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Motivation

If the second-order statistics are known, the LMMSE estimator is

given by ŝLMMSE = E[szT ](E[zzT ])−1z;

In many applications, they aren’t known

Alternative approach is to estimate the coefficients from observed

data

Two possible approaches

Estimate required moments from available data and build an

approximate LMMSE estimator

Build an estimator that minimizes some error functional calculated from

the available data
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LMMSE VS Least Squares

Recall that LMMSE estimators are optimal in expectation across the

ensemble of all stochastic processes with the same second order

statistics

Least squares estimators minimize the error on a given block of data

No guarantees about optimality on other data sets or other stochastic

processes

If the process is ergodic, the LS estimator approaches the LMMSE

estimator as the size of the data set grows.
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Principle of Least Squares

the performance criterion: the sum of squares

requires a data set where both the inputs and desired responses are

known

the range of possible applications: data fitting, plant modeling for

control (system identification), prediction, inverse modeling,

interference cancellation

regularization: Tikhonov regularization (ridge regression), Lasso

method (application in compressed sensing)
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Least squares problems

y(n) ∈ R(n = 1, . . . , N) is the target or desired response

hk(n), k = 1, . . . , M represents the inputs

Assume y(n) = xT h(n) + v(n), in which v(n) is the noise,

h(n) = [h1(n), . . . , hM (n)]T , x = [x1, . . . , xM ]T

What we want to do is to estimate x, say x̂

Assume ŷ(n) = x̂T h(n), the estimate x̂ is chosen such the predicted

output approaches the measured output
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Least squares problems

Estimation error:

e(n) = y(n) − ŷ(n) = y(n) − x̂T h(n)

Sum of squared errors:

Ee =
N

∑

n=1

[e(n)]2
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Matrix Formulation
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that is

e = y − Hx̂

What we want to minimize is the sum of squared errors

Ee = eT e = yT y − x̂T HT y − yT Hx̂ + x̂T HT Hx̂
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Solving the optimization problem

necessary condition

∂Ee

∂x̂
= −yT H − yT H + 2x̂T HT H = 0,

then we have

x̂ = (HT H)−1HT y

sufficient condition
∂2Ee

∂x∂xT
= HT H

has to be positive definite.
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Discussion on the rank of H

Any solution x̂1 and x̂2 differ by a vector in the nullspace of H , i.e.,

H(x̂2 − x̂1) = 0

x̂ls is unique if H has full column rank, which is equivalent to the

requirement that HT H be positive definite.
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Unbiasedness

E[x̂] = (HT H)−1HT E[y]

If the noise is zero-mean, then

E[x̂] = E[x]

the LS estimator is unbiased.
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Properties of the LS estimate

Assumptions:

v is zero-mean white noise, E(vv
T ) = σ2I

Conclusion: LS estimate has the minimum mean square error among

all the linear unbiased estimate of x.

That is, if x̄ = Ly and E(x̄) = E(x), we have

E{[x − x̂][x − x̂]T } � E{[x − x̄][x − x̄]T }
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Properties of the LS estimate

Sketch of proof:

As

y = Hx + v, x̂ = (HT H)−1HT y

we have

E[(x − x̂)(x − x̂)T ] = (HT H)−1HT E(vvT )H(HT H)−1

= (HT H)−1HT σ2H(HT H)−1

= σ2(HT H)−1

LH = I, prove that the matrix LLT − (HT H)−1 is positive

semidefinite.
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Is LS estimate MMSE estimate?

An additional assumption:

v is Gaussian white noise

Conclusion: LS estimate has the minimum mean square error among all

the unbiased estimate of x

Sketch of proof:

1. Cramer-Rao inequality: for any unbiased estimate x̄, we have

E(x̄ − x)(x̄ − x)T − M−1 � 0,

in which M is the fisher information matrix, i.e.,

M = E

(

∂ ln(f(y1, . . . , yN |x))

∂x

)(

∂ ln(f(y1, . . . , yN |x))

∂x

)T

2. According to the assumptions, we have

f(y|x) = C

N
∏

i=1

exp

{

−
[yi − h(i)T x]2

2σ2

}

and M−1 = E(x − x̂LS)(x − x̂LS)T .
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Derivation of the likelihood function
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= P (v(1) ≤ y1 − h(1)T x) · · · P (v(n) ≤ yN − h(N)T x)

f(y1, . . . , yN |x) =
∏

i

1√
2πσ

exp

{

−
[

yi − h(i)T x
]2

2σ2

}

LS estimate is also the maximum likelihood estimate.
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Example

Consider again the Gaussian additive noise problem.

z = s + v.

Assume we have measurements z(1), . . . , z(N) and v is zero mean, then

the LS estimate is given by

ŝLS = (HT H)−1HT [z(1), . . . , z(N)]T =
1

N
(z(1) + . . . + z(N))

which is the same as the mean filter and is unbiased.
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Example: If v is Gaussian

Derive the maximum likelihood estimate of s.

The likelihood function can be written as

f(z(1), . . . , z(N)|s = s) =
∏

i

f(z(i)|s = s) =
∏

i

1√
2πσv

e−(z(i)−s)2/2σ2
v

The log-likelihood function

log f(z(1), . . . , z(N)|s = s) = C − 1

2σ2
v

N
∑

i=1

(z(i) − s)2

The maximum likelihood estimate is

ŝML = ŝLS.
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Weighted Least Squares

In previous LS estimate, we assumed that we had an equal amount of

confidence in all of our measurements

Now suppose we have more confidence in some measurements than

others.

A closely related problem is weighted least squares

Ee =

N
∑

n=1

w2
n[yn − h(n)T x]2 = (y − Hx)T W (y − Hx)

in which W = diag{w2
1, . . . , w2

N } and y = [y1, . . . , yN ]T .
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Solving the problem

The cost function Ee can be written as

Ee = eT We

= yT Wy − xT HT Wy − yT WHx + xT HT WHx

Necessary condition:

∇xf =
∂Ee

∂x
= −yT WH + xT HT WH = 0

Sufficient condition:

∇2
xf =

∂2Ee

∂x∂xT
= HT WH ≻ 0
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Solution

x̂ = (HT WH)−1HT Wy

x̂ = (HT WH)−1HT W y

Note that the uniqueness of WLS estimate requires that the matrix

HT WH to be positive definite
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Recursive Least Squares

There is a problem in the LS estimation.

the H matrix is an M × n matrix

if we obtain measurements sequentially and want to update our

estimate of x with each new measurement, we need to augment the

H matrix and completely recompute the estimate x̂

If the number of measurements becomes large, then the

computational effort could become prohibitive
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Problem formulation

A linearly recursive estimator can be written in the form

yk = Hkx + vk

x̂k = x̂k−1 + Kk(yk − Hkx̂k−1)

we compute x̂k on the basis of previous estimate x̂k−1 and new

measurement yk

Kk is the estimator gain matrix to be determined

the quantity (yk − Hkx̂k−1) is called the correction term or

innovation
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The mean of the estimation error

The estimation error mean can be computed as (x̂k is a random variable)

E(ǫx,k) = E(x − x̂k)

= E[x − x̂k−1 − Kk(yk − Hkx̂k−1)]

= E[ǫx,k−1 − Kk(Hkx + vk − Hkx̂k−1)]

= E[ǫx,k−1 − KkHk(x − x̂k−1) − Kkvk]

= (I − KkHk)E(ǫx,k−1) − KkE(vk)

where ǫx,k = x − x̂k.
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Unbiased estimator

if E(vk) = 0 and E(ǫx,k−1) = 0, then E(ǫx,k) = 0

if the measurement noise vk is zero-mean for all k, and the initial

estimate of x is set equal to the expected value of x, i.e., x̂0 = E(x),

then the expected value of x̂k is equal to E(x) for all k

This property holds regardless of the value of the gain matrix Kk.
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Determination of the optimal value of Kk

The optimally criterion (the sum of the variances of the estimation

errors at time k):

Jk = E[(x1 − x̂1,k)2] + . . . + E[(xn − x̂n,k)2]

= E(ǫ2
x1,k + . . . + ǫ2

xn,k)

= E(ǫT
x,kǫx,k)

= E[Tr(ǫx,kǫT
x,k)]

= TrPk

where Pk = E(ǫx,kǫT
x,k) is the estimation error covariance.
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Recursive formula for the calculation of Pk

Pk = E(ǫx,kǫT
x,k)

= E
{

[(I − KkHk)ǫx,k−1 − Kkvk][· · · ]T
}

= (I − KkHk)E(ǫx,k−1ǫT
x,k−1)(I − KkHk)T −

KkE(vkǫT
x,k−1)(I − KkHk)T − (I − KkHk)E(ǫx,k−1vT

k )KT
k +

KkE(vkvT
k )KT

k

As ǫx,k−1 is independent of vk, we have (suppose Rk = E(vkvT
k ))

E(vkǫT
x,k−1) = E(vk)E(ǫT

x,k−1) = 0,

Pk = (I − KkHk)Pk−1(I − KkHk)T + KkRkKT
k
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Consistent with intuition

As the measurement noise increases (i.e., Rk increases), the

uncertainty in our estimate also increases (i.e., Pk increases)

Pk should be positive semidefinite since it is a covariance matrix

Pk is positive definite provided that Pk−1 and Rk are positive definite
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Find the optimal value of Kk

We choose Kk to make the cost function (the trace of Pk) small then

the estimation error will not only be zero-mean, but it will also be

consistently close to zero.

∂Jk

∂Kk
= 0

∂Jk

∂Kk
= 2(I − KkHk)Pk−1(−HT

k ) + 2KkRk = 0

Then

KkRk = (I − KkHk)Pk−1HT
k

Kk(Rk + HkPk−1HT
k ) = Pk−1HT

k

Kk = Pk−1HT
k (HkPk−1HT

k + Rk)−1
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Recursive least squares estimation

1. Initialization: x̂0 = E(x), P0 = E[(x − x̂0)(x − x̂0)T ]

2. Iteration (for k):

obtain the measurement yk, assuming that yk is given by the equation

yk = Hkx + vk

update the estimate of x and the estimation-error covariance P as

follows:

Kk = Pk−1H
T

k (HkPk−1H
T

k + Rk)−1

x̂k = x̂k−1 + Kk(yk − Hkx̂k−1)

Pk = (I − KkHk)Pk−1(I − KkHk)T + KkRkK
T

k
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Important assumptions

if no knowledge about x is available before measurements are taken,

then P0 = ∞I. If perfect knowledge about x is available before

measurements are taken, then P0 = 0.

the measurement noise at each time step k is independent, i.e.,

E(vivk) = Rkδk−i. That is, the measurement noise is white.
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Alternate estimator forms

sometimes it is useful to write the equations for Pk and Kk in

alternate forms

although these alternate forms are mathematically identical, they can

be beneficial from a computational point of view

Least Squares Estimation 4-32



Alternate form for Pk

assume Sk = (HkPk−1HT
k + Rk), then

Kk = Pk−1HT
k S−1

k ,

substituting for Kk from the above into the expression of Pk, we obtain

Pk = [I − Pk−1HT
k S−1

k Hk]Pk−1[· · · ]T + Pk−1HT
k S−1

k RkS−1
k HkP T

k−1

expand terms to obtain

Pk =Pk−1 − Pk−1HT
k S−1

k HkPk−1 − Pk−1HT
k S−1

k HkPk−1+

Pk−1HT
k S−1

k HkPk−1HT
k S−1

k HkPk−1 + Pk−1HT
k S−1

k RkS−1
k HkPk−1
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Alternate form for Pk

Combining the last two terms in the above equation gives

Pk = Pk−1 − 2Pk−1HT
k S−1

k HkPk−1 + Pk−1HT
k S−1

k SkS−1
k HkPk−1

= Pk−1 − 2Pk−1HT
k S−1

k HkPk−1 + PkHT
k S−1

k HkPk−1

= Pk−1 − Pk−1HT
k S−1

k HkPk−1

As Kk = Pk−1HT
k S−1

k , we obtain

Pk = Pk−1 − KkHkPk−1

= (I − KkHk)Pk−1

Least Squares Estimation 4-34



Problems existed in the alternate form for Pk

Numerical computing problems (i.e., scaling issues) may cause this

expression for Pk to be not positive definite, even when Pk−1 and Rk

are positive definite.
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Matrix inversion lemma:

(A + BD−1C)−1 = A−1 − A−1B(D + CA−1B)−1CA−1
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Another formula for Pk

Pk = Pk−1 − Pk−1HT
k (HkPk−1HT

k + Rk)−1HkPk−1

P −1
k = [Pk−1 − Pk−1HT

k (HkPk−1HT
k + Rk)−1HkPk−1]−1

Applying the matrix inversion lemma:

P −1
k =P −1

k−1 + P −1
k−1Pk−1HT

k [(HkPk−1HT
k + Rk)−

HkPk−1P −1
k−1(Pk−1HT

k )]−1HkPk−1P −1
k−1

=P −1
k−1 + HT

k R−1
k Hk
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Another formula for Pk

Inverting both sides of the previous equation gives

Pk = [P −1
k−1 + HT

k R−1
k Hk]−1

This equation for Pk is more complicated in that it requires three matrix

inversions, but it may be computationally advantageous in some

situations.
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Equivalent equation for the estimator gain Kk

Kk = Pk−1HT
k (HkPk−1HT

k + Rk)−1

Premultiplying the right side by PkP −1
k gives

Kk = PkP −1
k Pk−1HT

k (HkPk−1HT
k + Rk)−1

substituting for P −1
k from

Pk = [P −1
k−1 + HT

k R−1
k Hk]−1

gives

Kk = Pk(P −1
k−1 + HT

k R−1
k Hk)Pk−1HT

k (HkPk−1HT
k + Rk)−1

multiply the factor Pk−1HT
k inside the first term in parentheses gives

Kk = Pk(HT
k + HT

k R−1
k HkPk−1HT

k )(HkPk−1HT
k + Rk)−1
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Equivalent equation for the estimator gain Kk

Now bring HT
k out to the left side of the parentheses to obtain

Kk = PkHT
k (I + R−1

k HkPk−1HT
k )(HkPk−1HT

k + Rk)−1

Now premultiply the first parenthetical expression by R−1
k , and multiply

on the inside of the parenthetical expression by Rk, to obtain

Kk = PkHT
k R−1

k (Rk + HkPk−1HT
k )(HkPk−1HT

k + Rk)−1

= PkHT
k R−1

k
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General recursive least squares estimation

The measurement equations:

yk = Hkx + vk

E(vk) = 0

E(vkvT
i ) = Rkδk−i

The initial estimate of the constant vector x, along with the

uncertainty in that estimate

x̂0 = E(x)

P0 = E[(x0 − x̂0)(x − x̂0)T ]
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General recursive least squares estimation

The recursive least squares algorithm: For k = 1, 2, · · · ,

Kk = Pk−1HT
k (HkPk−1HT

k + Rk)−1

= PkHT
k R−1

k

x̂k = x̂k−1 + Kk(yk − Hkx̂k−1)

Pk = (I − KkHk)Pk−1(I − KkHk)T + KkRkKT
k

= (P −1
k−1 + HT

k R−1
k Hk)−1

= (I − KkHk)Pk−1
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From another point of view

According to least squares estimation, we have

x̂ = (HT H)−1HT y

Assume we have measurements till time k,











y1
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yk











=











H1

...

Hk











· x +











v1

...

vk











then the estimate is given by

x̂(k) = [H(k)T H(k)]−1H(k)T y(k)

in which H(k) = [HT
1 , . . . , HT

k ]T , y(k) = [y1, . . . , yk]T .
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From another point of view

When the time k + 1 comes, we have

x̂(k + 1) = [H(k + 1)T H(k + 1)]−1H(k + 1)T y(k + 1)

in which

H(k + 1) =





H(k)

Hk+1



 .

the problem is how to express the estimate x̂k+1 as an incremental

expression.
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Relationship between x̂(k + 1) and x̂(k)

Assume C(k) = H(k)T H(k)

Then

x̂(k + 1) − x̂(k) = C(k + 1)−1
·

[

k
∑

i=1

HT
i

yi + HT
k+1

yk+1

]

− C(k)−1

k
∑

i=1

HT
i

yi

= [C(k + 1)−1
− C(k)−1] ·

k
∑

i=1

HT
i

yi + C(k + 1)−1HT
k+1

yk+1

= C(k + 1)−1[C(k) − C(k + 1)]C(k)−1
·

k
∑

i=1

HT
i

yi + C(k + 1)−1HT
k+1

yk+1

= C(k + 1)−1
(

−HT
k+1

Hk+1

)

x̂(k) + C(k + 1)−1HT
k+1

yk+1

= C(k + 1)−1HT
k+1

(

yk+1 − Hk+1x̂(k)

)

Equivalently,

x̂(k + 1) = x̂(k) + C(k + 1)−1HT
k+1 [yk+1 − Hk+1x̂(k)]
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Alleviate the burden for calculating inversion

As C(k + 1) = C(k) + HT
k+1Hk+1

According to the matrix inversion lemma, we have

C(k + 1)−1 =

C(k)−1 − C(k)−1HT
k+1

[

I + Hk+1C(k)−1HT
k+1

]

−1
Hk+1C(k)−1

Then

C(k + 1)−1HT
k+1 = C(k)−1HT

k+1

[

I + Hk+1C(k)−1HT
k+1

]

−1

Assume K̃(k + 1) = C(k + 1)−1HT
k+1, then we have

K̃(k + 1) = C(k)−1HT
k+1

[

I + Hk+1C(k)−1HT
k+1

]

−1

C(k + 1)−1 =

[

I − K̃(k + 1)Hk+1

]

C(k)−1
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Another formulation of RLS

K̃(k + 1) = C(k)−1HT
k+1

[

I + Hk+1C(k)−1HT
k+1

]

−1
=

C(k + 1)−1HT
k+1

C(k + 1)−1 =
[

I − K̃(k + 1)Hk+1

]

C(k)−1

x̂(k + 1) = x̂(k) + C(k + 1)−1HT
k+1 (yk+1 − Hk+1x̂(k))
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RLS 1 VS RLS 2

RLS 1 RLS 2

x̂0 = E(x)

P0 = E[(x0 − x̂0)(x − x̂0)T ]

x̂(1) = (HT
1

H1)−1H1y(1)

Statistical properties of the noise is known or unknown

Kk = Pk−1HT
k

(HkPk−1HT
k

+ Rk)−1

= PkHT
k

R
−1
k

Pk = [I − KkHk]Pk−1

= (P
−1
k−1

+ HT
k

R
−1
k

Hk)−1

x̂k = x̂k−1 + Kk(yk − Hkx̂k−1)

K̃(k) = C(k − 1)−1HT
k

[I + HkC(k − 1)−1HT
k

]−1

= C(k)−1HT
k

C(k)−1 = [I − K̃(k)Hk ]C(k − 1)−1

= (C(k − 1) + HT
k

Hk)−1

x̂(k) = x̂(k) + K̃(k)[yk − Hkx̂(k − 1)]

Expression: very similar!
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Consistency

For RLS 2, the estimation error at time k is

x − x̂(k) = x − C(k)−1H(k)T y(k) = −C(k)−1H(k)T · v(k)

in which v(k) = [v1, . . . , vk]T , H(k) and v(k) are independent.

The expectation of the estimation error is the same as that in the

simple LS case

E[x − x̂(k)] = 0

The variance is,

E{[x − x̂(k)][x − x̂(k)]T } = Rk[H(k)T H(k)]−1
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Consistency

The RLS 2 estimate is consistent, i.e.,

lim
k→∞

E{[x − x̂(k)][x − x̂(k)]T } = 0

Sketch of proof. Rk[H(k)T H(k)]−1 = Rk

k

[

H(k)T H(k)
k

]

−1

, assume

ergodicity

The RLS 1 estimate is consistent, i.e.,

lim
k→∞

Pk = 0

Sketch of proof. P −1
k = P −1

k−1 + HT
k R−1

k Hk, also assume ergodicity
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Interpretation

stochastic gradient: (k is stochastic)

x̂(k + 1) = x̂(k) + ρHT

k+1(yk+1 − Hk+1x̂(k))

ρ is the stepsize, gradient decent direction

RLS 1

x̂k = x̂k−1 + Kk(yk − Hkx̂k−1),

direction: Kk = PkHT

k R−1

k
, relationship with the gradient descent

direction

RLS 2

x̂(k) = x̂(k − 1) + K̃(k) (yk − Hkx̂(k − 1))

direction: K̃(k) = C(k)−1HT

k , relationship with the gradient descent

direction

A related paper: Stochastic Gauss-Newton Algorithms for Nonconvex

Compositional Optimization, ICML 2020.
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Example 1

Consider the problem of trying to estimate the resistance x of an

unmarked resistor on the basis of noisy measurement from a

multimeter

however, we do not want to wait until we have all the measurements

in order to have an estimate

we want to recursively modify our estimate of x each time we obtain

a new measurement

At sample time k our measurement is

yk = Hkx + vk

Hk = 1

Rk = E(v2
k)
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Example 1

Assume Rk = R;

Initial estimate:

x̂0 = E(x)

P0 = E[(x0 − x̂0)(x − x̂0)T ]

If we have absolutely no idea about the resistance value, then

P (0) = ∞. If we are 100% certain about the resistance value before

taking any measurements, then P (0) = 0 (but then, of course, there

would not be any need to take measurements)
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Example 1

After the first measurement (k = 1):

Kk = Pk−1HT
k (HkPk−1HT

k + Rk)−1

K1 = P0(P0 + R)−1

x̂k = x̂k−1 + Kk(yk − Hkx̂k−1)

x̂1 = x̂0 +
P0

P0 + R
(y1 − x̂0)

Pk = (I − KkHk)Pk−1(I − KkHk)T + KkRkKT
k

P1 =
P0R

P0 + R
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Example 1

Repeating these calculations to find these quantities after the second

measurement (k = 2) gives

K2 =
P1

P1 + R
=

P0

2P0 + R

P2 =
P1R

P1 + R
=

P0R

2P0 + R

x̂2 = x̂1 +
P1

P1 + R
(y2 − x̂1)

=
P0 + R

2P0 + R
x̂1 +

P0

2P0 + R
y2
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Example 1

By induction we can find general expressions for Pk−1, Kk, and x̂k as

follows:

Pk−1 =
P0R

(k − 1)P0 + R

Kk =
P0

kP0 + R

x̂k = x̂k−1 + Kk(yk − x̂k−1)

= (1 − Kk)x̂k−1 + Kkyk

=
(k − 1)P0 + R

kP0 + R
x̂k−1 +

P0

kP0 + R
yk
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Example 1

If x is known perfectly a priori (i.e., before any measurements are

obtained) then P0 = 0, and then Kk = 0 and x̂k = x̂0, i.e., the

optimal estimate of x is independent of any measurements that are

obtained

If x is completely unknown a priori, then P0 → ∞, and then

x̂k =
(k − 1)P0

kP0
x̂k−1 +

P0

kP0
yk

=
k − 1

k
x̂k−1 +

1

k
yk

=
1

k
[(k − 1)x̂k−1 + yk]

in other words, the optimal estimate of x is equal to the cumulative

moving average of the measurements yk.
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Example 1

the cumulative moving average of the measurements yk:

ȳk =
1

k

k
∑

j=1

yj

=
1

k





k−1
∑

j=1

yj + yk





=
1

k



(k − 1)





1

k − 1

k−1
∑

j=1

yj



 + yk





=
1

k
[(k − 1)ȳk−1 + yk]
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Example 1: using RLS 2

x̂(k + 1) = x̂(k) + C(k + 1)−1HT
k+1(yk+1 − Hk+1x̂(k))

H1 = 1, x̂(1) = y1, C(1) = 1, C(2) = 2, x̂(2) =
1

2
[x̂(1) + y2]

x̂(k) =
1

k





k−1
∑

j=1

yj + yk





which is the same as RLS 1 if P0 = ∞.
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Example 2: computational advantages

suppose we have a scalar parameter x and a perfect measurement of

it, i.e., H1 = 1 and R1 = 0

suppose that our initial estimation covariance P0 = 6

suppose that our computer provides precision of three digits to the

right of the decimal point for each quantity that it computes
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Example 2: computational advantages

The estimator gain K1 is:

K1 =P0(P0 + R1)−1

=6 ∗ 1/6

=6 ∗ 0.167

=1.002

use the first form we obtain

P1 = (1 − K1)P0(1 − K1) + K1R1K1

= (1 − K1)2P0 + K2
1R1

= 0
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Example 2: computational advantages

Using the third term, the covariance update is

P1 = (1 − K1)P0

= (−0.002) ∗ 6

= −0.012

The covariance after the first measurement is negative, which is

physically impossible.

for the first form, the covariance matrix will never be negative,

regardless of any numerical errors in P0, R1, and K1.
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Application of recursive least squares theory to the

curve fitting problem

measure data one sample at a time (y1, y2, · · · )

find the best fit of a curve to the data

the curve that we want to fit to the data could be constrained to be

linear, or quadratic, or sinusoid, or some other shape
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Example 3: fit a straight line to a set of data points

the linear data fitting problem can be written as

yk = x1 + x2tk + vk

E(v2
k) = Rk

x = [x1, x2]T , tk is the independent variable, yk is the noisy data.

we want to estimate the constants x1 and x2

the measurement matrix: Hk = [1 tk]

linear data fitting equation: yk = Hkx + vk
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Example 3: RLS 1

initialize our recursive estimator:

x̂0 = E(x)

P0 = E[(x − x̂0)(x − x̂0)T ]

iteration: for k = 1, 2, . . . ,

Kk = Pk−1HT
k (HkPk−1HT

k + Rk)−1

x̂k = x̂k−1 + Kk(yk − Hkx̂k−1)

Pk = (I − KkHk)Pk−1(I − KkHk)T + KkRkKT
k
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Example 3: RLS 2

initialize our recursive estimator:

x̂1 = (HT
1 H1)−1H1y1

C(1)−1 = (HT
1 H1)−1

iteration: for k = 2, . . . ,

K̃k = C−1
k−1HT

k (I + HkC−1
k HT

k )−1

x̂k = x̂k−1 + K̃k(yk − Hkx̂k−1)

C(k)−1 = (I − K̃kHk)C(k − 1)−1
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Example 4: fit a neural network to a set of data points

suppose we want to fit a neural network to a set of data points:

yk = x0 +

M
∑

i=1

xiBi(tk) + vk

E(v2
k) = Rk

x = [x0, x1, . . . , xM ]T , tk is the independent variable, yk is the noisy

data, and Bi(tk) is called the basis (kernel) function.

we want to estimate the constants x0, x1, . . . , xM

the measurement matrix: Hk = [1, B1(tk), . . . , BM (tk)]

linear data fitting equation: yk = Hkx + vk

Least Squares Estimation 4-68



Structure of a neural network
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Example 4: fit a neural network to a set of data points

popular basis functions

linear function; step function

polynomial function

Bi(tk) = tαi

k

RBF: (Gaussian)radial basis function:

Bi(tk) = exp

{

− (tk − αi)
2

2σ2
i

}

sigmoid function (S-shape):

Bi(tk) =
1

1 + e−βitk

Rectified linear units:

Bi(tk) = max(0, tk)
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Example 4: RLS 1

initialize our recursive estimator:

x̂0 = E(x)

P0 = E[(x − x̂0)(x − x̂0)T ]

iteration: for k = 1, 2, . . . ,

Kk = Pk−1HT
k (HkPk−1HT

k + Rk)−1

x̂k = x̂k−1 + Kk(yk − Hkx̂k−1)

Pk = (I − KkHk)Pk−1(I − KkHk)T + KkRkKT
k
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Example 4: RLS 2

initialize our recursive estimator:

x̂1 = (HT
1 H1)−1H1y1

C(1)−1 = (HT
1 H1)−1

iteration: for k = 2, . . . ,

K̃k = C−1
k−1HT

k (I + HkC−1
k HT

k )−1

x̂k = x̂k−1 + K̃k(yk − Hkx̂k−1)

C(k)−1 = (I − K̃kHk)C(k − 1)−1

Least Squares Estimation 4-72



Example 4: fit a neural network to a set of data points

The differences in the neural network curve fitting:

choose a suitable basis function

determine the parameters αi, σ2, βi, which is the training of the

neural network
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