
Propagation Optimal Estimation

Lecture 5

Propagation of states and covariances

Discrete-time systems

Sampled-data systems

Continuous-time systems

Jun Xu HITsz 5-1



What is this chapter about

mathematical description of a dynamic system

derive the equations that govern the propagation of the state mean

and covariance

is fundamental to the state estimation algorithm (the Kalman filter)
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Linear discrete-time system

Suppose we have the following linear discrete-time system:

xk = Fk−1xk−1 + Gk−1uk−1 + wk−1 (1)

in which uk is a known input and wk is the process noise drawn from a

zero-mean multivariate normal distribution with covariance Qk. Besides,

the initial state, and the noise vector at each step {x0, w1, . . . , wk} are

all assumed to be mutually independent.
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Mean and covariance of xk

Mean: take the expected value of both sides of Equation (1) we

obtain

x̄k = E(xk) = Fk−1x̄k−1 + Gk−1uk−1

Covariance (Pk = E[xk − x̄k][xk − x̄k]T ):

(xk − x̄k)(· · · )T = (Fk−1xk−1 + Gk−1uk−1 + wk−1 − x̄k)(· · · )T

= [Fk−1(xk−1 − x̄k−1) + wk−1][· · · ]T

= Fk−1(xk−1 − x̄k−1)(xk−1 − x̄k−1)T
F

T

k−1
+ wk−1w

T

k−1
+

Fk−1(xk−1 − x̄k−1)wT

k−1
+ wk−1(xk−1 − x̄k−1)T

F
T

k−1
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Discrete-time Lyapunov equation

the term (xk−1 − x̄k−1) is uncorrelated with wk−1 (provided that x0

is uncorrelated with wk, k = 0, 1, 2, . . .)

The covariance matrix:

Pk = E[(xk − x̄k)(· · · )T ] = Fk−1Pk−1F T
k−1 + Qk−1

This is called a discrete-time Lyapunov equation, or a Stein equation,

which is fundamental in the derivation of the Kalman filter.
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Steady-state solution of the discrete-time Lyapunov

equation

Consider the equation P = FP F T + Q where F and Q are real

matrices. Denote by λi(F ) the eigenvalues of the F matrix.

A unique solution P exists iff λi(F ) · λj(F ) 6= 1 for all i, j. The

unique solution is symmetric.

If F is stable then the discrete-time Lyapunov equation has a solution

P that is unique and symmetric:

P =

∞
∑

i=0

F iQ(F T )i

Propagation of states and covariances 5-7



Solution of the linear system

xk = Fk,0x0 +

k−1
∑

i=0

(Fk,i+1wi + Fk,i+1Giui)

State transition matrix of the system:

Fk,i =



















Fk−1Fk−2 · · · Fi k > i

I k = i

0 k < i
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Property of the solution

the state xk is a linear combination of x0, {wi} and {ui}.

if the input sequence {ui} is known, x0 and wi are unknown but are

Gaussian random variables, then xk is itself a Gaussian random

variable.

we have xk ∼ N (x̄k, Pk), i.e., a Gaussian random variable is

completely characterized by its mean and covariance.
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Example

A linear system describing the population of a predator x(1) and that of

its prey x(2) can be written as

xk+1(1) = xk(1) − 0.8xk(1) + 0.4xk(2) + wk(1)

xk+1(2) = xk(2) − 0.4xk(1) + uk + wk(2)

the predator population causes itself to decrease because of

overcrowding

the prey population causes the predator population to increase

the prey population decreases due to the predator population

the prey population increases due to an external food supply uk

the populations are also subject to random disturbances due to

environmental factors
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Example

State-space form:

xk+1 =





0.2 0.4

−0.4 1



 xk +





0

1



uk + wk

wk ∼ N(0, Q) Q = diag(1, 2)

Assume x̄0 = [10, 20]T , P0 = diag(40, 40) and uk = 1, we obtain the

two means and the two diagonal elements of the covariance matrix.
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Example
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Example

Steady-state values:

x̄ = (I − F )−1Gu

= [2.5, 5]T

P ∼





2.88 3.08

3.08 7.96
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When the process noise is multiplied by some matrix

Another expression for xk:

xk = Fk−1xk−1 + Gk−1uk−1 + Lk−1w̃k−1, w̃k ∼ N (0, Q̃k) (2)

As the rightmost term of the above equation has a covariance given by

E[(Lk−1w̃k−1)(Lk−1w̃k−1)T ] = Lk−1E(w̃k−1w̃T
k−1)LT

k−1

= Lk−1Q̃k−1LT
k−1

Therefore, Equation (2) is equivalent to the equation

xk = Fk−1xk−1 + Gk−1uk−1 + wk−1, wk ∼ N (0, LkQ̃kLT
k )
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Definition

A sampled-data system is a system whose dynamics are described by

a continuous-time differential equation, but the input only changes at

discrete time instants

we are interested in obtaining the mean and covariance of the state

only at discrete time instants

The continuous-time dynamics are described as

ẋ = Ax + Bu + w

the solution of x(t) at some arbitrary time, say tk, is given as

x(tk) = eA(tk−tk−1)x(tk−1) +

∫ tk

tk−1

eA(tk−τ)[Bu(τ) + w(τ)]dτ
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Transformation to discrete-time propagation

Assume u(t) = uk−1 for t ∈ [tk−1, tk], ∆t = tk − tk−1, xk = x(tk) and

uk = u(tk), we have

xk = eA∆txk−1 +

[

∫ tk

tk−1

eA(tk−τ)Bdτ

]

uk−1 +

∫ tk

tk−1

eA(tk−τ)w(τ)dτ

Define Fk−1 and Gk−1 as

Fk−1 = eA∆t

Gk−1 =

∫ tk

tk−1

eA(tk−τ)Bdτ

then

xk = Fk−1xk−1 + Gk−1uk−1 +

∫ tk

tk−1

eA(tk−τ)w(τ)dτ

Propagation of states and covariances 5-17



Propagation of the state mean

prerequisite: w(t) is zero-mean

x̄k = E(xk)

= Fk−1x̄k−1 + Gk−1uk−1
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Covariance of the state

prerequisite: w(t) ∼ N (0, Qc(t)), besides,

E[w(t)wT (τ)] = Qc(t)δ(t − τ).

Pk = E[(xk − x̄k)(xk − x̄k)T ]

= E

[(

Fk−1xk−1 + Gk−1uk−1 +

∫ tk

tk−1

eA(tk−τ)w(τ)dτ − x̄k

)

(· · · )T

]

= Fk−1Pk−1F T
k−1 + E

[(

∫ tk

tk−1

eA(tk−τ)w(τ)dτ

)

(· · · )
T

]

= Fk−1Pk−1F T
k−1 +

∫ tk

tk−1

∫ tk

tk−1

eA(tk−τ)E[w(τ)wT (α)]eAT (tk−α)dτdα

= Fk−1Pk−1F T
k−1 +

∫ tk

tk−1

eA(tk−τ)Qc(τ)eAT (tk−τ)dτ
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Covariance of the state

Define

Qk−1 =

∫ tk

tk−1

eA(tk−τ)Qc(τ)eAT (tk−τ)dτ

we have

Pk = Fk−1Pk−1F T
k−1 + Qk−1

For small values of (tk − tk−1) we have

eA(tk−τ) ≈ I for τ ∈ [tk−1, tk]

Qk−1 ≈ Qc(tk)∆t
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Example

Suppose we have a first-order, continuous-time dynamic system (e.g. the

behaviour of the current through a series RL circuit that is driven by a

random voltage w(t), where f = −R/L) given by the equation

ẋ = fx + w

E[w(t)w(t + τ)] = qcδ(τ)

where w(t) is zero-mean noise.

suppose we are interested in obtaining the mean and covariance of

the state x(t) every ∆t time units, i.e., tk − tk−1 = ∆t

for this simple scalar example, we can explicitly calculate Qk−1 as

Qk−1 =
qc

2f
[exp(2f∆t) − 1]
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Example

Expanding Qk−1 in a Taylor series around ∆t = 0 results:

Qk−1 =
qc

2f
[exp(2f∆t) − 1]

≈
qc

2f

[(

1 + 2f∆t +
(2f∆t)2

2!

)

− 1

]

≈
qc

2f
[1 + 2f∆t − 1]

= qc∆t
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Example

The sampled mean of the state is computed as (noting that the control

input is zero)

x̄k = Fk−1x̄k−1 + Gk−1uk−1

= exp[f(tk − tk−1)]x̄k−1 + 0

= exp(f∆t)x̄k−1

= exp(kf∆t)x̄0

If f > 0 (i.e., the system is unstable) then the mean x̄k will increase

without bound (unless x̄0 = 0)

If f < 0 (i.e., the system is stable) then the mean x̄k will decay to

zero regardless of the value of x̄0
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Example

The sampled covariance of the state is computed as

Pk = Fk−1Pk−1F T
k−1 + Qk−1

≈ (1 + 2f∆t)Pk−1 + qc∆t

Pk − Pk−1 = (2fPk−1 + qc)∆t

assume f < 0, when Pk−1 = −qc/2f , Pk reaches steady state, i.e.,

Pk − Pk−1 = 0

if f ≥ 0, then Pk − Pk−1 will always be greater than 0, which means

that lim
k→∞

Pk = ∞
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Consider the continuous-time system

ẋ = Ax + Bu + w

where u(t) is a known control input and w(t) is zero-mean noise with a

covariance of

E[w(t)wT (τ)] = Qcδ(t − τ)

Taking the mean:

˙̄x = Ax̄ + Bu

Propagation of states and covariances 5-26



We can use the equation

Pk = Fk−1Pk−1F T
k−1 + Qk−1

that describes the covariance of a sampled-data system and taking the

limit as ∆t = tk − tk−1 → 0. As

F = eA∆t

= I + A∆t +
(A∆t)2

2!
+ · · ·

For small values of ∆t, this can be approximated as

F ≈ I + A∆t

Propagation of states and covariances 5-27



Thus we obtain

Pk ≈ (I + A∆t)Pk−1(I + A∆t)T + Qk−1

= Pk−1 + APk−1∆t + Pk−1AT ∆t + APk−1AT (∆t)2 + Qk−1

Subtracting Pk−1 from both sides and dividing by ∆t gives

Pk − Pk−1

∆t
= APk−1 + Pk−1AT + APk−1AT ∆t +

Qk−1

∆t
(3)

Recall that for small ∆t

Qk−1 ≈ Qc(tk)∆t

Taking the limit of Equation (3) as ∆t goes to zero gives the

continuous-time Lyapunov equation

Ṗ = AP + P AT + Qc
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Continuous-time Lyapunov equation

Conditions under which the continuous-time Lyapunov equation has a

steady-state solution, i.e.,

AP + P AT + Qc = 0

A unique solution P exists iff λi(A) + λj(A) 6= 0, ∀i, j. This unique

solution is symmetric.

If A is stable, then there is a unique and symmetric P

P =

∫

∞

0

eAT τ Qce
Aτ dτ

If A is stable and Qc is positive (semi) definite, then the unique

solution P is symmetric and positive (semi) definite

· · · · · ·
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Example

Suppose we have the first-order, continuous-time dynamic system given

by the equation

ẋ = fx + w

E[w(t)w(t + τ)] = qcδ(τ)

where w(t) is zero-mean noise.
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Example: The mean

The equation for the continuous-time propagation of the mean of state is

˙̄x = fx̄

Solving this equation for x̄(t) gives

x̄(t) = exp(ft)x̄(0)

The mean will increase without bound if f > 0 (i.e., if the system is

unstable)

The mean will asymptotically tend to zero if f < 0 (i.e., if the system

is stable)

Propagation of states and covariances 5-31



Example: The covariance

The equation for the continuous-time propagation of the covariance of

the state is

Ṗ = 2fP + qc

Solving this equation for P (t) gives

P (t) =

(

P (0) +
qc

2f

)

exp(2ft) −
qc

2f

The covariance will increase without bound if f > 0 (i.e., if the

system is unstable)

The covariance will asymptotically tend to −qc/2f if f < 0 (i.e., if

the system is stable)
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Example: Steady-state solution

The steady-state value of P can also be computed (provided that f < 0)

as

P =

∫

∞

0

e2fτ qcdτ

=
qc

2f
e2fτ |∞0

= −
qc

2f

Compare the results with those of the previous example.
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