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Motivation

o If the second-order statistics are known, the LMMSE estimator is
given by 8 vmse = Elsz”|(E[zz]) " 1z;

o In many applications, they aren’t known

o Alternative approach is to estimate the coefficients from observed
data

o Two possible approaches

o Estimate required moments from available data and build an
approximate LMMSE estimator
o Build an estimator that minimizes some error functional calculated from

the available data
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LMMSE VS Least Squares

o Recall that LMMSE estimators are optimal in expectation across the
ensemble of all stochastic processes with the same second order

statistics
o Least squares estimators minimize the error on a given block of data

o No guarantees about optimality on other data sets or other stochastic

processes

o If the process is ergodic, the LS estimator approaches the LMMSE

estimator as the size of the data set grows.
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Principle of Least Squares

o the performance criterion: the sum of squares

o requires a data set where both the inputs and desired responses are
known

o the range of possible applications: data fitting, plant modeling for
control (system identification), prediction, inverse modeling,

interference cancellation

o regularization: Tikhonov regularization (ridge regression), Lasso

method (application in compressed sensing)
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Least squares problems

y(n) € R(n=1,...,N) is the target or desired response
hi(n),k =1,..., M represents the inputs

Assume y(n) = xTh(n) + v(n), in which v(n) is the noise,
h(n) = [hi(n),...,hp(n)]T,x = [21,..., 2]

What we want to do is to estimate x, say X

Assume §(n) = xTh(n), the estimate % is chosen such the predicted

output approaches the measured output
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Least squares problems

Estimation error:

Least Squares Estimation
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Matrix Formulation

e(1) y(1) hi(1) -+ hum(1) 1
e(N) y(N) hi(N) ha (N) &y
that is
e=y— Hx

What we want to minimize is the sum of squared errors

E.=eTe=yl'y—xTH'y —yTHx +xTHTHx

48
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Solving the optimization problem

o necessary condition

OE,
— = yTH-—yT"H+2%THTH =0,
ox
then we have
x=(H"H)'HTy
o sufficient condition

O%E,

OxoxT

has to be positive definite.

=H"H

Least Squares Estimation
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Discussion on the rank of H

o Any solution X1 and Xo differ by a vector in the nullspace of H, i.e.,

o Xjs is unique if H has full column rank, which is equivalent to the

requirement that H” H be positive definite.
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Unbiasedness

E[%] = (H"H)"'HTE[y]

If the noise is zero-mean, then

the LS estimator is unbiased.
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Properties of the LS estimate

o Assumptions:

o v is zero-mean white noise, E(vv”) = ¢%I

o Conclusion: LS estimate has the minimum mean square error among

all the linear unbiased estimate of x.

That is, if x = Ly and E(x) = F(x), we have

E{lx - &]x - %"} 2 B{x - x][x - %]}
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Properties of the LS estimate

Sketch of proof:

o As
y=Hx+v, x=HTH)'HTy

Elx-%)(x-x)T] =HTH)'HTE(vT)HHTH)™!
= (HTH)'HTo?H(HTH)™!
— UQ(HTH)—l
o LH = I, prove that the matrix LLT — (HT H)~! is positive

semidefinite.
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Is LS estimate MMSE estimate?

An additional assumption:
o v is Gaussian white noise

Conclusion: LS estimate has the minimum mean square error among all

the unbiased estimate of x

Sketch of proof:

1. Cramer-Rao inequality: for any unbiased estimate X, we have
E-x)x-x)T —M~t =0,

in which M is the fisher information matrix, i.e.,

T
ox ox
2. According to the assumptions, we have

o [y: — h(3) ")
f(y|z) = CHexp {—lT}

i=1
and M~ = E(x — %1,5)(x — %x15)7.
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Derivation of the likelihood function

}’(1) Y1
P : < |x =z
y(N) YN
v(1) yi —h(1)"z
=P : < :
v(n) yn —h(N)Tz

= P(v(1) <y —h(1)"z) - P(v(n) <yx —h(N)"z)

. — h(i)Tz]?
f(yl,---7yN|$)=Hﬁexp{—W}

o LS estimate is also the maximum likelihood estimate.
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Example

Consider again the Gaussian additive noise problem.

Z=S8+V.
Assume we have measurements z(1),...,z(N) and v is zero mean, then
the LS estimate is given by
1
ss = (HTH) 'HT[2(1),...,2(N)|T = N(z(l) +... 4 2(N))

which is the same as the mean filter and is unbiased.
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Example: If v is Gaussian

Derive the maximum likelihood estimate of s.

o The likelihood function can be written as

)2 (N)ls =) =[] Fe@ls =) =[] o (0=0/20]

210y,

o The log-likelihood function

1
20

N
> () —

=1

log f(2(1),...,2(N)|s=s)=C—

<N

o The maximum likelihood estimate is

>
=
=
Il

>
=
0
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Weighted Least Squares

o In previous LS estimate, we assumed that we had an equal amount of

confidence in all of our measurements

o Now suppose we have more confidence in some measurements than

others.

o A closely related problem is weighted least squares
N
E. = Z w2 [y, —h(n)Tz]? = (y — Hx)"W(y — Hz)
n=1

in which W = diag{w?,...,w%} and y = [y1,...,yn]7.
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Solving the problem

o The cost function E,. can be written as

E. = eTWe

=y Wy —2TH" Wy —y"WHz + 2T H"WHz

o Necessary condition:

OF,
Vof =5 = —yTWH +2"HTWH =0
o Sufficient condition:
0%E,
Vif = = HTWH >0

0z0xT

Least Squares Estimation
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Solution

&= (H"WH) *H"Wy
x=(H"WH)'H"Wy

Note that the uniqueness of WLS estimate requires that the matrix

HTW H to be positive definite
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o Recursive Least Squares
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Recursive Least Squares

There is a problem in the LS estimation.
o the H matrix is an M X n matrix
o if we obtain measurements sequentially and want to update our

estimate of x with each new measurement, we need to augment the

H matrix and completely recompute the estimate X

o If the number of measurements becomes large, then the

computational effort could become prohibitive

Least Squares Estimation 4-22



Problem formulation

o A linearly recursive estimator can be written in the form

i = Hpx + v
Xp = Xp—1 + Ki(yr — HiXi—1)
o we compute X on the basis of previous estimate X;_1 and new
measurement y
o Kj, is the estimator gain matrix to be determined

o the quantity (yx — HxXk—1) is called the correction term or

innovation
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The mean of the estimation error

The estimation error mean can be computed as (X, is a random variable)

E(er ) = E(x — Xg)
= Ex — %1 — Ki(yr — HpXg-1)]
= Fleg -1 — Ki(Hpx + v — HyXp—1)]
= Fleg -1 — KiHp(x — Xp—1) — Kpvi)

= (I - Kka)E(ErJ@_l) - KkE(Vk)

where €, = x — Xy,.

Least Squares Estimation
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Unbiased estimator

o if E(vy) =0 and E(eg ,—1) =0, then E(ey ) =0
o if the measurement noise vy, is zero-mean for all k, and the initial
estimate of x is set equal to the expected value of x, i.e., X9 = E(x),

then the expected value of Xy, is equal to F(x) for all &

This property holds regardless of the value of the gain matrix K.
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Determination of the optimal value of K,

The optimally criterion (the sum of the variances of the estimation

errors at time k):

= E(eil,k + -+ ern,k)
= E(€f,k€z,k)
= B[Tr(es vy 1))

= TI"Pk

where P, = E(e, 1€l ) is the estimation error covariance.
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Recursive formula for the calculation of P,

Py = E(eg 1€y 1)
=E{[(I - KpHp)ep -1 — Krvgl[---]"}
= (I = KpHp)E(ex 165 1) (I = KpHi) " —
KyBE(vrel  1)(I — KeHp)" — (I = K Hy)E(eap—10f )KL +

KLE(vpol ) KF
As €, 1 is independent of vy, we have (suppose Ry = E(vv]))
E(vkel 1) = E(vp)E(el 1) =0,

P, = (I — KpHy)Peor (I — KiHy)" + KR KL
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Consistent with intuition

o As the measurement noise increases (i.e., Ry, increases), the

uncertainty in our estimate also increases (i.e., Py increases)
o P should be positive semidefinite since it is a covariance matrix

o Py is positive definite provided that P,_; and Ry are positive definite
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Find the optimal value of K}

We choose K, to make the cost function (the trace of Py) small then
the estimation error will not only be zero-mean, but it will also be

consistently close to zero.

aJ

2k

0Ky,

0Jy T

—_— = 2([ — Kka)Pkfl(—Hk ) + 2K R, =0
0Ky,

Then

KRy = (I — K1 Hy, )P HF
Ki(Ry, + Hy P, Hl) = Py Hf

K =P, 1HF (HyPy 1 HF + Ry)™*

Least Squares Estimation
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Recursive least squares estimation

1. Initialization: %9 = E(x), Py

= BE[(x — %o)(x — %0)7]

2. lteration (for k):
o obtain the measurement yy, assuming that yj is given by the equation

v = Hpx 4+ ui

o update the estimate of x and the estimation-error covariance P as

follows:

Least Squares Estimation

Ki = Py 1HI (Hy Py 1 HYF + Ry,) ™"
Xk = Xp—1 + Ki(yp — HiXi—1)
Py = (I — KpHy)Poi(I — KuHy)" + Ku Ro K},
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Important assumptions

o if no knowledge about x is available before measurements are taken
then Py = ool. If perfect knowledge about x is available before

measurements are taken, then Py = 0.

o the measurement noise at each time step k is independent, i.e.,

E(v;vy) = Rgdr—;. That is, the measurement noise is white.

Least Squares Estimation
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Alternate estimator forms

o sometimes it is useful to write the equations for P, and K} in

alternate forms

o although these alternate forms are mathematically identical, they can

be beneficial from a computational point of view
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Alternate form for P,

assume Sy, = (HyPy,—1H! + Ry), then
Ky =Py 1HES, Y,
substituting for Kj from the above into the expression of Py, we obtain
Po=[I - P HES ' Hy P+ )" + Peo1 HE S, 'Ry S, P Hy P
expand terms to obtain

Py =Py 1 — Po 1 H S, " Hy Py — P 1 H S, Hy Py +

Pk_lHgS;lHkPk_ngsk_lHkPk_l + Pk_ngSgleSngkPk_l

Least Squares Estimation 4-33



Alternate form for P,

Combining the last two terms in the above equation gives

Py = Py — 2Py 1 H S " HyPy—y + Py  HE S, 1SS, " Hy Py
= Py_1 — 2P 1 H}L S, " Hy Py + P H}L S, ' Hi Py—y

=Py — Po 1 HE S He Py
As Ky = Py_1HF'S,’!, we obtain

P, =P, 1 — K H, P4

= (I — KxHy)Py1

Least Squares Estimation
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Problems existed in the alternate form for P,

Numerical computing problems (i.e., scaling issues) may cause this
expression for Py to be not positive definite, even when P;_; and Ry,

are positive definite.

Least Squares Estimation
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Matrix inversion lemma:

(A+BD'C)y'=A"'-A'B(D+CA'B)"lcA™!

Least Squares Estimation
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Another formula for P,

Py = Pyy — Po 1 H (HpPo 1 H + Ry.) " Hy. Py

Pl =[Py — Po 1 HE (H Pyt HE + Ry) " Hy, Py ]!
Applying the matrix inversion lemma:

Pt =P + P P H[(Hp Pooy Hy. + Ry,)—
HyPy1 P (Poo HD) Y Hy Poa P

—1 T p—1
=P+ H; R, Hy

Least Squares Estimation
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Another formula for P,

Inverting both sides of the previous equation gives
Py =[P + HI R, " Hy) ™

This equation for Pj is more complicated in that it requires three matrix
inversions, but it may be computationally advantageous in some

situations.
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Equivalent equation for the estimator gain K}

Ky =P, 1HI (H.P.,_ HF + R,)™!
Premultiplying the right side by Pk.P,;1 gives
Ky = PoP; ' Po HE (H, Py  HE + Ry) ™
substituting for P,;1 from
Py =[P, + HIR; ' Hy)
gives
Ky = Po(P Y + HE R P Hy)Pe1 HE (Hy P HY + Ry) ™"
multiply the factor P,_1 H] inside the first term in parentheses gives

Ky = Po(H! + HI R, ' Hy, Py HY ) (Hi Pe—1 HE + Ry,) ™
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Equivalent equation for the estimator gain K}

Now bring H out to the left side of the parentheses to obtain
Ky = PoH[ (I + R} 'Hy Py 1 H)(HpPr1 H + Ry,) ™"

Now premultiply the first parenthetical expression by Rk_,l, and multiply

on the inside of the parenthetical expression by Ry, to obtain

K, = PngREI(Rk + HkPking)(HkPking + Rk)71

= P.HIR!
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General recursive least squares estimation

o The measurement equations:

Yi = Hpx + vy
E(Uk) =0
E(vkv;‘r) = Rkék,i

o The initial estimate of the constant vector z, along with the

uncertainty in that estimate

)A(Q = E(X)

Py = E|(x0 — %0)(x — %0)"]

Least Squares Estimation
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General recursive least squares estimation

o The recursive least squares algorithm: For k =1,2,---,

Ky =Py HI (Hy Py HF 4+ Ry)™*
=P HIR;"

X = Xp—1 + Kp(yp — HpXp—1)

P, = (I — K Hy)Pr1(I — Ki,Hy)" + KR KF
= (P, + HI R ' Hy) ™!

= (I — KxHy)Py—1
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From another point of view

o According to least squares estimation, we have
&= (HTH)'HTy
o Assume we have measurements till time k,

Y1 H,y

Yk Hy,

then the estimate is given by

& (k) = [H (k)" H (k)] H (k)" y (k)

in which H(k) = [HT,...,HI|", y(k) = [y1,. ..

Least Squares Estimation
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From another point of view

o When the time k + 1 comes, we have
e+ 1) =[HE+D)"HEk+ )] ' HE+ D) y(k+1)

in which
H (k)
Hk+1

H(k+1) =

o the problem is how to express the estimate Z;y; as an incremental

expression.
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Relationship between % (k + 1) and Z(k)

o Assume C(k) = H(k)TH (k)

o Then
k k
e+ —a) =Ck+D"1 S BTy +HE ypya | —Cc Tty HTy,
=1 =1
k
=+ o™ Y B w4 O+ DT ET g
i=1
k
=Ck+1)" Ck) —Ck+1D)]CHR)" - HIy; + c(k + 1)_1Hg+1yk+1
i=1

=ttt (<HE, ) 20 + O+ DTIET g

=Ck+1)" 1 Hg+1 (ykﬂ - Hk+la’u(k))

o Equivalently,
2(k+1) = 2(k) + Clk + 1) Hiy [yrsr — Hirr2(k))]

Least Squares Estimation 4-45



Alleviate the burden for calculating inversion

©

As C(k+1) = C(k) + HE, | Hiia

©

According to the matrix inversion lemma, we have
Clk+1)"!'=

C(k)™ = O™ HEy [T+ Hyn C(R) T HE, | Hyn C (k)™
o Then

Ck+ 1) HE = C(k)" HE [T+ Hen (k) HEL, ]

©

Assume K (k+1) = C(k+ 1)~ HF,,, then we have
R +1) =cm™ il [1 + HkJrlcu-,)*lHkTJrJ -

ck+1)"1 = [1 — K(k+ 1)H,€+1] c(k)y~ 1t

Least Squares Estimation
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Another formulation of RLS

o K(k+1)=C(k)'HE., [+ HynC(k) " HE ] =

Clk+1)"'H[,,
o Ck+1)"t = [I - K(k+1)Hp41] C(k)™

o &(k+1) =a(k) + Clk+ 1)~ Hiy (Yns1 — Hir8(k))

Least Squares Estimation
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RLS 1 VS RLS 2

RLS 1 RLS 2
%0 = E(x) #(1) = (H Hy) 7 Hyy(1)
Py = E[(xg — %) (x — :’cO)T] Statistical properties of the noise is known or unknown
Kj =Py HE (Hp P HF + Ryt R(k) =ck — )" HI I+ Hyo(k — 1)~ a1
=P HT R =c@)~tHF
Py = 1[I — K HL]P,_4 C(k)~! =[I - K(k)HL)C(k — 1)~ 1

—1 —1 —
=+ EIR T H)T!

(Ctk — 1)+ HIH)™?
#(k) + Ky, — Hya(k — 1)]

dp =@ 1 + Kp(up — Hpdp_q) (k)

Expression: very similar!
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Consistency

o For RLS 2, the estimation error at time & is
z—&(k) =2 —Ck) " H(k) y(k) = —C(k)" H(k)" - v(k)

in which v(k) = [v1,...,v]T, H(k) and v(k) are independent.
o The expectation of the estimation error is the same as that in the

simple LS case

Elz — #(k)] =0

o The variance is,
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Consistency

o The RLS 2 estimate is consistent, i.e.,

lim E{[z — 2(k)][x —2(k)]"} =0

k—o0

-1
Sketch of proof. Ry[H (k)T H (k)]~! = B {W} , assume

ergodicity

o The RLS 1 estimate is consistent, i.e.,
lim Pk =0

k—o00

Sketch of proof. P,;1 = ,;11 + H,?R,;lHk., also assume ergodicity

Least Squares Estimation
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Interpretation

o stochastic gradient: (k is stochastic)
o &(k+1) = (k) + pHT 1 (yir1 — Hiprd (k)
o p is the stepsize, gradient decent direction
o RLS1
o Xp = Xp—1 + Kp(yr — HeXp—1),
o direction: Kj = PkaTR,:l, relationship with the gradient descent
direction
o RLS 2
o #(k) = (k- 1)+ K(k) (yx — Hrz(k — 1))
o direction: K (k) = C(k)"'H}', relationship with the gradient descent
direction
o A related paper: Stochastic Gauss-Newton Algorithms for Nonconvex

Compositional Optimization, ICML 2020.

Least Squares Estimation
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Example 1

o Consider the problem of trying to estimate the resistance x of an
unmarked resistor on the basis of noisy measurement from a
multimeter

o however, we do not want to wait until we have all the measurements
in order to have an estimate

o we want to recursively modify our estimate of x each time we obtain
a new measurement

o At sample time k£ our measurement is

Least Squares Estimation 4-52



Example 1

o Assume R, = R;

o Initial estimate:

@0 = E(Z‘)

Py = E[(z0 — &o)(z — £0)"]

If we have absolutely no idea about the resistance value, then
P(0) = co. If we are 100% certain about the resistance value before
taking any measurements, then P(0) = 0 (but then, of course, there

would not be any need to take measurements)
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Example 1

o After the first measurement (k = 1):
Ky =Py HF (H Py HF + Ry)™*

K| =Py(Py+R)!

T = Zp—1 + Ki(yr — HeZg—1)

PN Py .

1= 2o+ P0+R(y1 o)

P, = (I — K Hy)Pi1(I — KiHy)" + KR KF
P,

Py oft

R +R

Least Squares Estimation

4-54



Example 1

o Repeating these calculations to find these quantities after the second
measurement (k = 2) gives

Ko — P R
2_P1+R_2PQ+R

P, PR
Py 1R 0

P +R 2Py+R
A Py .
$2—$1+P1+R(y2—$1)
Py+R . Py

=t R ap 1 RP

Least Squares Estimation
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Example 1

o By induction we can find general expressions for P;_1, Kg, and &y as

follows:
PR
P =
ML k- DP + R
K, = 1o
T kP, R

g = Tp—1 + Ki(yr — Tp—1)

= (1= Kp)Tp—1 + Kpy

_(k-VR+R. R
T kB +R YT kR + R
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Example 1

o If  is known perfectly a priori (i.e., before any measurements are
obtained) then Py = 0, and then K} = 0 and &), = 2o, i.e., the
optimal estimate of x is independent of any measurements that are
obtained

o If  is completely unknown a priori, then Py — oo, and then

(k—1)F . Py
1P Tr—1 + kPoyk

k—1, L 1
% Tk—1 kyk—

(k= 1)ZTrp—1 + yi)

i =

Eol

in other words, the optimal estimate of x is equal to the cumulative

moving average of the measurements yy.

Least Squares Estimation
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Example 1

o the cumulative moving average of the measurements y:

j=1
=
=% Doyt
j=1
k—1
1 1
=% (k—1) ﬁzya + Yk
j=1

(k= Dyr—1 + y]

Least Squares Estimation
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Example 1: using RLS 2

ik +1) = 2(k) + Clk + 1) 7 Hy (yr1 — Hira @ (k)

H =1,31)=y1,C(1) =1,C(2) =2,2(2) = !

5@(1) + 2]

1 k—1
Bk) = | D_wi+we
j=1

which is the same as RLS 1 if Py = co.
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Example 2: computational advantages

o suppose we have a scalar parameter x and a perfect measurement of

it,i.e, HH=1and Ry =0
o suppose that our initial estimation covariance Py = 6

o suppose that our computer provides precision of three digits to the

right of the decimal point for each quantity that it computes
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Example 2: computational advantages
o The estimator gain K; is:
Ky =Py(Py+ Ry !
=6x1/6
=6*0.167
=1.002
o use the first form we obtain
P = (1 — Kl)PQ(]. — K1) + K1R1 K4
= (1 — K1)2P0 + K%Rl
=0

Least Squares Estimation
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Example 2: computational advantages

o Using the third term, the covariance update is

P =(1-K)P
= (—0.002) * 6

= —0.012

The covariance after the first measurement is negative, which is

physically impossible.

o for the first form, the covariance matrix will never be negative,

regardless of any numerical errors in Py, Ry, and Kj.

Least Squares Estimation
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o Curve Fitting
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Application of recursive least squares theory to the

curve fitting problem

o measure data one sample at a time (y1,y2, )
o find the best fit of a curve to the data

o the curve that we want to fit to the data could be constrained to be

linear, or quadratic, or sinusoid, or some other shape
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Example 3: fit a straight line to a set of data points

o the linear data fitting problem can be written as

Yk = T1 + xalp + vk

E(’U]%) = Rk

x = [x1,22]T, t), is the independent variable, y;, is the noisy data.
o we want to estimate the constants z; and xo
o the measurement matrix: Hy = [1 tj]

o linear data fitting equation: yr = Hpx + v,
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Example 3: RLS 1

o initialize our recursive estimator:

@0 = E(x)

P() = E[(Z‘ — @0)(1‘ — i‘Q)T]
o iteration: for k =1,2,...,

Ky =Py \HI (H P, 1HE + R)™!
Zp = Tp—1 + Ki(yr — HeZr—1)

P, = (I — KpHy) Py (I — KiHy)" + KR KF

Least Squares Estimation
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Example 3: RLS 2

o initialize our recursive estimator:

JAﬁl = (HlTHl)_lHlyl

C()™! = (H{ Hy)™

o iteration: for k =2,...,

Ky =C L HE (I + HCPHE) ™!

B = p-1 + Ki(ys — Hpdp—1)
Ck)™ = - K H,)C(k—1)7"

Least Squares Estimation
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Example 4: fit a neural network to a set of data points

o suppose we want to fit a neural network to a set of data points:

k—330+z$1 (tr) + vk
E(v}) = Ry,

x = [20,71,...,20m|, tx is the independent variable, y; is the noisy
data, and B;(tx) is called the basis (kernel) function.

o we want to estimate the constants xqg, x1,..., T

o the measurement matrix: Hy = [1, B1(tg), ..., Ba(t)]

o linear data fitting equation: yr = Hipx + vg
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east Squares Estimation

Structure of a neural network
Hidden

Input
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Example 4: fit a neural network to a set of data points

popular basis functions
o linear function; step function
o polynomial function
Bi(ty) =t}

o RBF: (Gaussian)radial basis function:

Bi(tx) =exp{—w}

20i2
o sigmoid function (S-shape):
1
Bl(tk) = 1_|_e_6itk

o Rectified linear units:

Bi(tr) = max(0, t)
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Example 4: RLS 1

o initialize our recursive estimator:

@0 = E(x)

P() = E[(Z‘ — @0)(1‘ — i‘Q)T]
o iteration: for k =1,2,...,

Ky =Py \HI (H P, 1HE + R)™!
Zp = Tp—1 + Ki(yr — HeZr—1)

P, = (I — KpHy) Py (I — KiHy)" + KR KF
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Example 4: RLS 2

o initialize our recursive estimator:

JAﬁl = (HlTHl)_lHlyl

C()™! = (H{ Hy)™

o iteration: for k =2,...,

Ky =C L HE (I + HCPHE) ™!

B = p-1 + Ki(ys — Hpdp—1)
Ck)™ = - K H,)C(k—1)7"
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4-72



Example 4: fit a neural network to a set of data points

The differences in the neural network curve fitting:
o choose a suitable basis function

o determine the parameters «;, o2, 3;, which is the training of the

neural network
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