Propagation Optimal Estimation

Lecture 5
Propagation of states and covariances

o Discrete-time systems

o Sampled-data systems
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What is this chapter about

o mathematical description of a dynamic system

o derive the equations that govern the propagation of the state mean

and covariance

o is fundamental to the state estimation algorithm (the Kalman filter)
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o Discrete-time systems
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Linear discrete-time system

Suppose we have the following linear discrete-time system:
= Fy_12k-1 + Gr—1Ug—1 + wi—1 (1)

in which wug is a known input and wy, is the process noise drawn from a
zero-mean multivariate normal distribution with covariance Q. Besides,
the initial state, and the noise vector at each step {xo, w1, ..., wy} are

all assumed to be mutually independent.
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Mean and covariance of z;

o Mean: take the expected value of both sides of Equation (1) we
obtain
ZTp = E(z) = Fy—1Zp—1 + Gr—1ug—1
o Covariance (Py = Elx), — Zg)[zy — 7] T):
(xp —Tx) ()T = (Fr_1zp—1 + Gr_1up_1 +wp_1 — 3)(-- )T
= [Fr—1 (21 — Zk—1) + wpa][--- "

= Fyo1(xp-1 — Zp—1)(@p—1 — Zr—1) T Fi_ + wr_1wi_,+

Fr_1(wp—1 — Tr—1)wi_y +wi_1(xp—1 — Tp—1) Fi_;
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Discrete-time Lyapunov equation

o the term (z;_1 — Z_1) is uncorrelated with wg_; (provided that xg

is uncorrelated with wg, k =0,1,2,...)

o The covariance matrix:
P, =E[(xx —2)(-- )] = Fo1 Py Fi 4 Qi

This is called a discrete-time Lyapunov equation, or a Stein equation,

which is fundamental in the derivation of the Kalman filter.
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Steady-state solution of the discrete-time Lyapunov

equation

Consider the equation P = FPFT 4 Q where F and Q are real

matrices. Denote by \;(F") the eigenvalues of the F' matrix.

o A unique solution P exists iff \;(F') - \;(F') # 1 for all 4,j. The

unique solution is symmetric.

o If F is stable then the discrete-time Lyapunov equation has a solution

P that is unique and symmetric:

P = iFlQ(FT)z
=0
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Solution of the linear system

k—1

= F oo + Z(Fk,i+1wi + Frit1Giu;)
i=0

State transition matrix of the system:

FpaFy o F k>i
Fi={ 1 k=i
0 k<1
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Property of the solution

o the state xy, is a linear combination of zg, {w;} and {u;}.

o if the input sequence {u;} is known, zg and w; are unknown but are
Gaussian random variables, then z, is itself a Gaussian random

variable.

o we have zy ~ N (T, Py), i.e., a Gaussian random variable is

completely characterized by its mean and covariance.
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Example

A linear system describing the population of a predator (1) and that of

its prey (2) can be written as

xk+1(1) = xk(l) — O.Sxk(l) + 0.4xk(2) + wk(l)
Tht1 (2) = Ty (2) — O.4$k(1) + ug + wk(Z)

o the predator population causes itself to decrease because of
overcrowding

o the prey population causes the predator population to increase

o the prey population decreases due to the predator population

o the prey population increases due to an external food supply ug

o the populations are also subject to random disturbances due to

environmental factors
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Example

State-space form:

Tht1 = T + U + Wk

we ~N(0,Q) Q= diag(1,2)

Assume 7o = [10,20]7, Py = diag(40,40) and uj = 1, we obtain the

two means and the two diagonal elements of the covariance matrix.
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Example

population mean

© s
time step

(a) State mean
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Example

Steady-state values:

z=(-F)'Gu

=[2.5,5]7
2.88 3.08
3.08 7.96
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When the process noise is multiplied by some matrix

Another expression for xy:
T = Fr 1251 + Gr_1up—1 + L1, 1, W ~N(0,Q1) (2)
As the rightmost term of the above equation has a covariance given by

E[(Lg—1Wp—1)(Li—10x-1)"] = Lyr—1 E(Wp—10}_,)LE_,

= Lp—1Qr—1L}_,
Therefore, Equation (2) is equivalent to the equation

T = Fr 1251 + Gr_1up—1 + wg_1, wr ~ N (0, LyQrLY)
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o Sampled-data systems
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Definition

©

A sampled-data system is a system whose dynamics are described by

a continuous-time differential equation, but the input only changes at

discrete time instants

o we are interested in obtaining the mean and covariance of the state

only at discrete time instants

©

The continuous-time dynamics are described as

T =Axz+Bu+w

©

the solution of x(t) at some arbitrary time, say tg, is given as

tr
x(ty) = eA(t’“_t’“*l)x(tk_l) + / eA(t’“_T)[Bu(T) + w(T)]dr

th—1
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Transformation to discrete-time propagation

Assume u(t) = ug—1 for t € [tg_1,tx], At =t — tg—1, T = z(t) and

ug, = u(ty), we have

tr
Up—1 —|—/ eA(t’“_T)w(T)dT

AAt
T =¢€ Tp—1+
tr—1

tk
/ At =T) Bdr

th—1

Define Fy,_1 and G_1 as

kal _ eAAt
tr

Gr-1 =/ AT Bdr
th—1

then
tk
T = Fr_12p—1 + Gr—1up—1 +/ e (r)dr

tr—1
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Propagation of the state mean

prerequisite: w(t) is zero-mean

T = E(xk)

=Fp1Tp-1 + Gr_1up—1
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Covariance of the state

prerequisite: w(t) ~ N (0, Q.(t)), besides,
Elw(t)w” ()] = Q(t)o(t — 7).

Py = E[(z — 7x) (w5 — 71)"]

tk
=F (Fklxkl + Gr—1uk—1 +/ ety (r)dr — xk> (- )Tl

th—1

</tk A=)y (7 )d7'> (...)T]

= Fi_1P_ le 1+/ / Alte— T)E [w(T)w T(a)]eAT(t’“’a)dea
tr—1

=Fy 1P B +E

k
:Fk—lpk—ng_1+/ e Aty — T)Q ( ) tk T)dT

te—1
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Covariance of the state

Define
t

th—1

we have

P.=Fo 1P FE |+ Qo

For small values of (tx — tx—1) we have

A=) ~ [ for 7 € [tkfl,tk]

Qr—1 =~ Q(tr)At
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Example

Suppose we have a first-order, continuous-time dynamic system (e.g. the
behaviour of the current through a series RL circuit that is driven by a

random voltage w(t), where f = —R/L) given by the equation

= fr+w
Elw®)w(t +7)] = q.6(7)
where w(t) is zero-mean noise.
o suppose we are interested in obtaining the mean and covariance of
the state x(¢) every At time units, i.e., ty — t—1 = At
o for this simple scalar example, we can explicitly calculate Qx—1 as

Qp_1 = ;—}[exp(Q FAL) —1]
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Example

Expanding QQ;—1 in a Taylor series around At = 0 results:

Qr—1 = ——[exp(2fAt) — 1]

2f
e (2fAt)?
~ 2f |:<1+2fAt+T) —].:|
~ 1+ 2f A1)

= q.At
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Example

The sampled mean of the state is computed as (noting that the control
input is zero)
T =Fp_1Tp—1 + Gr—1up—1
= exp[f(tk — tk—1)]Tp—1 +0
= exp(fAt)Tp—1

= exp(kfAt)z

o If f >0 (i.e., the system is unstable) then the mean z; will increase
without bound (unless Zy = 0)
o If f <0 (i.e., the system is stable) then the mean Zy will decay to

zero regardless of the value of Zg
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Example

The sampled covariance of the state is computed as

P, =F, 1 Pe 1 FE 4+ Qrs
~ (14 2fAl) Pyt + guAt

Py — P11 = (2fPy—1 + qc)At

o assume f < 0, when P,_1 = —q./2f, Py reaches steady state, i.e.,
Pk — Pk—l =0
o if f >0, then P, — Pr_1 will always be greater than 0, which means

that lim P, = oo
k— oo
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o Continuous-time systems
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Consider the continuous-time system
&= Axr+ Bu+w

where u(t) is a known control input and w(t) is zero-mean noise with a

covariance of

Blw(t)w” (1)] = Qc8(t — )

Taking the mean:
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We can use the equation
P.=Fy 1 Po 1 FL |+ Qi

that describes the covariance of a sampled-data system and taking the

limit as At = ¢, —tp_1 — 0. As

F = eAAt

(AAL)?

=1+ AAt + 2

For small values of At, this can be approximated as

F~I+ AAt
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Thus we obtain

P~ (I + AA) Py (I + AAH)T + Q4

= P14+ AP, 1At + P 1 ATAL + AP, AT (A)? + Qi

Subtracting P_1 from both sides and dividing by At gives

P, — P,y
At

Qr-1
At

= AP, + P AT + AP, AT At +
Recall that for small At
Qr—1~ Q.(tr)At

Taking the limit of Equation (3) as At goes to zero gives the

continuous-time Lyapunov equation

P = AP+ PAT + Q.
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Continuous-time Lyapunov equation

Conditions under which the continuous-time Lyapunov equation has a

steady-state solution, i.e.,

AP+ PAT +Q.=0

o A unique solution P exists iff A;(A) + A;(A) # 0,Vi, j. This unique
solution is symmetric.

o If A is stable, then there is a unique and symmetric P
o0 T
P= / e TQ.eNdr
0

o If A is stable and Q. is positive (semi) definite, then the unique

solution P is symmetric and positive (semi) definite

Propagation of states and covariances 5-29



Example

Suppose we have the first-order, continuous-time dynamic system given

by the equation

T=fr+w

Elw(t)w(t 4+ 7)] = q.0(7)

where w(t) is zero-mean noise.
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Example: The mean
The equation for the continuous-time propagation of the mean of state is
T =fx
Solving this equation for Z(t) gives

2(t) = exp(ft)z(0)

o The mean will increase without bound if f > 0 (i.e., if the system is

unstable)

o The mean will asymptotically tend to zero if f < 0 (i.e., if the system
is stable)
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Example: The covariance

The equation for the continuous-time propagation of the covariance of

the state is

P=2fP+q.

Solving this equation for P(t) gives

Pt) = <P(O) + ;—}) exp(2ft) — 2q_}

o The covariance will increase without bound if f > 0 (i.e., if the

system is unstable)

o The covariance will asymptotically tend to —g./2f if f <0 (i.e., if

the system is stable)
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Example: Steady-state solution

The steady-state value of P can also be computed (provided that f < 0)

as

P:/ e q dr
0

= e

2f
g
2f

Compare the results with those of the previous example.
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