter Estimation
Least squares (LS) estimation of signal parameters: Assume

s(n) =
q∑

j=1
θjγj(n)

z(n) = s(n) + v(n)

where θ1, θ2, . . . , θq are unknown parameters and

γ1(n), γ2(n), . . . , γq(n) are known functions of n.

How to estimate the parameter?

θ =


θ1

θ2
...

θq


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Parameter Estimation

min[z(1) − ŝ(1)]2 + [z(2) − ŝ(2)]2 + . . . + [z(n) − ŝ(n)]2

where

ŝ(n) =
q∑

j=1
θ̂jγj(n)
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Parameter Estimation

min(Zn − Γnθ̂)T (Zn − Γnθ̂)

where Zn =


z(1)

z(2)
...

z(n)

, Γn =


γ(1)

γ(2)
...

γ(n)

,

γ(n) = [γ1(n), γ2(n), . . . , γq(n)].
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Parameter Estimation

LS estimate of θ,

θ̂ =
[
ΓT

n Γn

]−1 ΓT
n Zn

provided that Γn is full column rank.
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What we are going to do

Discuss mathematical approaches to the best possible way of
estimating signal, state or parameters

more in the field of engineering, or applied mathematics

The approaches that we present for estimation are given with the goal
of eventual implementation in software

mostly geared toward discrete-time systems
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Questions?
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