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What is optimal?

The “goodness" of an estimate can be expressed in different ways,

depending upon the particular engineering problem

3 commonly-used optimality criterion: the maximum-likelihood,

maximum a posteriori, and minimum mean-square error criterion
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Notation

s(n) signal s(n) signal realization

v(n) noise signal v(n) noise signal realization

z(n) sample z(n) sample realization

ŝ(n) estimate ŝ(n) a specific estimate

s̃(n) = s− ŝ estimation error s̃(n) a specific estimation error
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Optimal Estimation Problem

Given the measurements z(1), z(2), . . . , z(n), the corruption function g

such that

z(n) = g(s(n), v(n), n)

and an optimality criterion. Design an estimator that generates an

optimal estimate ŝ(n) of s(n) given by

ŝ(n) = αn(z(1), z(2), . . . , z(n)),

for some function αn.
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Prediction, Filtering and Smoothing

Given observations {z(1), z(2), . . . , z(n)}, make the best guess of the

value of s(ℓ).

n n+1 n+mn-1n-mm

m-step prediction

1-step prediction

filtering

smooting with lag 1

smoothing with lag m

fixed-point smoothing
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Properties of the Estimates

Unbiased estimator:

E(̂s(n)) = E(s(n)), E(̃s(n)) = 0

Asymptotically unbiased estimator:

lim
n→∞

E(̂s(n)) = E(s(n)), lim
n→∞

E(̃s(n)) = 0

Consistent estimator:

lim
n→∞

E(̃s2(n)) = 0
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Example: the mean filter

Constant signal s: s(n) = s

measurement: z(n) = s + v(n)

v(n) is a RV with mean 0 and variance σ2
v

independence of s and v(1), v(2), . . . , v(n)

The mean filter

ŝ(n) =
1

n

n
∑

j=1

z(j)
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Example

Check the properties of the estimate

unbiasedness: E[ŝ(n)] = E[s]

consistency: E[s̃2(n)] =
σ2

v

n
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Formulating the maximum likelihood estimation

problem

most-probable (most likely) −→ the peak of fx(x), i.e., most-likely

value of x=value of x that maximizes fx(x)

A single measurement z −→ find the value of s that is most likely to

have produced z −→ seek the value of s that maximizes the

likelihood function.

Likelihood function: fz(z|s = s)

Maximum likelihood Estimation:

ŝML = value of s that maximizes fz(z|s = s)
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Derivation of the estimation

ŝML = value of s for which
∂fz(z|s = s)

∂s
= 0

log-likelihood function

ŝML = value of s for which
∂ ln fz(z|s = s)

∂s
= 0

likelihood function VS density?
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Example

Suppose s and z are random variables with joint pdf

fs,z(s, z) =







1
12 (s + z)e−z, 0 ≤ s ≤ 4, 0 ≤ z ≤ ∞;

0, otherwise;

The goal is to compute the ML estimate of s based on z.
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Example

Find the likelihood function:

fz(z|s = s) =
fs,z(s, z)

fs(s)

As

fs(s) =

∫ ∞

0

fs,z(s, z)dz =
1

12
(s + 1), 0 ≤ s ≤ 4.

the likelihood function is

fz(z|s = s) =
s + z

s + 1
e−z, 0 ≤ s ≤ 4, 0 ≤ z ≤ ∞
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Example

Find the value of s that maximizes fz(z|s = s).

Calculate the partial derivative as:

∂fz(z|s = s)

∂s
=

1− z

(s + 1)2
e−z

Hence

ŝML =



















4 0 ≤ z < 1

2 z = 1

0 z > 1
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Example: ML Estimation with Gaussian Noise

Suppose that z = s + v, where s and v are independent and

v ∼ N (0, σ2), i.e.,

fv(v) =
1√
2πσ

e−v2/2σ2

Given the sample realization z, derive the maximum likelihood

estimation ŝML.
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Example: ML Estimation with Gaussian Noise

As F (z|s = s) = P (z ≤ z|s = s) = P (z≤z,s=s)
P (s=s) = P (v ≤ z − s), the

likelihood function is

fz(z|s = s) = fv(v)|v=z−s =
1√
2πσ

e−(z−s)2/2σ2

Thus

ŝML = z, ŝML = z.
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Maximum a posteriori Estimation

Another optimality criterion:

maximizes the conditional density fs(s|z = z)

The density is known as the a posteriori density since it is the density

after the measurement z becomes available.

the maximum a posteriori (MAP) estimate

ŝMAP = value of s that maximizes fs(s|z = z)
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Maximum a posteriori Estimation

Assuming fs(s|z = z) is differentiable and has a unique maximum in the

interior of its domain, we have

ŝMAP = value of s for which
∂fs(s|z = z)

∂s
= 0,

By Bayes’ formula,

fs(s|z = z) =
fz(z|s = s)fs(s)

fz(z)

Thus,

ŝMAP = value of s that maximizes f(z|s = s)fs(s).
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ML Estimate Vs MAP Estimate

maxs fz(z|s = s) Vs maxs fs(s|z = z)

In likelihood you have observed some outcome, so you want to

find/create/estimate the most likely source/model/parameter/probability

distribution from which this event has raised, i.e., likelihood attaches to

hypotheses.

In probability you usually want to find the probability of a possible event

based on a model/parameter/probability distribution, i.e., probability

attaches to possible results.

maxs fz(z|s = s) Vs maxs fz(z|s = s)fs(s)

In MAP estimate, the density fs(s) must be known, i.e., it is a

Bayesian estimation
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Example: MAP estimation with Gaussian noise

Additive-noise z = s + v, where v ∼ N (0, σ2
v). Assume s ∼ N (ηs, σ2

s).

Then

fs(s) =
1√

2πσs

e
− (s−ηs)2

2σ2
s

As

fz(z|s = s) =
1√

2πσv

e−(z−s)2/2σ2
v

we have

f(z|s = s)fs(s) =
1

2πσsσv
exp

[

− (z − s)2

2σ2
v

− (s− ηs)2

2σ2
s

]
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Example: MAP estimation with Gaussian noise

Differentiating the term
[

− (z−s)2

2σ2
v
− (s−ηs)2

2σ2
s

]

with respect to s yields,

ŝMAP =
σ2

v

σ2
v + σ2

s

ηs +
σ2

s

σ2
v + σ2

s

z

When the noise power is much less than the signal power, i.e., σ2
v ≪ σ2

s ,

we have

ŝMAP = z = ŝML.

(It is implied that there is no a priori information about s)
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Casino example: revisited

Recall the transition matrix is

A =











F L

F 0.95 0.05

L 0.1 0.9











and the emission probability matrix is

B =











1 2 3 4 5 6

F 1
6

1
6

1
6

1
6

1
6

1
6

L 1
10

1
10

1
10

1
10

1
10

1
2
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Casino example: revisited

Denote Y as the number of dies, and X the status of the die, i.e.,

X = 0 means loaded and X = 1 indicates fair. If we have the

observation Y = 6, then we can use maximum likelihood and maximum

a posteriori estimate to estimate X .

P (Y =6|X=0)= 1
2 ,P (Y =6|X=1)= 1

6

Hence X̂ML = 0.

P (X=0|Y =6)=
P (X=0)P (Y =6|X=0)

P (Y =6)
,P (X=1|Y =6)=

P (X=1)P (Y =6|X=1)

P (Y =6)
,

Suppose we have

P (X=0)= 1
3 ,P (X=1)= 2

3

As P (X=0)P (Y =6|X=0)
P (Y =6) = 1/6

P (Y =6) > P (X=1)P (Y =6|X=1)
P (Y =6) = 1/9

P (Y =6) , we

have X̂MAP = 0, i.e., Cheating happens.
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Casino example: revisited

If Y = (6, 2), then we have

P (Y = (6, 2)|X = (0, 1)) = 1/12 P (Y = (6, 2)|X = (1, 1)) = 1/36

P (Y = (6, 2)|X = (0, 0)) = 1/20 P (Y = (6, 2)|X = (1, 0)) = 1/60

and X̂ML = (0, 1). On the other hand, we calculate P (X |Y = (6, 2)),

and have

P (X = (0, 1)|Y = (6, 2)) =
1/3·0.1·1/12
P (Y =(6,2))

P (X = (1, 1)|Y = (6, 2)|) =
2/3·0.95·1/36
P (Y =(6,2))

P (X = (0, 0)|Y = (6, 2)) =
1/3·0.9·1/20
P (Y =(6,2))

P (X = (1, 0)|Y = (6, 2)) =
2/3·0.05·1/60
P (Y =(6,2))

Then X̂MAP = (1, 1).

Is there any cheating?
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Reference

http://www.cs.cmu.edu/~tom/mlbook-chapter-slides.html

http://www.cs.cmu.edu/~awm/10701/
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An example for classification

Day Outlook Temperature Humidity Wind Play

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rainy Mild High Weak Yes

D5 Rainy Cool Normal Weak Yes

D6 Rainy Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rainy Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rainy Mild High Strong No
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Bayes Classifier

Training data: X = [Outlook, T emperature, Humidity, Wind],

Y = P layT ennis

How to estimating P (Y |X)?

Learning = estimating P (X |Y ), P (Y )

Classification = using Bayes rule to calculate P (Y |Xnew)

How shall we represent P (X |Y ), P (Y )?

How many parameters must we estimate?
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Bayes Classifier

Suppose X = [X1, ...Xn] where Xi and Y are boolean RVs

For each instance, we need to estimate 2(2n − 1) such parameters

θij = P (X = xi|Y = yj)

in which xi is a n-element vector.

If X is a vector containing 30 Boolean features, then we will need to

estimate more than 3 billion parameters!
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Naive Bayes Classifier

Along with decision trees, neural networks, nearest nbr, one of the most

practical learning methods.

When to use

Moderate or large training set available

Attributes that describe instances are conditionally independent

given classification

Successful applications:

Diagnosis

Classifying text documents
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Conditionally independence in Naive Bayes

Suppose X = [X1, . . . , Xn] and Y is discrete-valued, conditional

independence implies that

P (X1 · · ·Xn|Y ) =
∏

i

P (Xi|Y )

i.e., Xi and Xj are conditionally independent given Y , for all i 6= j.

Alternatively, X is conditionally independent of Y given Z, if the

probability distribution governing X is independent of the value of Y ,

given the value of Z, i.e.,

P (X = xi|Y = yj , Z = zk) = P (X = xi|Z = zk), ∀i, j, k
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Conditionally independent: example

T hunder and Rain is not independent, but conditionally

independent given Lightning.

P (T hunder|Rain, Lightning) = P (T hunder|Lightning)

F–Footsize, L–Literacy score, F and L are not independent

F and L are conditionally independent given age A, i.e.,

P (F |L, A) = P (F |A)
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Naive Bayes Classifier

Naive Bayes uses the assumption that Xi are conditionally independent

given Y

then

P (X1, X2|Y ) = P (X1|X2, Y )P (X2|Y ) = P (X1|Y )P (X2|Y )

P (X1, . . . , Xn|Y ) =
∏

i

P (Xi|Y )

How many parameters need now for P (X |Y ), P (Y )?

We need only 2n parameters to define P (Xk = xik|Y = yj).

P (X = xi|Y = yj) =

n
∏

k=1

P (Xk = xik|Y = yj)
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Naive Bayes Classifier

Bayes rule:

P (Y = yj|X1, . . . , Xn) =
P (Y = yj)P (X1, . . . , Xn|Y = yj)

∑

m
P (Y = ym)P (X1, . . . , Xn|Y = ym)

Assuming conditional independence

P (Y = yj|X1, . . . , Xn) =

P (Y = yj)
∏

i

P (Xi|Y = yj)

∑

m
P (Y = ym)

∏

i

P (Xi|Y = ym)

So, classification rule for Xnew = [xnew
1 , . . . , xnew

i ] is

Y new ← arg max
yj

P (Y = yj)
∏

i

P (Xi = xnew
i |Y = yj)
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Naive Bayes: Example

Consider PlayTennis, and new instance

〈Outlk = sun, T emp = cool, Humid = high, Wind = strong〉

Want to compute:

Y new = argmaxjP (Y = yj)
∏

i

P (Xi = xik|Y = yj)

P (y) P (sun|y) P (cool|y) P (high|y) P (strong|y) = .005

P (n) P (sun|n) P (cool|n) P (high|n) P (strong|n) = .021

→ Y new = n
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Day Outlook Temperature Humidity Wind Play

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rainy Mild High Weak Yes

D5 Rainy Cool Normal Weak Yes

D6 Rainy Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rainy Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rainy Mild High Strong No
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Naive Bayes Algorithm

Naive_Bayes_Learn(examples)

For each target value yj

estimate πj = P (Y = yj)

For each attribute value xik of each attribute Xi

estimate θijk = P (Xi = xik|Y = yj)

Classify_New_Instance(x)

Y new = argmaxyj
P (Y = yj)

∏

i

P (Xi|Y = yj)

Y new = argmaxyj
πj

∏

i

θijk

Parameters must sum to 1!
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Estimating Parameters: Y, Xi discrete-valued

Maximum likelihood estimates:

πj = P (Y = yj) =
#D{Y = yj}

|D|

θijk = P (Xi = xik|Y = yj) =
#D{Xi = xik, Y = yj}

#D{Y = yj}
MAP estimates (Laplace smoothing for the case l = 1)

πj = P (Y = yj) =
#D{Y = yj}+ l

|D|+ lR

θijk = P (Xi = xik|Y = yj) =
#D{Xi = xik, Y = yj}+ l

#D{Y = yj}+ lM

#D() denotes the number of items in data set D.

MAP estimate for θijk if we assume a Dirichlet prior distribution over

the θijk parameters, with equal-valued parameters
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Naive Bayes: Subtleties

1. Conditional independence assumption is often violated

P (X1, X2 . . . Xn|Yj) =
∏

i

P (Xi|Yj)

...but it works surprisingly well anyway. Note don’t need estimated

posteriors P (Yk|X) to be correct; need only that

argmaxyk
P (Y = yk)

∏

i

P (Xi|Y = yk) =

argmaxyk
P (Y = yk)P (X1 . . . , Xn|Y = yk)

see [Domingos & Pazzani, 1996] for analysis

Naive Bayes posteriors often unrealistically close to 1 or 0
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Naive Bayes: Subtleties

2. what if none of the training instances with target value yk have

attribute value xij? Then

P (Xi = xij |Y = yk) = 0, and...P (Y = yk)
∏

i

P (Xi = xij |Y = yk) = 0

MAP Estimate mentioned before!
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Naive Bayes: Subtleties

3. What if we have continuous Xi?

For example, in image classification, Xi is the i-th pixel, Gaussian

Naive Bayes (GNB) assumes:

p(Xi = x|Y = yk) =
1√

2πσik

e
− (x−µik )2

2σ2
ik

Sometimes assume variance

is independent of Y (i.e., σi)

or independent of Xi (i.e., σk)

or both (i.e., σ)
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Application of Naive Bayes

Credit scoring

Medical data classification

Classify which emails are spam

Classify which emails are meeting invites

Classify which web pages are student home pages (Recommendation

system)

Sentiment analysis
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Generative vs. Discriminative Classifiers

In General, A Discriminative model models the decision boundary between the

classes. A Generative Model explicitly models the actual distribution of each

class.
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Generative vs. Discriminative Classifiers
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Examples of generative and discriminative classifiers

Generative classifiers

Naive Bayes

Bayesian networks

Markov random fields

Hidden Markov Models

(HMM)

Discriminative Classifiers

Logistic regression

Support Vector Machine

Traditional neural networks

Nearest neighbour

Conditional Random Fields

(CRF)s
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From Gaussian Naive Bayes to Logistic Regression

Consider learning f : X → Y , where

X is vector of real-valued features, X = [X1, . . . , Xn]T

Y is Boolean

We could use a Gaussian Naive Bayes classifier

assume all Xi are conditionally independent given Y

model the probability density p(Xi|Y = yk) as Gaussian N(µik, σi)

What does that imply about the form of P (Y |X)?
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Mixed joint density

The "mixed joint density" may be defined where one or more random

variables are continuous and the other random variables are discrete.

With one variable of each type

fX,Y (x, y) = fX|Y (x | y)P(Y = y) = P(Y = y | X = x)fX(x).

Formally, fX,Y (x, y) is the probability density function of (X, Y ) with

respect to the product measure on the respective supports of X and Y ,

and we have the joint cumulative distribution function

FX,Y (x, y) =
∑

t≤y

x
∫

−∞

fX,Y (s, t)ds.
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Derive form for P (Y |X) for continuous Xi

P (Y = 1|X) =
P (Y = 1)f(X |Y = 1)

f(x)

P (Y = 0|X) =
P (Y = 0)f(X |Y = 0)

f(x)

P (Y = 1|X)

P (Y = 0|X)
=

P (Y = 1)f(X |Y = 1)

P (Y = 0)f(X |Y = 0)
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From Gaussian Naive Bayes to Logistic Regression

Assume P (Y = 1) = π, P (Y = 0) = 1− π, and

P (Xi|Y = j) = 1√
2πσi

e
− (xi−µij )2

2σ2
i , then we have

P (Y = 0|X)

P (Y = 1|X)
= exp(w0 +

n
∑

i=1

wixi)

with

w0 = ln
1− π

π
+

∑

i

µ2
i1 − µ2

i0

2σ2
i

, wi =
µi0 − µi1

σ2
i

which then implies,

ln
P (Y = 0|X)

P (Y = 1|X)
= w0 +

n
∑

i=1

wixi

Linear classification rule!!
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Logistic function

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
1+e−x

1
1+ex

Y = 0← x > 0(w0 +
∑

i

wixi > 0)
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Estimating parameters for Logistic regression

The value of the weights wi can be provided by the parameters

estimated by the GNB classifier

The form of p(Y |X) assumed by Logistic regression holds in many

problem settings beyond the GNB problem

In many cases we may suspect the GNB assumptions are not perfectly

satisfied

Estimate the wi parameters directly from the data!
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Estimating parameters for logistic regression

Choose parameters W = [w0, . . . , wn] to maximize conditional

likelihood of training data

P (Y = 1|X) =
exp(w0 +

∑n
i=1 wixi)

1 + exp(w0 +
∑n

i=1 wixi)

P (Y = 0|X) =
1

1 + exp(w0 +
∑n

i=1 wixi)

Given training data D = {(X1, Y 1), . . . , (XL, Y L)}

Data conditional likelihood =
∏

l

P (Y l|X l, W )

W ← arg max
W

ln
∏

l

P (Y l|X l, W )
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Expressing Conditional Log Likelihood

l(W ) = ln
∏

l

P (Y l|X l, W ) =
∑

l

ln P (Y l|X l, W )

Flip the assignment of the boolean variable Y

P (Y = 0|X, W ) =
1

1 + exp(w0 +
∑

i

wiXi)
,

P (Y = 1|X, W ) =

exp(w0 +
∑

i

wiXi)

1 + exp(w0 +
∑

i

wiXi)

l(W ) =
∑

l

[

Y l ln P (Y l = 1|X l, W ) + (1− Y l) ln P (Y l = 0|X l, W )
]

=
∑

l

[

Y l ln P (Y l=1|Xl,W )
P (Y l=0|Xl,W )

+ ln P (Y l = 0|X l, W )
]

=
∑

l

[

Y l(w0 +
n
∑

i=1

wiX
l
i)− ln(1 + exp(w0 +

n
∑

i=1

wiX
l
i))

]
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Maximizing Conditional Log Likelihood

l(W ) =
∑

l

[

Y l(w0 +

n
∑

i=1

wiX
l
i)− ln(1 + exp(w0 +

n
∑

i=1

wiX
l
i))

]

Good news: l(W ) is a concave function of W

Bad news: no closed-form solution to maximize W

Gradient-based method! (Gradient-ascent)
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Regularization in Logistic Regression

How about MAP?

On common approach is to define priors on W

Normal distribution, zero mean, identity covariance

Helps avoid very large weights and overfitting

MAP estimate

W ← argmaxW ln P (W |{X l, Y l})

W ← argmaxW ln P (W )P (Y l|X l, W )
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Regularization in Logistic Regression

∑

l

ln P (Y l|X l, W ) + ln P (W )

if P (W ) is a zero mean Gaussian distribution, then ln P (W ) yields a

term proportional to ‖W‖2.

W ← argmaxW

∑

l

ln P (Y l|X l, W )− λ

2
‖W‖2
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Logistic Regression for functions with many discrete

values

Logistic regression in more general case, where Y ∈ {Y1, . . . , YR}:
learn R− 1 sets of weights

for k < R

P (Y = yk|X) =

exp(wk0 +
n

∑

i=1

wkiXi)

1 +
R−1
∑

j=1

exp(wj0 +
n

∑

i=1

wjiXi)

for k = R

P (Y = yR|X) =
1

1 +
R−1
∑

j=1

exp(wj0 +
n

∑

i=1

wjiXi)

Softmax layer in CNN!
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Relationship between Gaussian Naive Bayes (GNB)

classifiers and Logistic Regression

Generative and Discriminative classifiers

When the GNB modeling assumptions do not hold, Logistic

Regression and GNB typically learn different classifier function

the asymptotic (#samples → ∞) classification accuracy for logistic

regression is often better than that of GNB

the GNB assumption do not need to be satisfied for Logistic Regression

GNB and Logistic Regression converges toward their asymptotic

accuracies at different rates

when GNB parameter estimates converge in order log n examples

Logistic Regression requiring order n examples

In general, when many training examples are available, we choose

Logistic Regression, otherwise choose GNB.
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Formulating the problem

Maximum Likelihood Estimation

Maximum a posteriori Estimation

Naive Bayes and logistic regression

Minimum Mean-Square Error Estimation
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Minimum Mean-square error

MSE = E[E[s̃2|z]] = E[E[(s− ŝ)2|z]] = E[(s− ŝ)2]

The MSE gives the average power of the error.

Given the RV z, the MMSE estimate ŝMMSE of ŝ is the conditional

expectation

ŝMMSE = E[s|z].
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Properties of MMSE estimate

MMSE estimate ŝMMSE is unique;

MMSE estimate requires information about s, is another type of

Baysian estimation;

MMSE estimate ŝMMSE is unbiased, i.e.,

E(ŝ) = E(s) or E(s̃) = 0

Generalization to a finite number of measurements z(1), . . . , z(n),

ŝMMSE = E[s|z(1), . . . , z(n)], E[s− ŝMMSE] = 0
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MMSE estimate with Gaussian noise

Again consider the additive-noise case

z = s + v

with v ∼ N (0, σ2
v) and s ∼ N (s̄, σ2

s). Assume that s and v are

independent.
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E[z] = E[s] = s̄,

Var[z] = Var[s] + Var[v] = σ2
s + σ2

v

The pdf of z is

fz(z) =
1√

2π
√

σ2
s + σ2

v

exp

[

− (z − s̄)2

2(σ2
s + σ2

v)

]
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fs(s|z = z) =
1

2πσsσvfz(z)
exp

{

−
[

(z − s)2

2σ2
v

+
(s− s̄)2

2σ2
s

]}

fs(s|z = z) =
1

√
2π

√

σ2
s σ2

v

σ2
s +σ2

v

exp



− (s− ŝMAP)2

2
σ2

s σ2
v

σ2
s +σ2

v





ŝMMSE = E[s|z = z] = ŝMAP = s̄ +
σ2

s

σ2
v + σ2

s

(z − s̄)

If s and v are uncorrelated, then the MMSE estimate of s is identical to

the MAP estimate.
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The Orthogonality Principle

Orthogonality Principle

The error s− E[s|z] is orthogonal to every function γ(z), i.e.,

E[(s− E[s|z])γ(z)] = 0.

Sketch of proof. E[(s− E[s|z])γ(z)] = E {E[(s− E[s|z])γ(z)|z]} =

E {E[(s− E[s|z])|z]γ(z)}
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Necessary and Sufficient condition for an MMSE

estimate

The estimate given by ŝ = α(z) is the MMSE estimate of s given z if

and only if the error s−α(z) is orthogonal to every function γ(z); that is

E[(s− α(z))γ(z)] = 0.

ŝ = α(z) is the MMSE estimate ⇐⇒ (s− α(z))⊥γ(z)
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Linear MMSE

the MMSE estimate is a conditional expectation.

fs(s|z = z) is difficult to be find ⇐⇒ both MAP and MMSE estimation

are difficult.

Solution: restrict the estimation problem to produce a tractable solution

for α, i.e., trading overall optimality for tractability.

ŝ = λz

Estimation Theory 3-69



Linear MMSE

Linear MMSE (LMMSE) estimation problem:

min
λ

MSE = E[(s− λz)2] = E[s2 − 2λsz + λ2
z

2]

Taking the partial derivative with respect to λ, setting the result equal

to zero gives

−2E(sz) + 2λE(z2) = 0, λ =
E(sz)

E(z2)

The LMMSE estimate is given by

ŝLMMSE = α(z) =
E(sz)

E(z2)
· z
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Advantages over the former estimates

do not require knowledge about any likelihood function or densities;

only need the second-order moments E[sz] and E[z2];

can estimate E[sz] and E[z2] from experimental training data

(si, zi)
N
i=1, i.e.,

E(sz) ≈ 1

N

N
∑

i=1

sizi

and

E(z2) ≈ 1

N

N
∑

i=1

z2
i
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Example

Consider again the Gaussian additive noise problem.

z = s + v

with v ∼ N (0, σ2
v) and s ∼ N (s̄, σ2

s). Assume that s and v are

uncorrelated.

ŝLMMSE =
E(sz)

E(z2)
z =

s̄2 + σ2
s

s̄2 + σ2
s + σ2

v

· z

which is different from ŝMMSE and is biased.
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Orthogonality principle for LMMSE estimation

Orthogonality principle for LMMSE estimation

Let α(z) be the LMMSE estimate of s given z. Then the error s− α(z)

is orthogonal to every linear function γ(z), i.e.,

E[(s− α(z))γ(z)] = 0.

Sketch of proof. Assume γ(z) = βz
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Orthogonality principle for vector RVs

Let s ∈ R
m and z ∈ R

q. Assume the LMMSE takes the form ŝ = Mz,

where M is an m× q matrix to be determined.

Assume P = E[(s− ŝ)(s− ŝ)T ], then

MSE = tr(P ) = E[(s− ŝ)T (s− ŝ)]
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Matrix derivative

f(A) : Rm×n → 1, the Jacobian matrix (A = [A1, A2, . . . , An]),

∇Af =
∂f

∂A
=

















∂f
∂a11

∂f
∂a12

· · · ∂f
∂a1n

∂f
∂a21

∂f
∂a22

· · · ∂f
∂a2n

...
...

...

∂f
∂an1

∂f
∂an2

· · · ∂f
∂ann

















=

[

∂f

∂A1
,

∂f

∂A2
, . . . ,

∂f

∂An

]
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A list of derivatives

∂(Ax)

∂x
= A,

∂(aT Ab)

∂A
= abT ,

∂(aT AT b)

∂A
= baT

∂tr(CT ABT )

∂A
=

∂tr(BAT C)

∂A
= CB

∂2

∂x∂xT
(Ax + b)T C(Dx + e) = AT CD + DT CT A

∂2

∂x∂xT
(xT Cx) = C + CT

∂

∂x
(Ax + b)T C(Dx + e) = AT C(Dx + e) + DT CT (Ax + b)

∂

∂A
(Aa + b)T C(Aa + b) = (C + C)T (Aa + b)aT
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Solution of the LMMSE

Differentiating the MSE with respect to M yields,

∂tr(P )

∂M
= −2E[sz

T ] + 2ME[zz
T ]

Hence

M = E(sz
T )[E(zz

T )]−1

Thus the LMMSE estimate of ŝ given z is

ŝLMMSE = E(sz
T )

[

E(zz
T )

]−1
z
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Orthogonality principle for vector RVs

Let s ∈ R
m and z ∈ R

q be jointly distributed random vectors, let

ŝ = α(z) be the LMMSE estimate of s given z. Then the estimation

error s− ŝ is orthogonal to z, i.e.,

E[(s− ŝ)zT ] = 0.

Sketch of proof. Just use the expression for ŝ.
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Illustration of orthogonality principle

s

ŝ

s̃

z
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Necessary and sufficient condition for orthogonality

Let α(z) be a linear estimator of s given z. Then α minimizes the MSE

if and only if the error s− α(z) is orthogonal to the measurement z,

E
{

[s− α(z)]zT
}

= 0

We can use this to find the optimum linear estimator.
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Overall optimality

When s and z are zero-mean, jointly Gaussian, the LMMSE estimate

is also the optimal MMSE estimate.

Suppose that s and z have a zero-mean bivariate Gaussian distribution

with covariance matrix P given by

P =

[

σ2
s Cov(s, z)

Cov(z, s) σ2
z

]

the conditional density function fs(s|z = z) is given by

fs(s|z = z) =
1√

2πσs

√

(1 − ρ2)
exp

{

− 1

2σ2
s(1 − ρ2)

(

s − E(sz)

E(z2)
z

)2
}

ŝMMSE = ŝLMMSE = E(sz)

E(z
2)

z
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Comparison of different estimators

Maximum likelihood (ML) Maximum a posteriori (MAP)

Motivation Given z, what value of s is most

likely to have produced z?

Given z, what value of s is most

likely to have occured?

Objective Maximize the likelihood function

fz(z|s = s)

maximize the conditional den-

sity fs(s|z = z) via Bayes rule,

equivalently maximize fz(z|s =

s)fs(s).

Esitmate ŝML = argmaxfz(z|s = s) ŝMAP = argmaxfz(z|s = s)fs(s)

Required

knowledge

likelihood function fz(z|s = s) Density function fs(s|z) (or

fz(z|s = s) and fs(s))
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Comparison of different estimators

Minimum mean-square error

(MMSE)

Linear MMSE (LMMSE)

Motivation Given z, what estimate of s gives

the smallest MSE?

Given z, what linear function ŝ =

λz gives the smallest MSE?

Objective Minimize the MSE E[(s − ŝ)2] find λ to minimize E[(s − λz)2].

Esitmate ŝMMSE = E(s|z) =
∫

∞

−∞

sfs(s|z)ds

ŝLMMSE = λz, where λ =

E[sz]/E[z2]

Required

knowledge

Density fs(s|z) Cross-correlation of s and z

E[sz]; second moment of z,

E(z2)
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