Lecture 1 Introduction

[Course Information](#page-1-0)

[What is estimation?](#page-7-0)

[Mathematical description of estimation](#page-21-0)

Contents

[Course Information](#page-1-0)

[What is estimation?](#page-7-0)

[Mathematical description of estimation](#page-21-0)

Optimal Estimation

- Credit hour: 32. Credit: 2.
- Final grades=homework $\times 10\% +$ Attendance $\times 10\% +$ Project \times $40% + e \times am \times 40%$
- Lecturer: Jun Xu, xujunqgy@hit.edu.cn
- Appointments for questions & explanations: send an email
- Teaching assistant: Xinyu Geng, g1649468858@163.com

Reference textbook

- 1. E. W. Kamen, J. K. Su. Introduction to Optimal Estimation. Springer-Verlag London, 1999.
- 2. D. Simon. Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons, 2006.
- 3. T. D. Barfoot. State estimation for robotics. Cambridge University Press, 2017.
- 4. J. L. Crassidis, J. L. Junkins. Optimal Estimation of Dynamic Systems, Second Edition, CRC Press, 2011.

Reference textbook

Reference textbook

Optimal Estimation of Dynamic Systems

Second Edition

John L. Crassidis John L. Junkins

Project

- The project is a team project with two people.
- The project could be an extension of existing methods in the literature or, preferably, involve the original research ideas related to your research interests.

Contents

• [Course Information](#page-1-0)

[What is estimation?](#page-7-0)

[Mathematical description of estimation](#page-21-0)

What is estimation?

Example: Self-Driving Car

A little history–the magnetic compass

- for divination as early as the Chinese Han Dynasty (since c. 206 BC)
- adopted for navigation by the Song Dynasty Chinese (11th century)
- o the first record in Western Europe and the Islamic world is around 1190.

Introduction 1-11

A little history–Navigation at sea

- In the 15th century, global navigation on the open sea became possible
- following a compass bearing
- Latitude determination (using quadrant)
- Longitude determination (knowing the time of the day)

A little history–Estimation in astronomy

- o the method of least squares was pioneered by Gauss
	- 1. developed the technique to minimize the impact of measurement error in the prediction of orbits
	- 2. used least squares to predict the position of the dwarf planet when he was 23!
	- 3. proved that the least-squares method is optimal under the assumption of normally distributed errors when he was 31!

A little history–Kalman filter

minimize the impact of measurement

error

- Kalman published two landmark papers in 1960
	- introduced the notion of observability (a state can be inferred from a set of measurements in a dynamic system)
	- introduced an optimal framework for estimating a systems's state in the presence of measurement noise
	- developed the famous Kalman filter

A little history–Kalman filter

Application in Apollo 11 lunar module (estimate the module's position above the lunar surface based on noisy radar measurements)

An sketch of Kalman filter

Early estimation milestones

- 1654 Pascal and Fermat lay foundations of probability theory
- 1764 Bayes' rule
- 1801 Gauss uses least-squares to estimate the orbit of the planetoid Cares
- 1805 Legendre publishes "least squares"
- 1913 Markov chains
- 1933 (Chapman)-Kolmogorov equations
- 1949 Wiener filter
- 1960 Kalman(Bucy) filter
- 1965 Rauch-Tung-Striebel smoother
- 1970 Jazwinski coins "Bayes filter"

A little history–new technologies

- o faster and cheaper computers
- digital cameras
- **·** laser imaging
- the Global Positioning System (GPS)

Application of estimation

Applicable to virtually all areas of engineering and science

- aerospace systems: the estimation of an aircraft's or spacecraft's position and velocity based on radar measurements of position
- communications: the estimation of congestion in a computer communications network
- biomedical engineering: the estimation of the health of a person's heart based on an electrocardiogram
- manufactoring, chemical engineering, robotics, economics, ecology, and many others

Medical application

Contents

[Course Information](#page-1-0)

[What is estimation?](#page-7-0)

[Mathematical description of estimation](#page-21-0)

What is estimation?

- A collection of measurements is provided;
- The statistical properties of the noise is known (or assumed to be known);
- Estimation is the problem of reconstructing the underlying state (signal, parameter) of a system given a sequence of measurements as well as a priori model (information) of the systems.^{*}

[∗]Leo Breiman. "Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author)". In: Statistical Science 16.3 (Aug. 2001). Publisher: Institute of Mathematical Statistics, pp. 199-231. ISSN: 0883-4237, 2168-8745. DOI: [10.1214/ss/1009213726](https://doi.org/10.1214/ss/1009213726).

$$
s(t)
$$
\n
$$
s(t)
$$
\n
$$
s(t) = g(s(t), v(t), t)
$$
\n
$$
v(t)
$$
\n
$$
z(t) = g(s(t), v(t), t)
$$
\n
$$
s(t)
$$
\n
$$
v(t)
$$

- \bullet $s(t)$ is a real-valued function of the continuous-time t
- \circ $z(t)$ is generated from $s(t)$, $v(t)$ is a noise or disturbance term
- \bullet explanation 1: in a communications system $s(t)$ may be a transmitted signal and *z*(*t*) is the received signal (a distorted version of *s*(*t*))
- explanation 2: $z(t)$ may be a measurement of the signal $s(t)$ obtained from a sensor $(s(t)$ may be the output of a process or system)
- objective: estimate the true signal $s(t)$ from $z(t)$, provided that the distribution of the noise *v*(*t*) is known.

Target tracking

$$
z(t) = s(t) + v(t)
$$

 $z(t)$ is a noisy measurement of a target's position provided by a radar

- Reconstruction of $s(t)$ from $z(t)$: filtering or estimation
- \bullet The estimator (filter) is a **dynamical system**: the estimate $\hat{s}(t)$ at time *t* generated by the estimator is not simply a function of $z(t)$, rather,

$$
\hat{s}(t) = f(\{z(\tau) | -\infty < \tau \le t\}, t)
$$

 \bullet Objective: let $\hat{s}(t)$ be as close to $s(t)$ as possible

A real life example for state estimation:

When I drive into a tunnel, my GPS continues to show me moving forward, even though it isn't getting any new position sensing data. In our case, given

- a car with (approximately known) dynamics
- noisy sensor data (position and velocity)
- control commands (from the driver)
- \bullet our current estimate of the car's state

How can we predict the car's next state? How can we control the car?

State observer: a special kind of state estimator

$$
\lim_{t \to \infty} (\hat{x}(t) - x(t)) = 0
$$

Linear time-invariant continuous-time system:

$$
\dot{x}(t) = Ax(t) + Bu(t)
$$

$$
y(t) = Cx(t)
$$

Corresponding state observer:

$$
\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) + H(y(t) - \hat{y}(t))
$$

$$
\hat{y}(t) = C\hat{x}(t)
$$

Least squares (LS) estimation of signal parameters: Assume

$$
s(n) = \sum_{j=1}^{q} \theta_j \gamma_j(n)
$$

$$
z(n) = s(n) + v(n)
$$

where $\theta_1, \theta_2, \ldots, \theta_q$ are unknown parameters and $\gamma_1(n), \gamma_2(n), \ldots, \gamma_q(n)$ are known functions of *n*. How to estimate the parameter?

$$
\theta = \left[\begin{array}{c} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_q \end{array} \right]
$$

$$
\min[z(1)-\hat{s}(1)]^2+[z(2)-\hat{s}(2)]^2+\ldots+[z(n)-\hat{s}(n)]^2
$$

where

$$
\hat{s}(n) = \sum_{j=1}^{q} \hat{\theta}_j \gamma_j(n)
$$

$$
\min(Z_n - \Gamma_n \hat{\theta})^T (Z_n - \Gamma_n \hat{\theta})
$$

where $Z_n = \begin{bmatrix} z(1) \\ z(2) \\ \vdots \\ z(n) \end{bmatrix}$, $\Gamma_n = \begin{bmatrix} \gamma(1) \\ \gamma(2) \\ \vdots \\ \gamma(n) \end{bmatrix}$,

$$
\gamma(n) = [\gamma_1(n), \gamma_2(n), \dots, \gamma_q(n)].
$$

LS estimate of *θ*,

$$
\hat{\theta} = \left[\Gamma_n^T \Gamma_n\right]^{-1} \Gamma_n^T Z_n
$$

provided that Γ*ⁿ* is full column rank.

What we are going to do

Discuss mathematical approaches to the best possible way of estimating signal, state or parameters

more in the field of engineering, or applied mathematics

- The approaches that we present for estimation are given with the goal of eventual implementation in software
	- mostly geared toward discrete-time systems

Questions?