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In our attempts to filter a signal, we will be trying to extract meaningful

information from a noisy signal. In order to accomplish this, we need to

know something about what the noise is, some of its characteristics, and

how it works.
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Probability

The probability of event A (see refs for formal definition)

P (A) = Number of times A occurs
Total number of outcomes

Example: what is the probability of getting the number 1 four times

when rolling a six-sided die 6 times?)

P (A) = C4
6 · 5 · 5

66 = 0.0080
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Probability

The conditional probability of event A given event B: (P (B) ̸= 0)

P (A|B) = P (A, B)
P (B)

P (A|B) is the conditional probability of A given B, i.e, the probability

that A occurs given the fact that B occurred

P (A, B) is the joint probability of A and B, i.e., the probability that event

A and B both occur

P (A) or P (B) is called an a priori probability as it applies to the probability

of an event apart from any previously known information

The conditional probability is called an a posteriori probability as it applies

to a probability given the fact that some information about a possibly

related event is already known
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Example

P (circle) = 3/8, P (square) = 5/8;

P (gray, circle) = 1/8, P (gray|circle) = 1/3;

P (white|square) = 1/8
5/8 = 1/5.
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Bayers’ Rule

P (A, B) = P (A|B)P (B) = P (B|A)P (A)

P (A|B) = P (B|A)P (A)
P (B) (statement of theorem)

P (gray|circle) = P (circle|gray)P (gray)
P (circle)

= (1/5)(5/8)
3/8 = 1/3

Independence

We say that two events are independent if the occurrence of one event
has no effect on the probability of the occurrence of the other event.

P (A, B) = P (A)P (B)

P (A|B) = P (A)

P (B|A) = P (B)
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Random variables

RV (random variable): a functional mapping from a set of experimental

outcomes (the domain) to a set of real numbers (the range)

the outcome of a particular experiment is not a RV

the RV X exists independently of any of its realizations

the RV X will always be random and will never be equal to a specific

value
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Random variables

A RV can be either continuous or discrete (realizations belong to a

discrete or continuous set of values)

Probability distribution function (PDF):

FX(x) = P (X ≤ x)

Properties:

FX(x) is the PDF of the RV X

x is a nonrandom independent variable or constant

FX(x) ∈ [0, 1], FX(−∞) = 0, FX(∞) = 1

FX(a) ≤ FX(b) if a ≤ b

P (a < X ≤ b) = FX(b) − FX(a)
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Probability density function (pdf)

fX(x) = dFX(x)
dx

Properties:

FX(x) =
∫ x

−∞ fX(z)dz

fX(x) ≥ 0∫ ∞
−∞ fX(x)dx = 1

P (a < x ≤ b) =
∫ b

a
fX(x)dx
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Example: uniformly-distributed RV

Take a measurement with the set S of outcomes equal to any number

between -1 and 1;

Define the RV Z by Z(α) = α;

the distribution function is given by

FZ(z) =


0, z < −1

0.5(z + 1), −1 < z < 1;

1, z > 1;

the density function is

fZ(z) =

 0.5, −1 < z < 1

0, otherwise.

The RV Z is a uniformly distributed continuous RV.
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Example: Gaussian RV

Take a measurement with the set S of outcomes equal to any number

between -1 and 1;

Define the RV Z by Z(α) = α;

Assume the density function is

fZ(z) = 1√
2πσ

e− (z−η)2

2σ2 ,

where η is a real number and σ is a positive number;

The RV Z is a Gaussian or normal RV, denoted as Z ∼ N (η, σ2).
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Expected value

The expected value (expectation, mean, average) of a RV X is defined

as its average value over a large number of experiments.

E(X) = lim
N→∞

1
N

m∑
i=1

Aini

the outcome Ai occurs ni times

The expected value of any function g(X):

E[g(X)] =
∫ ∞

−∞
g(x)fX(x)dx
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Variance

The variance of a RV is a measure of how much we expect the RV to

vary from its mean.

The variance is a measure of how much variability there is in a RV.

σ2
X = E[(X − EX)2] =

∫ ∞
−∞(x − EX)2fX(x)dx, σ2

X = E(X2) −

(EX)2.

Standard deviation σ(σX)
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Transformations of random variables
Suppose that we have two RVs, X and Y , related to one another by the

monotonic functions g(·) and h(·):

Y = g(X)

X = g−1(Y ) = h(Y )

If we know the pdf of X, then we can compute the pdf of Y as follows:

P (X ∈ [x, x + dx]) = P (Y ∈ [y, y + dy])(dx > 0)∫ x+dx

x

fX(z)dz =


∫ y+dy

y
fY (z)dz if dy>0

−
∫ y+dy

y
fY (z)dz if dy<0

fX(x)dx = fY (y)|dy|

fY (y) = |dx

dy
|fX [h(y)] = |h′(y)|fX [h(y)]
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Example: find the pdf of a linear function of a

Gaussian RV

Suppose X ∼ N(x̄, σ2
x) and Y = g(X) = aX + b, a, b ∈ R, Solve fY (y).
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X = h(Y )

= (Y − b)/a

h′(y) = 1/a

fY (y) = |h′(y)|fX [h(y)]

= | 1
a | 1

σX

√
2π

exp
{

−[(y−b)/a−x̄]2

2σ2
X

}
= 1

|a|σX

√
2π

exp
{

−[y−(ax̄+b)]2

2a2σ2
X

}
i.e., Y ∼ N (ax̄ + b, a2σ2

x).
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Multiple random variables

Joint distribution function

FXY (x, y) = P (X ≤ x, Y ≤ y) (F (x, y))

F (x, y) ∈ [0, 1], F (x, −∞) = F (−∞, y) = 0, F (∞, ∞) = 1

F (a, c) ≤ F (b, d) if a ≤ b and c ≤ d

P (a < X ≤ b, c < Y ≤ d) = F (b, d) + F (a, c) − F (a, d) − F (b, c)

F (x, ∞) = F (x), F (∞, y) = F (y) (marginal distribution function)
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Joint probability density function

fXY (x, y) = ∂2FXY (x,y)
∂x∂y (f(x, y))

F (x, y) =
∫ x

−∞
∫ y

−∞ f(z1, z2)dz1dz2

f(x, y) ≥ 0,
∫ ∞

−∞
∫ ∞

−∞ f(x, y)dxdy = 1

P (a < X ≤ b, c < Y ≤ d) =
∫ d

c

∫ b

a
f(x, y)dxdy

f(x) =
∫ ∞

−∞ f(x, y)dy, f(y) =
∫ ∞

−∞ f(x, y)dx (marginal density func-

tion)
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Mixed moments

Expectation of functions of X and Y :

E[g(X, Y )] =
∫ ∞

−∞

∫ ∞

−∞
g(x, y)f(x, y)dxdy

Covariance of two scalar RVs X and Y : CXY = E[(X − E(X))(Y −

E(Y ))] = E(XY ) − E(X)E(Y )
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Statistical independence

The RVs X and Y are independent if they satisfy the following equality

P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y), ∀x, y

FXY (x, y) = FX(x)FY (y), fXY (x, y) = fX(x)fY (y)
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Statistical Uncorrelatedness

Correlation coefficient of two scalar RVs X and Y : ρ = CXY

σxσy
.

Correlation of two scalar RVs X and Y is defined as RXY = E(XY ).

The RVs X and Y are uncorrelated if

ρ = 0 or RXY = E(X)E(Y ).

Independent ⊊ Uncorrelated
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Uncorrelatedness VS independence

Two RVs X and Y have either a relationship or they don’t have a

relationship at all

Now if there is a relationship, it’s either linear or non-linear

Assume Y = aX + b, we have

E(XY ) = aEX2 + bEX

On the other hand,

EXEY = a(EX)2 + bEX

Except for the case EX2 = (EX)2, i.e., DX = 0, we have

E(XY ) ̸= EXEY
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Cases when there are no linear relationship between 2

RVs
Assume (X, Y ) conforms to the uniform distribution on the boundary of

a unit circle, and they satisfy,

X2 + Y 2 = 1,

then we have f(x, y) = 1
π , ∀x ∈ [−1, 1], y = ±

√
1 − x2.

We further have

fX(x) = 2
√

1−x2

π , ∀x ∈ [−1, 1]

fY (y) = 2
√

1−y2

π , ∀y ∈ [−1, 1]

Thus

E(XY ) = 0, EX = 0, EY = 0
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Statistical Orthogonality

Two RVs are said to be orthogonal if RXY = 0

Two uncorrelated RVs are orthogonal only if at least one of them is

zero-mean
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Example

A slot machine is rigged so you get -1, 0, or 1 with equal probability for

the first spin X. On the second spin Y you get 1 if X = 0, and 0 if

X ̸= 0.
E(X) = −1+0+1

3 = 0

E(Y ) = 0+1+0
3 = 1/3

E(XY ) = (−1)(0)+(0)(1)+(1)(0)
3 = 0

X and Y are uncorrelated because E(XY ) = E(X)E(Y )

X and Y are orthogonal because E(XY ) = 0

The two RVs are dependent because the realization of Y depends on

the realization of X.
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Conditional Density Functions

Let X and Y be jointly distributed RVs;

Define the conditional distribution function FY (y|x1 < X ≤ x2) as

the conditional probability of the event {Y ≤ y} given that the event

{x1 < X ≤ x2} occurred, i.e.,

FY (y|x1 < X ≤ x2) = P (Y ≤ y|x1 < X ≤ x2);

Define the conditional density function fY (y|X = x) as

fY (y|X = x) = lim
∆x→0

fY (y|x < X ≤ x + ∆x);

We have

fY (y|X = x) = fX,Y (x, y)
fX(x) , fY (y|X = x) = fX(x|Y = y)fY (y)

fX(x) .
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Multivariate statistics

Given an n-element RV X and an m-element RV Y (assuming that

both X and Y are column vectors), their correlation is defined as

RXY = E(XY T )

=


E(X1Y1) · · · E(X1Ym)

...
...

E(XnY1) · · · E(XnYm)


Their covariance is defined as

CXY = E[(X − E(X))(Y − E(Y ))T ]

= E(XY T ) − E(X)E(Y )T
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The autocorrelation of the n-element RV X is defined as

RX = E[XXT ]

=


E(X2

1 ) · · · E(X1Xn)
...

...

E(XnX1) · · · E(X2
n)


We have RX = RT

X , i.e., an autocorrelation matrix is always symmetric.

Besides, an autocorrelation matrix is always positive semidefinite.

zT RXz = zT E[XXT ]z = E[zT XXT z] = E[(zT X)2] ≥ 0
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The autocovariance of n-element RV X is defined as
CX = E[(X − E(X))(X − E(X)T )]

=

 E(X1 − E(X1))2 · · · E[(X1 − E(X1))(Xn − E(Xn))]

.

.

.
.
.
.

E[(Xn − E(Xn))(X1 − E(X1))] · · · E[(Xn − E(Xn))2]


=

 σ2
1 · · · σ1n

.

.

.
.
.
.

σn1 · · · σ2
n


An auto covariance matrix is always symmetric and positive semidefinite.

zT CXz = zT E[(X − X̄)(X − X̄)T ]z = E[(zT (X − X̄))2] ≥ 0
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Linear transformation of Gaussian RV

An n-element RV X is Gaussian (normal) if

pdf(X) = 1
(2π)n/2| det(CX)|1/2 exp

[
−1

2(x − E(X))T C−1
X (x − E(X))

]
Consider a Gaussian RV X that undergoes a linear transformation Y =

g(X) = AX + b, where A ∈ Rn×n, b ∈ Rn.

If A is invertible, we have

fY (y) = |h′(y)|fX [h(y)]

= 1
(2π)n/2| det(ACX AT )|1/2 exp

[
− 1

2 (y − E(Y ))T (ACXAT )−1(y − E(Y ))
]

,

i.e., Y ∼ N (AE(X)+b, ACXAT ). The normality is preserved in linear

transformations of random vectors (just as in scalar case).
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Matrix derivative

Usually, for vector derivative, the vector is defined as a column vector.

For f(x) : Rn → R, the Jacobian of f(x) is an n × 1 vector and the

Hessian of f(x) is an n × n matrix.

∇xf = ∂f

∂x
=


∂f

∂x1
∂f

∂x2
.
.
.

∂f
∂xn

 , ∇2
xf = ∂2f

∂x∂xT
=


∂2f

∂x1∂x1
∂2f

∂x1∂x2
· · · ∂2f

∂x1∂xn
∂2f

∂x2∂x1
∂2f

∂x2∂x2
· · · ∂2f

∂x2∂xn

.

.

.
.
.
.

.

.

.
∂2f

∂xn∂x1
∂2f

∂xn∂x2
· · · ∂2f

∂xn∂xn
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Matrix derivative

Vector by vector derivative, f(x) : Rn → Rm(m > 1), where

f = [f1, . . . , fm]T , x = [x1, . . . , xn]T , the Jacobian matrix,

∇xf = ∂f

∂x
=



∂f1
∂x1

∂f2
∂x1

· · · ∂fm

∂x1

∂f1
∂x2

∂f2
∂x2

· · · ∂fm

∂x2
...

...
...

∂f1
∂xn

∂f2
∂xn

· · · ∂fm

∂xn
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Matrix derivative

Scalar by matrix derivative, f(X) : Rn×m → R, where n, m > 1 and

X =


x11 · · · x1m

...
. . .

...

xn1 · · · xnm


we have

∇xf = ∂f

∂x
=



∂f
∂x11

· · · ∂f
∂x1m

∂f
∂x21

· · · ∂f
∂x2m

...
. . .

...
∂f

∂xn1
· · · ∂f

∂xnm
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Properties of the determinant

det (In) = 1 where In is the n × n identity matrix.

det
(
AT

)
= det(A),

det
(
A−1)

= 1
det(A) = det(A)−1

For square matrices A and B of equal size, det(AB) = det(A) det(B).

det(cA) = cn det(A) for an n × n matrix A.
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Linear transformation of Gaussian RV

fY (y) = |h′(y)|fX [h(y)]

= | det(A−1)|fX [h(y)]

= | det(A−1)| 1
(2π)n/2| det(CX )|1/2 ·

exp

{
− 1

2

[
A−1(y − b) − E(X)

]T
C

−1
X

[∗]

}
= | det(A−1)| 1

(2π)n/2| det(CX )|1/2 ·

exp

{
− 1

2

[
A−1y − A−1b − x̄

]T
C

−1
X

[∗]

}
= 1

(2π)n/2| det(A)|| det(CX )|1/2 ·

exp

{
− 1

2

[
A−1y − A−1b − A−1ȳ + A−1b

]T
C

−1
X

[∗]

}
= 1

(2π)n/2| det(A)|1/2| det(CX )|1/2| det(AT )|1/2 exp
[

− 1
2 (y − ȳ)T (A−1)T C

−1
X

A−1(y − ȳ)
]

= 1
(2π)n/2| det(ACX AT )|1/2 exp

[
− 1

2 (y − ȳ)T (ACX AT )−1(y − ȳ)
]
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Linear transformation of Gaussian RV: Understanding the covariance

-4 -3 -2 -1 0 1 2 3 4 5

-3

-2

-1

0

1

2

3

4

Points after linear transformation. The blue denotes the original points conforming to normal distribution,

CX = diag(0.32, 0.32), the green points A =

[
0 1

3.1623 0

]
, b = 0, the red

A =

[
0 1

3.1623 0

]
, b = [−1, −1]T , the yellow A =

[
−1.5648 −0.7425

−2.1711 0.5352

]
, b = [2, 2]T
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Ellipsoid

If v is a point and A is a real, symmetric, positive-definite matrix, then the

set of points x that satisfy the equation

(x − v)T A(x − v) = 1

is an ellipsoid centered at v.

The eigenvectors of A are the principal axes of the ellipsoid, and the eigen-

values of A are the reciprocals of the squares of the semi-axes: a−2, b−2 and

c−2.

An invertible linear transformation applied to a sphere produces an ellipsoid.

If the linear transformation is represented by a symmetric 3 × 3 matrix, then

the eigenvectors of the matrix are orthogonal and represent the directions of

the axes of the ellipsoid
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Eigen decomposition of the covariance matrix

An eigenvector is a vector whose direction remains unchanged when a

linear transformation is applied to it. It can be expressed as

Av = λv

For a covariance matrix Σ, assume the SVD decomposition is,

Σ = UΛU−1

then we have ΣU = Uλ, meaning that U and Λ represents the eigen-

vectors and eigenvalues of Σ, respectively.

The eigenvectors are unit vectors representing the direction of the

largest variance of the data, while the eigenvalues represent the mag-

nitude of this variance in the corresponding directions.
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Principle component analysis

In case where data lies on or near a low d--dimensional linear subspace,

axes of this subspace are an effective representation of the data.

Identifying the axes is known as Principal Components Analysis, and

can be obtained by using classic matrix computation tools (Eigen or

Singular Value Decomposition).
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PCA algorithm

Given data {x1, . . . , xm}, compute the covariance matrix Σ,

Σ = 1
m

m∑
i=1

(xi − x̄)(xi − x̄)T

where x̄ = 1
m

m∑
i=1

xi.

PCA basis vectors = the eigenvectors of Σ

Larger eigenvalue ⇒ more important eigenvectors
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PCA: eigenvalue & eigenvector

For symmetric matrices, eigenvectors for distinct eigenvalues are or-

thogonal,

Σv{1,2} = λ{1,2}v{1,2}, and λ1 ̸= λ2 ⇒ vT
1 v2 = 0.

All eigenvalues of a real symmetric matrix are real.

All eigenvalues of a positive semidefinite matrix are nonnegative.
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Let z = vT
1 Σv2, as z is a scalar, we have zT = z, i.e.,

vT
2 ΣT v1 = vT

1 Σv2

As Σ is symmetric, we then have

vT
2 Σv1 = vT

2 λ1v1 = vT
1 λ2vT

2

that is

λ1vT
1 v2 = λ2vT

1 v2

as λ1 ̸= λ2, we have

vT
1 v2 = 0.
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PCA algorithm

Eigenvalue decomposition:

Σ = UΛU−1

Columns of U are eigenvectors of Σ

Diagonal elements of Λ are eigenvalues of Σ

Λ = diag(λ1, . . . , λm), λi ≥ λi+1.

Select

Uk = [u1, . . . , uk], Λk = diag(λ1, . . . , λk),

Let

zi = UT
k xi

PCA learns the above linear transformation and construct the dataset
Z = {z1, . . . , zm}.

with cov(Z, Z) = Λk. (dimensionality reduction)
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A stochastic process, also called a random process, is a very simple

generalization of the concept of a RV. A stochastic process X(t) is a RV

X that changes with time.

continuous random process: the RV at each time is continuous and

time is continuous (the temperature at each moment of the day)

discrete random process: the RV at each time is discrete and time is

continuous (the number of people in a given building at each moment

of the day)

continuous random sequence: the RV at each time is continuous and

time is discrete (the high temperature each day)

discrete random sequence: the RV at each time is discrete and time is

discrete (the number of people in a given building each day)
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Distribution and density

Since a stochastic process is a RV that changes with time, it has a

distribution and density function that are functions of time.

The PDF of X(t) is FX(x, t) = P (X(t) ≤ x) (If X(t) is a random

vector, then the inequality above is an element-by-element inequality,

i.e., FX(x, t) = P [X1(t) ≤ x1, · · · , Xn(t) ≤ xn])

The pdf of X(t) is fX(x, t) = dFX (x,t)
dx (If X(t) is a random vector,

then the derivative is taken once with respect to each element of x,

i.e., fX(x, t) = ∂nFX (x,t)
∂x1···∂xn

)
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Mean and covariance (over x)

The mean and covariance of X(t) are also functions of time:

Mean: x̄(t) =
∫ ∞

−∞ xf(x, t)dx (changes with time)

Covariance: CX(t) = E{[X(t) − x̄(t)][X(t) − x̄(t)]T } =
∫ ∞

−∞[x −

x̄(t)][x − x̄(t)]T f(x, t)dx (changes with time)
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Stochastic process at two different times

Different random variables: X(t1) and X(t2)

joint distribution (second-order distribution) function:

F (x1, x2, t1, t2) = P (X(t1) ≤ x1, X(t2) ≤ x2)

joint density (second-order density) function:

f(x1, x2, t1, t2) = ∂2F (x1, x2, t1, t2)
∂x1∂x2

If X(t) is an n-element random vector, then the inequality that defines

F (x1, x2, t1, t2) actually consists of 2n inequalities, and the derivative

that defines f(x1, x2, t1, t2) actually consists of 2n derivatives.
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Autocorrelation and Autocovariance

Autocorrelation of the stochastic process X(t): the correlation between

the two RVs X(t1) and X(t2)

RX(t1, t2) = E[X(t1)XT (t2)]

Autocovariance of a stochastic process:

CX(t1, t2) = E{[X(t1) − x̄(t1)][X(t2) − x̄(t2)]T }
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Stationary stochastic process

Strict-sense stationary: the stochastic process {X(t)} is said to be

strictly stationary, strongly stationary or strict-sense stationary if

FX(x(t1 + τ), . . . , x(tn + τ)) = FX(x(t1), . . . , x(tn))

for all τ, t1, . . . , tn ∈ R and for all n ∈ N

e.g., flipping a coin ten times.

Wide-sense stationary: the mean of the stochastic process is constant

with respect to time, and the autocorrelation is a function of the time

difference t2 − t1 (not a function of the absolute times):

E[X(t)] = x̄, E[X(t1)XT (t2)] = RX(t2 − t1)

Stationary implies wide-sense stationary; wide-sense stationary does

not implies stationary
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Examples of stationary and non stationary stochastic

process

The high temperature each day. Not stationary.

Electrical noise. If the statistics of the noise are the same every day,

then the electrical noise is a stationary process. For practical purposes,

if the statistics of a random process do not change over the time interval

of interest, then we consider the process to be stationary.

tomorrow’s closing price of the Dow Jones Industrial Average. Nonsta-

tionary stochastic process.

More examples?
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Properties of wide-sense stationary stochastic process

RX(0) = E[X(t)XT (t)]

RX(−τ) = RT
X(τ)

For scalar stochastic processes, we have |RX(τ)| ≤ RX(0)
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Time average and autocorrelation

Suppose that the process has a realization x(t). For continuous-time

random processes, we define:

Time average (sample average):

A[X(t)] = lim
T →∞

1
2T

∫ T

−T

x(t)dt

Time autocorrelation:

R[X(t), τ ] = A[X(t)XT (t + τ)]
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Ergodic process

An ergodic process is a stationary random process for which

A[X(t)] = E(X)

R[X(t), τ ] = RX(τ)

In the real world, we are often limited to only a few realizations of a

stochastic process. We can compute the time average, time

autocorrelation, and other time-based statistics of the realization. If the

random process is ergodic, then we can use those time averages to

estimate the statistics of the stochastic process.
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Example: Waves coming up on a beach

If you look from side-to-side, you get an idea of the distribution of

heights at different spots at any one time

If you measure at one spot, you get an idea of the distribution of heights

at one spot over time.

assume the process is ergodic, you would look up and down at a specific

spot of the beach and infer the time series behavior of waves

You will fail if the waves are not ergodic over the relevant time scale

(we can assume a time scale for the ergodicity to be valid)
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Example

Suppose X is a random variable, and Y (t) = X cos t is a stochastic

process.

1. Find the expected value of Y (t).

2. Find A[Y (t)], the time average of Y (t).

3. Under what condition is E[Y (t)] = A[Y (t)]?
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(a) Plot of y(t) when EX = 0

0 20 40 60 80 100 120

-1.5

-1

-0.5

0

0.5

1

1.5

(b) Plot of y(t) when EX = 1
Random Variables and Stochastic Processes 2-58



Two stochastic processes

The cross correlation of X(t) and Y (t):

RXY (t1, t2) = E[X(t1)Y T (t2)]

Two random processes X(t) and Y (t) are said to be uncorrelated if

RXY (t1, t2) = E[X(t1)]E[Y (t2)]T for all t1 and t2.

The cross covariance of X(t) and Y (t) is defined as

CXY (t1, t2) = E{[X(t1) − X̄(t1)][Y (t2) − Ȳ (t2)]T }
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Markov model

In probability theory, a Markov model is a stochastic model used to

model randomly changing systems

It is assumed that future states depend only on the current state, not

on the events that occurred before it (that is, it assumes the Markov

property)
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Markov Chain

For a discrete random sequence, the outcome of the n-th trial is the

random variable Xn, X0 is the initial position of the process.

The discrete random sequence is called a Markov Chain, if we have

P{Xn+1 = in+1|X0 = i0, X1 = i1, . . . , Xn = in}

= P{Xn+1 = in+1|Xn = in}

for all n ∈ N0, i0, . . . , in, in+1 ∈ S (S is the state set).

Markov property: the memoryless property of a stochastic process.
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Illustration
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Example: Where shall we go for lunch?

HIT

TsinghuaPeking

0.6

0.2

0.6

0.2

0.2 0.2

0.2

0.6

0.2

To

From T =


0.6 0.2 0.2

0.6 0.2 0.2

0.6 0.2 0.2
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Example: Where shall we go for lunch?

Predict the preference for the restaurant:

x0 = [1 0 0], Xn =?

Steady state of preference for the restaurant?

q = lim
n→∞

Xn

What will happen if we change the transition matrix T?

x1 = x0 · T,

each element indicates the corresponding probability
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Ergodic Markov Chain

A Markov chain is called an ergodic chain if it is possible to go from

every state to every state (not necessarily in one move).

A transition matrix is regular where there is power of T that contains

all positive no zeros entries.

Any transition matrix that has no zeros determines a regular Markov

chain. It is possible for a regular Markov chain to have a transition

matrix that has zeros.

Every regular chain is ergodic.

Is it stationary? (the Markov chain stationary with stationary distri-

bution π if π = π · T ) If a Markov chain is regular , then it will have

a unique stationary matrix and successive state matrices will always

approach this stationary matrix
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Hidden Markov Model

Hidden Markov Model (HMM) is a statistical Markov model in which

the system being modeled is assumed to be a Markov process-call it

X-with unobservable (“hidden") states.

HMM assumes that there is another process Y whose behavior “de-

pends" on X

HMM stipulates that, for each time instance n0, the conditional proba-

bility distribution of Yn0 given the history {Xn = xn}n=n0 must NOT

depend on {xn}n<n0

The goal is to learn about X by observing Y
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Definition and application

Definition: Let Xn and Yn be discrete-time stochastic processes and
n ≥ 1. The pair (Xn, Yn) is a hidden markov model if

Xn is a Markov process and is not directly observable ("hidden");

P
(
Yn ∈ A

∣∣ X1 = x1, . . . , Xn = xn

)
= P

(
Yn ∈ A

∣∣ Xn = xn

)
, for ev-

ery n ≥ 1, x1, . . . , xn, and an arbitrary (measurable) set A.

The states of the process Xn are called hidden states, and P
(
Yn ∈

A
∣∣ Xn = xn

)
is called emission probability or output probability.

Application: reinforcement learning and temporal pattern recognition

such as speech, handwriting, gesture recognition, and bioinformatics.
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Example: a hypothetical dishonest casino

The casino uses a fair die most of the time,

Occasionally the casino secretly switches to a loaded die, and later the

casino switches back to the fair die.

A probabilistic process determines the switching back-and-forth from

loaded die to fair die and back again after each toss of the die, with

the switch from fair-to-loaded occurring with probability 0.05 and from

loaded-to-fair with probability 0.1.

Assume that the loaded die will come up “six" with probability 0.5 and

the remaining five numbers with probability 0.1 each.
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Example: a hypothetical dishonest casino

The transition matrix is

A =


F L

F 0.95 0.05

L 0.1 0.9


and the emission probability matrix is

B =


1 2 3 4 5 6

F 1
6

1
6

1
6

1
6

1
6

1
6

L 1
10

1
10

1
10

1
10

1
10

1
2


If you can see only the sequence of rolls (the sequence of observations or

signals) you do not know which rolls used a loaded die and which used a

fair die, because the casino hides the state.
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Question # 1 – Evaluation

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

How likely is this sequence, given our model of how the casino works?

This is the EVALUATION problem in HMMs

Prob = 1.3 x 10-35
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Question # 2 – Decoding

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

What portion of the sequence was generated with the fair die, and what

portion with the loaded die?

This is the DECODING question in HMMs

FAIR LOADED FAIR
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Question # 3 – Learning

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

How “loaded” is the loaded die? How “fair” is the fair die? How often

does the casino player change from fair to loaded, and back?

This is the LEARNING question in HMMs

Prob(6) = 64%
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Random Walk

A random walk is a stochastic or random process, that describes a path

that consists of a succession of random steps on some mathematical

space such as the integers.

Examples

The random walk on the integer number line, Z, which starts at 0 and at

each step moves +1 or -1 with equal probability

the path traced by a molecule as it travels in a liquid or a gas

the search path of a foraging animal

the price of a fluctuating stock

the financial status of a gambler

The term random walk was first introduced by Karl Pearson in 1905
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Random Walk

The term random walk most often refers to a special category of Markov

chains or Markov processes

Random walks can also take place on a variety of spaces

graphs

on the integers or the real line

in the plane or higher-dimensional vector spaces

on curved surfaces or higher-dimensional Riemannian manifolds

on finite groups, or Lie
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1-dimensional Random Walk

Take independent random variables Z1, Z2, . . . , where each variable is

either 1 or -1, with a probability of p and 1−p, respectively. Set S0 = 0

and Sn =
∑n

j=1 Zj . The series {Sn} is called the simple random walk

on Z.

If p = 0.5, we have

E(Sn)=
∑n

j=1
E(Zj)=0

E(S2
n)=

∑n

i=1
E(Z2

i )+2
∑

1≤i<j≤n
E(ZiZj)=n.

A one-dimensional random walk can also be looked at as a Markov

chain, whose state space is given by the integers i = 0, ±1, ±2, . . . ,

the transition probablity

Pi,i+1 = p = 1 − Pi,i−1.
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Wiener Process

A standard (one-dimensional) Wiener process (depicts Brownian motion)

is a stochastic process {Wt}t≥0+ indexed by nonnegative real numbers t

with the following properties:

W0 = 0

W has independent increments, i.e., for every t > 0, the future incre-

ments Wt+u − Wt,u ≥ 0, are independent of the past values Ws, s ≤ t.

W has Gaussian increments: Wt+u − Wt is normally distributed with

mean 0 and variance u, Wt+u − Wt ∼ N (0, u).

W has continuous paths: Wt is continuous in t.
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Wiener Process as a Limit of Random Walks

One of the many reasons that Brownian motion is important in prob-

ability theory is that it is, in a certain sense, a limit of rescaled simple

random walks.

Let ξ1, ξ2, . . . be i.i.d. random variables with mean 0 and variance 1.

For each n, define a continuous time stochastic process

Wn(t) = 1√
n

∑
1≤k≤⌊nt⌋

ξk, t ∈ [0, 1]

Increments of Wn are independent because that ξk are independent.

For large n, Wn(t) − Wn(s) is close to N (0, t − s) by the central limit

theorem.
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Markov property of Wiener process

For all t1 < t2 · · · < tn, given W (t1), . . . , W (tn−1), the conditional

probability density function of P (W (tn)|W (t1), . . . , W (tn−1)) is the

same as P (W (tn)|W (tn−1)).

For all t1 > t2 · · · > tn, given W (t1), . . . , W (tn−1), we have

P (W (tn)|W (t1), . . . , W (tn−1)) = P (W (tn)|W (tn−1)).

For all t1 < t2 · · · < tn, given W (t1), . . . , W (ti−1), W (ti+1), W (tn),

then we have

P (W (ti)|W (t1), . . . , W (ti−1), W (ti+1), W (tn)) =

P (W (ti)|W (ti−1), W (ti+1)).
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Application of Wiener Process

The Wiener process plays an important role in both pure and applied

mathematics.

In pure mathematics, the Wiener process gave rise to the study of

continuous time martingales, it plays a vital role in stochastic calculus,

diffusion processes and even potential theory.

In applied mathematics, the Wiener process is used to represent the

integral of a white noise Gaussian process

It is useful as a model of noise in electronics engineering (see Brownian

noise), instrument errors in filtering theory

It is used to describe unknown forces in control theory
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Poisson Processes

Let N(t) be a stochastic process. It is called a homogeneous Poisson

counting process with rate λ > 0 if

P{N(0) = 0} = 1

∀n ∈ N, 0 < t0 < t1 < ... < tn : The increments N(t0), N(t1) −

N(t0), . . . , N(tn) − N(tn−1) are independent

∀0 < s < t : N(t) − N(s) ∼ Pois(λ(t − s))

It is clear that

P (N(t) = n) = P (N(t) − N(0) = n|N(0) = 0) = P (N(t) − N(0) = n)

= (λt)ne−λt

n!
∞∑

n=0
pn(t) =

∞∑
n=0

(λt)n

n! e−λt = e−λt
∞∑

n=0

(λt)n

n! = 1, ∀t
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Thinking

Markov Property: For all k ∈ N and events {(Xr)r≤t ∈ A}and

{(Xt+s)s≥0 ∈ B}, we have: if P (Xt = k, (Xr)r≤t ∈ A) > 0, then

P ((Xt+s)s≥0 ∈ B|Xt = k, (Xr)r≤t ∈ A) = P ((Xt+s)s≥0 ∈ B|Xt = k)

Poisson process can be used for activity forecasting. “A Poisson Process

Model for Activity Forecasting”
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Examples

the number of telephone calls at an office logged up to time t

the number of vehicles which pass a roadside speed camera within a

specified hour

the number of students in Teaching Building 6 at time t

· · · · · ·
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Example

The number of failures N(t), which occur in a computer network over

the time interval [0, t), can be described by a homogeneous Poisson

process {N(t), t ≥ 0}. On an average, there is a failure after every 4

hours, i.e. the intensity of the process is equal to λ = 0.25[h−1]. Derive

the probability of at most 1 failure in [0, 8).

Hints: E[N(t)] = λt, N(0) = 0.
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White noise

In signal processing, white noise is a random signal having equal inten-

sity at different frequencies, giving it a constant power spectral density.

In discrete time, white noise is a discrete signal whose samples are

regarded as a sequence of serially uncorrelated random variables with

zero mean and finite variance.

In particular, if each sample has a normal distribution with zero mean,

the signal is said to be Gaussian white noise.
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Power spectral density (Power spectrum)

The power spectral density (PSD) refers to the measure of signal’s

power content versus frequency

Parseval’s theorem: Summation or integration of the spectral compo-

nents yields the total power (for a physical process) or variance (in a

statistical process), identical to what would be obtained by calculating

the time average of x2(t), i.e.,

P = lim
T →∞

1
2T

∫ T

−T

x2(t)dt = 1
2π

∫ ∞

−∞
Sx(ω)dω
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PSD for continuous time random process

The power spectrum SX(ω) of a wide-sense stationary stochastic pro-

cess X(t) is defined as the Fourier transform of the autocorrelation.

SX(ω) =
∫ ∞

−∞
RX(τ)e−jωτ dτ

The autocorrelation is the inverse Fourier transform of the power spec-

trum

RX(τ) = 1
2π

∫ ∞

−∞
SX(ω)ejωτ dω

The power of a wide-sense stationary stochastic process (ergodic):

PX = lim
T →∞

1
2T

∫ T

−T

x2(t)dt = E[X2(t)] = 1
2π

∫ ∞

−∞
SX(ω)dω
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Cross power spectral density

The cross power spectral density (CPSD) or cross spectral density

(CSD) of two wide-sense stationary stochastic processes X(t) and Y (t)

is Fourier transform of the cross correlation:

SXY (ω) =
∫ ∞

−∞
RXY (τ)e−jωτ dτ

RXY (τ) = 1
2π

∫ ∞

−∞
SXY (ω)ejωτ dω
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Power spectral density for discrete-time random

processes

The power spectral density of a discrete-time random process:

SX(ω) =
∞∑

k=−∞

RX(k)e−jωk, ω ∈ [−π, π]

RX(k) = 1
2π

∫ π

−π

SX(ω)ejωkdω
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Discrete-time white noise

A discrete-time stochastic process X(k) is called white noise if

RX(k) =

 σ2 if k = 0

0 if k ̸= 0

= σ2δk

where δk is the Kronecker delta function, defined as

δk =

 1 if k = 0

0 if k ̸= 0
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Interpretation of discrete-time white noise

If X(k) is a discrete-time white noise process, then the RV X(n) is

uncorrelated with X(m) unless n = m.

The power spectral density of a discrete-time white noise process is

equal at all frequencies:

SX(ω) = RX(0), ∀ω ∈ [−π, π]
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Continuous-time white noise

For a continuous-time random process, white noise has equal power at

all frequencies (like white light):

SX(ω) = RX,0, ∀ω

For continuous-time white noise, we have

RX(τ) = RX,0δ(τ)

where δ(τ) is the continuous-time impulse function.

Continuous-time white noise is not something that occurs in the real

world because it has infinite power

Many continuous-time processes approximate white noise and are useful

in mathematical analysis of signals and systems
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Continuous-time white noise

An infinite-bandwidth white noise signal is a purely theoretical con-

struction.

The bandwidth of white noise is limited in practice by the mechanism of

noise generation, by the transmission medium and by finite observation

capabilities.

Thus, a random signal is considered "white noise" if it is observed to

have a flat spectrum over the range of frequencies that is relevant to

the context.
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Example

Suppose that a zero-mean stationary stochastic process has the

autocorrelation function

RX(τ) = σ2e−β|τ |, β ∈ R+

Calculate the power spectrum as well as the power of the stochastic

process.
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Example

The power spectrum

SX(ω) =
∫ ∞

−∞ σ2e−β|τ |e−jωτ

dτ

=
∫ 0

−∞ σ2e(β−jω)τ dτ +
∫ ∞

0 σ2e−(β+jω)τ dτ

= σ2

β−jω + σ2

β+jω

= 2σ2β
ω2+β2

The variance (also power) of the stochastic process is computed as

E[X2(t)] = RX(0)

= PX = 1
2π

∫ ∞
−∞ SX(ω)dω

= 1
2π

∫ ∞
−∞

2σ2β
ω2+β2 dω

= σ2

π arctan ω
β |∞−∞

= σ2
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