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Background

o James Follin, A. G. Carlton, James Hanson, and Richard Bucy
developed the continuous-time Kalman filter in unpublished work for

the Johns Hopkins Applied Physics Lab in the late 1950s

o Rudolph Kalman independently developed the discrete-time Kalman

filter in 1960

o In April 1960 Kalman and Bucy became aware of each other's work
and collaborated on the publication of the continuous-time Kalman

filter

o The filter is sometimes referred to as the Kalman-Bucy filter

The Kalman filter
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About Kalman

Rudolf Emil Kalméan
o was born in Budapest in 1930

o earned his bachelor's degree in 1953 and his master's degree in 1954,
both from the Massachusetts Institute of Technology, completed his

doctorate in 1957 at Columbia University in New York City

o has been worked at the Research Institute for Advanced Studies in
Baltimore, Maryland, Stanford University, University of Florida, Swiss

Federal Institute of Technology in Ziirich, Switzerland.

o died on the morning of July 2, 2016, at his home in Gainesville,

Florida

The Kalman filter 6-3



The Kalman filter

About Kalman

64



Importance of Kalman filter

o is a mathematical technique widely used in the digital computers of
control systems, navigation systems, avionics, and outerspace vehicles

o extract a signal from a long sequence of noisy or incomplete
measurements, usually those done by electronic and gyroscopic
systems.

o was initially used in vast skepticism, the Apollo program, and
furthermore, in the NASA Space Shuttle, in Navy submarines, and in

unmanned aerospace vehicles and weapons, such as cruise missiles
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Approach to deriving the Kalman filter

The Kalman filter operates by propagating the mean and covariance of

the state through time.

o start with a mathematical description of a dynamic system whose

states we want to estimate

o implement equations that describe how the mean of the state and the

covariance of the state propagate with time

o take the dynamic system that describes the propagation of the state

mean and covariance, and implement the equations on a computer

o every time that we get a measurement, we update the mean and

covariance of the state
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o Discrete-time Kalman filter

The Kalman filter
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Problem formulation

Suppose we have a linear discrete-time system given as follows:
T = Fr—1Tk—1 + Gr—1Uk—1 + Wr—1
Y = Hpxp + vy

The noise processes {wy} and {vy} are zero-mean, uncorrelated, and

have known covariance matrices (J; and Ry, respectively:

wy, ~ N(0,Qy), v ~ N (0, Rk)
Elwyw]] = Qr0k—j, Elvgv]] = Rk

Elvpw]]=0

The Kalman filter
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Problem formulation

o our goal is to estimate the state x; based on our knowledge of the

system dynamics and the availability of the noisy measurement {y;}

o The amount of information available to us for our state estimate

varies depending on the particular problem that we are trying to solve
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Different kinds of estimate

o if we have all of the measurements up to and including time k
available for use in our estimate of zj, then we can form an a
posteriori estimate, Z;. One way to formulate the a posteriori state

estimate is
&k = Elzk|y1, Y2, - ,yx] = a posteriori estimate

o if we have all of the measurements up to but not including time &
available for use in our estimate of xj, then we can form an a priori

estimate, #;. One way to formulate the a priori state estimate is

T = Elzk|y1,y2, -+ ,yk—1] = a priori estimate
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Different kinds of estimate

o if we have measurements after time k available for use in our estimate
of xk, then we can form a smoothed estimate. One way to formulate

the smoothed state estimate is
Trjen = Elzklyr, y2, - Yk, - Yrrn] = smoothed estimate

o if we want to find the best prediction of x; more than one time step
ahead of the available measurements, then we can form a predicted
estimate. One way to form the predicted state estimate is to compute

the expected value of x} is:

*%k\k—M = Elxg|y1, y2, -+, yk—nr) = predicted estimate
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Notations

o Zg—our initial estimate of xy before any measurements are available,
in general &9 = E(x¢)

) Pk—the covariance of the estimation error of Iy,
Py, = El(axx — &)z — &x)"]

) ﬁk—the covariance of the estimation error of Zy,

By, = E[(zy, — &n)(zk — 34)7]
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Tho1 fr—1 Tk | Tk o when time k arrives, before we
Py 1 |Pr1 Py | Py .
process the measurement at time k
propagation
update upfiate we compute an estimate of x

(denoted as Zj) and the covariance of

kE—1 k that estimate (denoted as Py)

o we process the measurement at time
o after we process the measurement at

time (k — 1), we have an estimate of k to refine our estimate of x;, the

21 (denoted as #,_1) and the resulting estimate of xj, is denoted as

covariance of that estimate (denoted as Iy, and its covariance is denoted as

A

Pi1) Py
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The Kalman Filter | Prediction and Correction

3. Fusion

2. Measurement

1. Prediction

The Kalman filter

Ny Py N B)  NGP)  NOLR) Postion(p)

Prediction Measurement
]

Estimate at (k - 1) Estimate at (k) ~ (Observation Model)
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From -@kz—l to .i’k

o begin with 29 = E(x)
o we want to set &1 = E(x1), as T, = Fr—1Zx—1 + Gr—1ug—1, we
therefore obtain

1 = FoZo + Gouo

o time update equation for x:

Tp = Fr_1Th-1 + Gr—1uk—1

o we do not have any additional measurements available to help us update
our state estimates after time (k — 1) and before time k
o we should just update the state estimate based on our knowledge of the

system dynamics
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From 1514;—1 to 15143

begin with ]50 = E[(JZQ — i‘o)(ﬂ?o — fo)T] = E[(Z‘Q — @0)@0 — i‘Q)T]
Py represents the uncertainty in our initial estimate of zg, so if we
know the initial state perfectly, Py =0, if we have absolutely no idea

of the value of xg, then Py = ool

As ﬁk = Fk_lﬁk_lF];lll + Qk—l. we have
Py = RBF] + Qo
time-update equation for P (a more general equation):

Py =Fo 1 Pe 1 Fl 4+ Qi
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Measurement-update equations for = and P

o The quantity & is an estimate of xy, and the quantity 2, is also an
estimate of xi. The only difference between &y and Zj is that &y
takes the measurement y;, into account.

o Recursive least-square estimate (the availability of the
measurement yy, changes the estimate of a constant x)

Ky =Py HF (H Py HF + Ry)™*
= P.HIR!

Ty = k-1 + Ki(yx — Hi®p—1)

P, = (I — KpHy) Py (I — KiHy)" + KR KF
= (P + HIR ' Hy) ™

= (I - KyHy)Py—1
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Relationships between estimates and covariances in

recursive least-square and Kalman filtering

RLS

KF

Zk_1: estimate before y;, is processed
Py_1: covariance before yy, is processed
Tk estimate after yj is processed

Py covariance after yy is processed

~

T

v

Pki

a priori estimate

a priori covariance

: a posterior estimate

: a posterior covariance

The Kalman filter
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Generalization from the RLS formulas

Ky, = BoHT (H,PLHT + Ry,) ™"
= B.HI'R,

&y = T + Ki(y — HiZy)

B, = (I — KiHy)Po(I — KiHy)" + Ky Ry KT
= ((Py) ™"+ HI R Hy) ™!

= (I — KpHy,) Dy
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The discrete-time Kalman filter

o The dynamic system is given by the following equations:

zr = Frzp—1 + Gr_1ug—1 + wg—1
e = Hyzg+ vy
E(wpw]) = Qilr—;
E(vkv]) = Ridk-j
(wkv ) = 0

o The Kalman filter is initialized as follows:

i‘o = E(JZQ)

A

Py = E(xo — &0)(zo — #0)"]

The Kalman filter

6-19



The discrete-time Kalman filter

o The Kalman filter is given by the following equations, which are

computed for each time step k =1,2,---:

Py = FoaB 1 FL 4+ Qi
Ky, = DPHI(H.PHE + Rp)™!

= D.H!R;!
Ty = Fr_12Zk_1+ Gr_1uk_1 a priori state estimate
&r = I+ Ki(yx — Hp®r) a posteriori state estimate
P, = (I—KpHp)Bo(I — KiH)" + KRy K

= (B +HI Ry Hy)™

= (I — KpHy)D,
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Remark

o the first expression for P is called the Joseph stabilized version of the
covariance measurement update equation, which is more stable and

robust than the third expression for P,

o the first expression for P}, guarantees that P, will always be
symmetric semi-positive definite, as long as P}, is symmetric
semi-positive definite

o the third expression for B is computationally simpler than the first

expression, but its form does not guarantee symmetry or semi-positive

definiteness for P,

o the second form for P is rarely implemented but will be useful in the
derivation of the information filter
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Remark

o if the second expression for K}, is used, then the second expression for
P, must be used

o if 2y is a constant (random variable unchanged), then F, = I,Q; =0
and u, = 0, and the Kalman filter reduces to the recursive least
squares algorithm for the estimation of a constant vector

o the calculation of Pk,Kk., and ﬁk does not depend on the
measurements y, but depends only on the system parameters
Fk,Hk, Qk and Rk

o the computational effort of calculating K can be saved during
real-time operation by precomputing it

o the performance of the filter can be investigated and evaluated before

the filter is actually run (P indicates the accuracy)
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The Kalman Filter | Prediction & Correction

3. Correction

2. Measurement

1. Prediction

| /V(f‘k—l»ﬁk—l) N (e 15,() N (R ﬁk) N (e R Position(x)
_ J
1. Prediction 2,3. Measurement & Correction
X =F X1 + Gy K, = PkHZ (Hki)kaT +Ry™!
i)k = Fk—llﬁ)k—leTf] + Qi { % = X + Ki(y, — Hi%p)
Py = (1 - KHYP,

The Kalman filter
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Bayesian Inference

o Assume we have a joint Gaussian over a pair of variables (z,y)

p(z,y) =N : Y

Hy Yyz  Byy

o According to Schur complement, we have

-1 -1
Tz Tay — I Bay®yy Bze — Bay Sy, Sye 0 !
—1
Syz  Syy 0 I 0 Syy Zyy Syz

and the inversion gives,

—1
Sqx Sy
Sye  Tyy
1 _ 1
_ I 0 (Sza — TaoyTyy, Sya) "t 0 I —Says)
= o 1
gy Syz 1 0 = 0 I
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Bayesian Inference

o Suppose X = [z, yT]7T, the joint distribution p(z,y) is
1 1
)= ———exp [ —=(X — )TE (X — )
o) = s e (<5 =S X
o the quadratic part
T
z | | ke -1 z || ke
(o)=L D) == (-0 ])

(@ = pnz)T, (v = )T

-1 - -1
11 0| [ Cos - ZaySyy Sye) 1 0 ) | —=aymyy e
-5y Sy T 0 oy 0 I ¥ — ny
-1 -1
1 (Sze — SayS,, Sya) 0
= (@m0 T Ee -7 vy Y o,
0 o)
. vy
. T — Pz *Emzzyy (v — py)
Yy — hy
—1 -1 _ -1
= [(z — pz) — Ezyzyy (y — #y)]T(Emz - Emyzyy Eyz) 1[' ]+ (y — #y)TEyy (y — #y)

o the determinant

det ({ S D = det(Xy,) - det(Zgp — EWE;;E”)

Syr  Byy
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Bayesian Inference

As
p(z,y) = p(x|y)p(y)
we then have

p(lY) =N (ta + Zay Sy (U — 11y)s Saz — SayEyy Sya)

and
p(y) = N(#ya Eyy)

Both are Gaussian!

The Kalman filter
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Kalman filter via Bayesian Inference

o Assume the Gaussian posteriori estimate at k — 1 is
P(Th—1]20, Uok—2, Y1:h—1) = N (Ex—_1, Pe_1)
o Prediction step (ux—1 is available but yj is not)
p(r|Eo, wok—1, y1k—1) = N (Fx, Pr)

where

T = E(xg) = Fy—18p-1 + Gr—1ug—1

Dy = P(xi) = Fro1 Dot L + Qra

The Kalman filter
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Kalman filter via Bayesian Inference

o Correction step (yy, is available),

p(@k, Y| Zos Uo:k—1, Y1:—1) =N ,
Hy Yyo  Dyy
P P, P.HT
=N , s Tk
Hydp, HyP, HpP.HLI + Ry

o The conditional density for z;, (the posterior) is,
p(@k|Z0, vosk—1, y1:k) = N (ta + Sy Sy, Uk — 1hy), e — Say Sy Sya)

o Define Zj, as the mean and P, as the covariance, and we have the

same expressions as before.
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The Kalman Filter | Short Example

Motion/Process Model
1 At 0
PDF X = [0 1 ] Xt [At] Wy + Wiy

Position Observation

Position(p) =01 0%+

» Noise Densities
2,
x= [d,, ﬁ] w=a=? Ve~ H(0, 0.05) W ~ H(0,(0.1)1h,)

The Kalman filter
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The Kalman Filter | Short Example

PDF

The Kalman filter

i

Position(p)

Data
N ol [o.01 0
v )
Ar=0.5s
uy=—21[mls?] y, =22 [m)
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The Kalman Filter | Short Example Solution

Prediction

Y =F X+ Gy
I [1 05] [o] [ 0 ] [25]
= +| 2=
L]] o 1[5 |os 4
P =F PP + Qe

p. [ 05] oot o] [1 05 T+ 01 o]_[o36 05
Ylo 1]lo 1ffo 1 0 0.1 05 1.1

The Kalman filter
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The Kalman Filter | Short Example Solution

Correction
K, =P H/HPH +R)"!

[ b (0 ol o)

1

_ (088
1.22
% =% + Ky, - Hx)
Bonus!
_ 25 088 Slea-u o 5|y = |24 P, = (1-KH)P,
3.63
_ [0.04 0.06
0.06 0.49
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Kalman filter properties: unbiasedness

Bias in State Estimation

Process/Motion:

X = Fi Xy + Gy + Wiy & -

Measurement: Vi = i+ v,

k=01, ..K

Drive the car for K time steps, record estimation error, repeat.

» We say an estimator or filter is unbiased if it produces an ‘average’

error of zero at a particular time step k, over many trials
o the error dynamics:

Ep=Tp—Tp,e =T —T
o Using the Kalman filter equations, we can derive:
ép=Fp_1ép_1—wi_1,ép=I—KpHy)ép+Kyvy

ep=(I—-KpHy)Fp_1éx_1—(I-KpHp)w,_1+ Koy
The Kalman filter
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Bias in State Estimation

« For the Kalman filter, for all k,

Eléx] = E[F-1€5-1 — wy-1] E[&] = E[(1 - KH§, + Kv,]
= Fy_1E[éx-1] — Elwy1] = (1 - KHYEE] + K.E[v,]
=0 =0
Unbiased predictions!

Solongas El&l=0 E[vI=0 E[w]=0

+ white, uncorrelated noise

Note: this does not mean that the error on a given trial will be zero, but
that, with enough trials, our expected error is zero!

The Kalman filter
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Consistency of state estimators

o In the problem of estimating a parameter that is constant,
consistency of an estimator (i.e., a static estimator) was defined as

convergence of the estimate to the true value.

o This implies that there is a steadily increasing amount of information
(in the sense of Fisher) about the parameter that asymptotically
reduces to zero the uncertainty about its true value.

o When estimating the state of a dynamic system, in general, no
convergence of its estimate occurs.

o What one has, in addition to the “current" estimate of the state, 2,

is the associated covariance matrix, Pj.
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Consistency of state estimators

o A state estimator (filter) is called consistent if its state estimation

errors satisfy

E(ka - ffk) =0
E[(zy — &) (zx — 21)"] = Pr

o This is a finite-sample consistency property, that is, the estimation
errors based on a finite number of samples (measurements) should be
consistent with their theoretical statistical properties:

o Have mean zero (i.e., the estimates are unbiased)

o Have covariance matrix as calculated by the filter
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Consistency in State Estimation

/E[éf] E[éi] :’ f’k

PDF

Position (at time k)

This filter is consistent if for all k,
E[&] = El(p— p*) = P

For an estimator,

o If P, < E[eyel], the KF “underestimate” the true uncertainty, the
filter is optimistic.

o If P, > E[eyel], the KF “overestimate” the true uncertainty, the

filter is pessimistic.
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Consistency in State Estimation

* One can also show (with more algebra!) that for all k,
E[&&] =P, E[&&]1 =P,
Consistent predictions!
* Provided,

Eléoéd =Py, E(v)=0,E(w)=0 wv,w are white

o Causes of inconsistency:

o Modeling errors
o Numerical errors

o Programming errors

The Kalman filter
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Practical evaluation of consistency

o Define the normalized (state) estimation error squared (NEES) as,

that is, the NEES follows a x? distribution and the average equals 7.
o Hypothesis Hy: the filter is consistent and the linear Gaussian
assumption, e(k) is x? distributed with n, degrees of freedom, and
the test is whether
Ele(k)]

can be accepted.
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Kalman filter properties: overall optimality

The error e, = xr — T is a random variable determined by the stochastic
process {wy} and {vi}. Suppose we want to find the estimator that
minimizes (at each time step) a weighted two-norm of the expected value of
the estimation error ey:

min Ele} Skex] (1)
where Sy, is a positive definite user-defined weighting matrix.

o if {wr} and {vy} are Gaussian, zero-mean, uncorrelated, and white, then

the Kalman filter is the solution to the problem (1)

o if {wk} and {vr} are zero-mean, uncorrelated, and white, the Kalman filter

is the best linear unbiased estimate to the problem (1)
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Orthogonality principle in discrete-time Kalman filter

Preliminaries

o Initial estimate &9 = E(x¢) = 0 (a fixed value), suppose uj, = 0
o Uncorrelated properties:

o w;,v; are uncorrelated with all past or present states, i.e.,
Elwz]| =0, E[v;z) | =0,V5 < i
o wj,v; are orthogonal to past outputs, i.e.,

Elwiy] ] =0,Elvy; | =0,Yj <i
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Time update

Since ¥y, should be the optimum LMMSE estimate, xj — &) must satisfy

the orthogonality condition, i.e.,
El(zy — &)yl =0,Vi=1,2,...,k -1
Define y1—1 = [y1,---,yx—_1]7, and we have
El(xy — #)yl] = El(Fr—12k-1 + wk—1 — Feo18x-1)yt_4]
+E[(Fk_1§3k_1 — ik)yffl] =0.
As &1 is the LMMSE estimate of xj_1 given yj_1, there is
E[(zx—1 — &r-1)yk 1] =0,

then we have
T = Frp_1%11

Py =Fy 1Pe 1 FF |+ Qi
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Measurement update

As &1 is the LMMSE estimate given yj_1, the following is valid,
~ T _
El(xk—1 — #1—1)y%_1] = 0,
Since Z;_1 is the linear function of y;_1, we can write Z;_1 as,
Zp1 = 1Yk

Now assume Z; = Jiyx, according to the orthogonality condition, we
then have

El(z — Jkyr)yr] =0
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Measurement update
Suppose & = Kpyr + Gryk—1, substituting the expression of y; yields,
Zr = Kp(Hpzr + o) + Gryr—1
= Kp(Hp(Fr—12p—1 + wr—1) + vx) + Gryr—1

As Zy, is the LMMSE estimate given yy, we have

El(zy — 2x)yi] =0,

T
Yi-1

E (mk—ik)- =0

yr

From the equality E[(zy — 2)y%_,] = 0, we have

E[(Fa1+wi 1 — K Hp Fry o1 — K Hwg 1 — Kivg—Gryk—1)yi 1] = 0
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And further the following is true,
E[(I=KpHp)F(xp—1—&p—1)+ (I — KpHi) Fég—1 —Gryr—1)yh_1] = 0

as wy_1, vk are uncorrelated with y7 .
According to the fact Zj_; is the LMMSE estimate, the orthogonality

principle holds, i.e.,
E[(I - KyHy)F(3-1 — &1-1)¥k_1] = 0,
and then we can take
Geyr—1 = (I — KpHp)Fip—
And we have

& = Krpyr+Gryx—1 = Ky +(I =K Hy) F— 1851 = &1+ Kiye — Hi Z 1]
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According to the propagation of error
ép=xp — & = (I — KiHg)Fy—1ék-1 + (I — K Hp)wi—1 — Kpvk
and we write y; as
Yk = Hpwp +vp = HpFpo17p-1 + Hywg—1 + vk
as the equality E[(zy — &)yl ] = 0 holds, we then have
Eleryl) = PP B HE + Qo HY — Ky Hy By Py B HT
— K HpQr—1H' — KyRp =0
Recalling the expression for Pk, and we have,
Ky, = P HF [H, P H + Ri] ™!
and the posteriori covariance can be expressed as

P, = P, — KyHy Py,
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The block diagram of Kalman filter:

The Kalman filter
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Example

Considering a simple 1-dimensional example,

Tpy1 = 0.5z + wy

Yk = Tk + Uk

wy, and v are uncorrelated white noise with zero mean, i.e.,
E{wk} = 0, E{Uk} = 0, E{wkwj} =1- 51€,J‘, E{vkvj} =2 51€,J‘

Initial value: Zo = 0, Py = 1; Observations y; = 4, yo = 2. Find the

optimal linear estimate of xy.

The Kalman filter
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Example

o Initialization: g =0, ]50 =F=1

o Computation of the gain Kj as well as Pk, P, e,

Py = FyByFY + Qo =1.25

K, =P HT (H\P\HT + R;)~' = 0.3846

Py =[I - K H\|P[I - K H|T + K, R KT = 0.7692
Py=FPF+Q =1.1923

Ky = PyHY (HoPyHY + Ry) ™' = 0.3735

The Kalman filter
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o Estimation of the state sequence:

T1 = FoZo=0
1 =T+ K1(y1 — Hlil) = 1.5385
Ty = 121 =0.7692

To = To + Kg(yg — Hgavtg) = 1.2289

Computation of K} when time increases:

The Kalman filter

K1 = 0.3846
Ky =0.3735
K3 = 0.3724
K, = 0.3723
K5 = 0.3723
K¢ = 0.3723

Py =1.2500
Py, =1.1923
Py =1.1867
P, =1.1862
Ps =1.1861
Ps =1.1861

Py =0.7692
Py, = 0.7470
Py =0.7448
Py =0.7446
Py = 0.7446
Py = 0.7446
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The former example:

double

L 2 3 4 5 6
.8780,  0.8675  0.8435  0.8338  0.8303  0.8291
.2195 0.8110 0.6623 0.6120 0.5948 0.5889
7/\ P_check \
EH 2x2x10 double

val(:,:,1) =
0.3600 0.5000
0.5000 1.1000

val(:,:,2)
0.3274 0.3061
0.5902
F . 0.2116
0.2116 0.4420
val(:,:,4)
0.2508 0.1841
0.1841 0.4019

Position(p) val(:,:,5)
0.2446 0.1752
0.1752 0.3893

val(:,:,6) =
0.2425 0.1723
0.3850
0.1712
0.1712 0.3836

val(:,:,8)
0.2415 0.1709

The Kalman filter

7
0.8286
0.5869

8
0.8285
0.5862
[ P_hat

9

0.8285
0.5859

[ 2x2x10 double

val(:,:,1)
0.0439
0.0610
val(:,:,2)
0.0434
0.0405
val(:,:,3)
0.0422
0.0331
val(:,:,4)
0.0417
0.0306
val(:,:,5)
0.0415
0.0297
val(:,:,6)
0.0415
0.0294
val(:,:,7)
0.0414
0.0293
val(:,:,8)
0.0414
n.7793

0.
0.

R

o

o

SRS

o

5

0610
4902

.0405
.3420

.0331
.3019

.0306
.2893

.0297
.2850

.0294
.2836

.0293
2831

.0293
.2829

10
0.8284
0.5858
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Steady-state Kalman filter

o when time increases, the Kalman filter gain and error covariance

reaches a steady-state value.

o The term “steady-state” Kalman filtering means that the Kalman

filter is time-invariant and the Kalman gain is in steady-state

The Kalman filter
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Properties of steady-state Kalman filter

o the dynamic system is time-invariant

o a constant gain K can be pre-computed, K = PHT(HPH” 4+ R)~!

o P reaches a steady-state
P=FPFT - FPH"(HPH" + R)"*HPFT + Q

and the above equation is called discrete time algebraic Riccati
equation (DARE).
o the savings in computations deserve any loss in the estimated state

quality

The Kalman filter
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Conditions for the existence of the steady-state

Kalman filter

The DARE has a unique positive semidefinite solution P iff both of the
following conditions hold.
o (F,H) is detectable
o A system is detectable if all the unobservable states are stable.
o (F,J) is stabilizable (.J is any matrix such that JJT = Q)

o A system is said to be stabilizable when all uncontrollable state variables

can be made to have stable dynamics.
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Conditions for the existence of the steady-state

Kalman filter

o If the signal process model is time invariant and asymptotically stable,

then

1. For any nonnegative symmetric initial condition Py, one has
lim Pk =P
k—oo
and P satisfies the discrete time algebraic Riccati equation.
P=FPFT - FPHT"(HPH" + Ry 'HPF" +Q

2. The Kalman filter gain K reaches a constant value and the matrix

(I — KH)F is stable.
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Steady-state Kalman filter error
Steady-state Kalman filter is a time-invariant observer (also
time-invariant system):
Ty = Fir_1 + Gug_1
Tk =&k + K(yr — Hiy)
={I—-KH)F&p_1+ (I - KH)Gup—1+ KHFx),_1 + Kug
compared with the state space expression
xr = Fag_1 + Gug—1 + wg—1
yr = Hap + vk
the state estimation error is
ép=ar— 2 =I—-KH)Fé,_1+ KHGuj—1 +wi—1 — Kvy,

The Kalman filter
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Stability of steady-state Kalman filter

o the estimation error propagates according to a linear system, with
closed-loop dynamics (I — K H)F, driven by the input K HGuy—_1
and the process wy_1 — Kwvg, which is [ID with zero mean and

covariance KRKT + Q

o The stability of (I — KH)F is requisite for the stability of the filter.

o If the DARE has a unique positive semidefinite solution, then the

steady-state Kalman filter is stable.

The Kalman filter
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A simple example in 1-dimension

The truth model is given by the following equation,

Th41 = PTE + Wk

Yr = hxp + vy

in which wy and vy, are stationary random process, with wy, ~ N(0, q)

and vy ~ N(0,r). Assume the system is stable.

Considering the discrete time algebraic Riccati equation, we have,

1
p=¢’p— ¢ph 2 hpso+q

By reordering, we have,

Rp* + (r—@*r —h’q)p—qr =0 (2)

The Kalman filter
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Solving the second-order equation (2) gives the solution of steady-state
.

Next consider two special cases.

o no measurement noise: r = 0. then we have p =¢q and k = % and

A P
Tk+1 = Eyk

at this time, the estimate 241 depends entirely on the measurement,
and does not depend on past estimate Z;. This is because no

measurement error exists, and the state can be estimated without the

dynamic model.
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o the model is accurate: ¢ = 0. then we have p = 0. at this time,

1 = Pk

the estimate depends entirely on the dynamic model, which is due to

the model is precise.
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Contents

o Continuous-time Kalman filter
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Importance of continuous-time Kalman filter

o Although the vast majority of Kalman filter applications are
implemented in digital computers, there are still opportunities to
implement Kalman filters in continuous time (i.e., in analog circuits)

o the derivation of the continuous-time filter is instructive from a
pedagogical point of view

o steady-state continuous-time estimators can be analyzed using
conventional frequency-domain concepts, providing an advantage over

discrete-time estimators
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Continuous-time dynamic system

Suppose that we have a continuous-time system given as

& =Ax + Bu+w
y=Czr+v

w ~N(0,Qc)
v~ N(0,R.)

The Kalman filter
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Assume t = t, and xp = x(ty), the continuous-time system can be

approximated by the following discrete-time system:

T = Fr—1Tk—1 + Gr—1Uk—1 + Wr—1

Y = Hpxp + vy

Next we will derive the expression for Fy_1, Gi_1, Hr and the stochastic

properties of {wy} and {vy}.
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Recalling from the sampled-data system, the solution of z(t) when
t = t; can be computed as
tr
a(ty) = etV g, 1) + /t eA =T [Bu(t) 4+ w(r)]dr
k-1
Suppose u(t) = u(tg—1),Vt € [tx—1,tk]. This is reasonable if
tr —tr—1 — 0. Further, we have

T ty
xp = ATt +/ A=) Bdrus_ 4 —|—/ eA(tk_T)U}(T)dT

tp—1 th—1
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Suppose the sample time is T, i.e., T = t; — tx_1, Define
F = exp(AT)
tr
G = / AT Bdr
te—1
then for small T', we have
F~I1+AT
and

G= /tk (I + A(ty, — 7))Bdr

te—1

~ BT
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tr

Define wi_1 = t s

e =Ty (1)dr, then
Wr—1 =20

and

_Ehu/wT]::j/%+lj/”+leA@k+l7ﬂfuw(7yafaﬂeAT@H1ﬂdet
o t t
k J

thy1  plitr
:/ / Odrdt Vk#3j
Tk t;

=0,Vk # j.
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The covariance of {wy} is:
i1 tey1
Blwywi] = / / At =) Blu(r)w” (1)]ed” BV dtdr
tr tr
th t
:/Hl/,c+1 eA(t’“Jfl*T)QC(T)(S(t—T)@AT(t’““*t)dth
tr tr
th
:/Hl eA(tk+1*t)Qc(t)eAT(tk+1*t)dt

tk

~ Q.1 assume T is small
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The discretization of the measurement equation can be interpreted as:

1 41
yr ~ Crp + —/ v(t)dt
T Je,

Define vy, = %ft:“ v(t)dt, then

t

v =0

1 tht1 J+1
vkv T_/ / ol (t)]drdt
tet1 1
= — 0drdt
=),
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Besides,

E[vkvg

SlE - EIH EIH

N\ﬁ\
;»\Z\

>
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Define
H=C

we have the discretization of the continuous-time dynamic system with a

sample time 7"

rp = Fap_1 + Gug—1 +wi—1

yr = Hxp + vy,
with the process noise and measurement noise as:

'LUkNN(O,Q),Q:QCT, 'UkNN(O,R),R:RC/T
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The discrete-time Kalman filter gain for this system was derived as:

Ky =P.H'(HP,H" + R)!

= B.CcT(CcP.CT + R, /T)!

then
K . .
7’“ = B.CT(CB.CTT + R.)™! (3)
: Kk_ 5 AT p—1
Py = PO “)
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The estimation-error covariances were derived as

P, = (I — Ky H)PB,

Pey1 = FPFT +Q
For small values of T, this can be written as

Poy = (I +AT)P,(I + AT)T +Q.T

= P + (AD, + P AT + Q)T + AP, ATT?
Substituting for P, gives

karl = - KkC)pk + ApkATT2+

[A(I — K,CO)Py, + (I — K;,C)P, AT + Q.|T
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Substracting P, from both sides and then dividing by T" gives

Piy1 — P —KiCP -
= ’;,C b AP ATT

(A]Bk + AKkak + ﬁkAT — KkCPkAT + Q(»)

Taking the limit as T" — 0 and using the expression for K, gives

. Py — Dy
P — lim Ltk
T—0 T

=-PCTR;'CP+ AP + PAT + Q.
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Differential Riccati equation

o The equation
P=—-PCTR;'CP+ AP + PAT + Q.

is called a differential Riccati equation and can be used to compute

the estimation-error covariance for the continuous-time Kalman filter
o this requires n? integrations because P is an n x n matrix

o as P is symmetric, so in practice we only need to integrate

n(n + 1)/2 equations in order to solve for P
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The continuous-time Kalman filter equations for &

The discrete-time version:

Ty = Fip_1 + Gui_q

A~

&, = & + Ki(yw — Hiy)

Assume that T is small, the measurement update equation can be

written as

&k = F&p—1 + Gup—1 + Ky(yr — HFZp—1 — HGug—1)

~ (I + AT).fk_l + BTuip_1+ Kk(yk - O(I + AT).fk_l — C’BTuk._l)

The Kalman filter 6-75



Now subtract &1 from both sides, divide by T" to obtain
LT% = AZp_1 + Bup_1
+ P.CT(CB.CTT 4+ R (yp — C(I + AT)Z—1 — CBTup_1)

Taking the limit as T" — 0 gives

i = Az + Bu+ PCTR;'(y — C#)
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The framework of the continuous-time Kalman filter

o The continuous-time system dynamics and measurement equations

are given as

in which w(t) and v(t) are continuous-time white noise processes

The Kalman filter

& =Ax+ Bu+w
y=Czx+v

w ~N(0,Q.)
v~ N(0, R.)
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The framework of the continuous-time Kalman filter

o The continuous-time Kalman filter equations are given as

2(0) = E[z(0)]

P(0) = E[(2(0) — (0))(x(0) — #(0))"]

K = PCTR_;' (This K is not the limit of K as T — 0)
=A%+ Bu+ K(y— C#)

~PCTR;'CP + AP+ PAT + Q.

e
I

The Kalman filter



Example
Suppose the system dynamic is,
z(t) = —x(t) + w(t)
y(t) = =(t) + o(t)

in which w(t) and v(t) are white noises with zero mean, and the

statistical property is as follows,

E{wt)w(r)} =2.56(t — 1)
E{v(t)v(r)} =20(t—7)
E{w(t)o(r)} =0
Assume P(0) = 3, E{x(0)} = mg. Design the continuous-time Kalman

filter.
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According to the filter design principle,
K(t) =0.5P(t)
and the derivation of P(t) is,
P(t) = —2P(t) — 0.5P%(t) + 2.5
Denote P = P(t), then the above differential equation can be written as,

4P = —0.5(P — 1)(P +5)
AP 4P — 3t

P-1_ P+5

P ( apP dP t
I3 (ﬁ - p—+5) = Jo —3dt
In(P—-1)—In2—-In(P+5)+In8= -3t

P—1 __ e—3t—21n2
Pt5 —

P—1
P15

_1,-3t
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Therefore, we have,

1+ 23t
P(t)=—4
0=t
As t —» 0o, P(t) — 1.
The Kalman gain K () is,
14 23t
K(t) = 4
KT

and K(t) — 0.5 as t — 0.

When time increases, the Kalman filter gain and error covirance reaches

a steady-state value.

The Kalman filter

6-81



Also, if we want to directly know the steady-state covariance, just let

P(t) = 0, which gives,
—2P(t) — 0.5P?(t) +2.5 =0
that is,
P(t) =1, or P(t) = —5(is not reasonable, hence delete)

The steady-state covariance and gain is independent of the initial value

P(0).
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Example

o obtain measurements of the velocity of an object that is moving in

one dimension

©

the object is subject to random accelerations

©

we want to estimate the velocity = from noisy velocity measurements

©

the system and measurement equations are given as
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The covariance matrix is

P=_—PCTR™'ICP+ AP+ PAT +Q

=-P*/R+Q
Integrate both sides from 0 to ¢ yields:
P(t) t
—_— = dr
Py @—P?/R /o
Then we have (assume /Q > P/V/R)

\/—1 VQ+ P/VR |P(t)
2vQ \vQ-P/VR) 7O
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Solving the differential equation for P gives

VQ/R)

Po — VQR + (VAR + Py) exp(2t
P=+\/QR
© VQR — Py + (VQR + Py) exp(2t

Take the limit as ¢ — oo we have

Jim P = QR

The Kalman filter

VQ/R)
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The Kalman gain is

K=PCTR™'=P/R

Take the limit as ¢ — co we have
lim K =+/Q/R
t—o0

The state estimate update expression is

x*:Ai—FBu—FK(y—Ci):K(y—i)ﬁ\/%(y—i)
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Remarks

o If the process noise increases (i.e., ) increases) then K increases,
meaning that we have less confidence in our system model, and
relatively more confidence in our measurements. So we change &

more aggressively to be consistent with our measurements

o if we have large measurement noise (i.e., R is large) then K

decreases, meaning that we have less confidence in our

measurements. So we change Z less aggressively to be consistent with

our measurements

o if either Q) or R increase then P increases. An increase in the noise in

either the system model or the measurements will degrade our

confidence in our state estimate.
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Steady-state continuous-time Kalman filter

o The continuous analytical Riccati equation has a unique positive
semidefinite solution P if and only if both of the following conditions
hold.

1. (A, C) is detectable.
2. (A,G) is stabilizable (G is any matrix such that GGT = Q).

o Furthermore, the corresponding steady-state Kalman filter is stable.

That is, the eigenvalues of (A — K C) have negative real parts.
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Steady-state continuous-time Kalman filter

o The continuous algebraic Riccati equation has at least one positive

semidefinite solution P if (A, C) is detectable.

o Furthermore, at least one such solution results in a marginally stable

steady-state Kalman filter.
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Example

We consider the following two-state system:

Solve the steady-state continuous-time Kalman filter.

The Kalman filter

. 1
Tr =

0

1
y:

0
Q:

1
R:

0

T+ w

x4+
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The differential Riccati equation for the Kalman filter is given as
P=_PCTR'CP+ AP+ PAT +Q
This can be written as the following three coupled differential equations:

P11 = 2p11 — Py — Pis
D12 = 2p12 — P11P12 — P12D22

D22 = 2pa2 — p%z - ng
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Let P = 0 and calculate the steady-state value for P yields,

2 0 0 0 c +v2¢ — 2
P = or P = orP =

0 2 0 0 +v2¢ — 2 2—c
in which ¢ € [0,2] is a scalar. Then we have
K=PCTR'=P

c +v2¢ — 2
= or K = or K =
0 2 0 0 +v2¢c — 2 2—c
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Hence the estimate for x is

i =(A-—KQC)2+ Ky
1-c¢c Tv2¢ — c?

=(—2+ Ky) or (z+ Ky) or T+ Ky
FvV2c¢ — 2 c—1

in which only the first steady-state continuous-time Kalman filter is
stable (the eigenvalues of the first are -1, -1, of the second are 1, 1, of

the third are 1, -1). The other two filters are unstable Kalman filters.
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o Kalman filter generalizations
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Correlated process and measurement noise

Suppose that we have a

Tk

The Kalman filter

system given by

= Fp_q1xp_1+ G qup_1 +wg_1
= Hpxp + v

~ (0,Qk)

~ (0, Ry)

= Qklk—j

= Rgdg—;

= M;dp—j+1
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An example to explain this

suppose our system is an airplane and winds are buffeting the plane

we are using an anemometer to measure wind speed as an input to
our Kalman filter
the random gusts of wind affect both the process (i.e., the airplane

dynamics) and the measurement (i.e., the sensed wind speed)

the process noise wy, affects the state xx11, while vgq affects the

measurement yx4+1, and wg is correlated with vy

e Kalman filter
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update equation for the state estimate

T = Froa@p—1 +Gr_1up—1
T = T+ Ki(yr — Hpdr)

The gain matrix K}, will not be the same. Define the estimation error as

Er = T — Tg,
ék:xk—fck

6-96
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update equation for the estimation error

T — T

(Fr—17xp—1 + Gr_1ug—1 + wr—1) — (Fr—185—1 + Gr_1ug—1)
Fr_1€p—1 +wp—1

xp — [Tk + Ki(yr — Hidr))

ér — Kip(Hyxp + v, — Hydy)

ér — Kp(Hiép + vi)

(I — K Hp)ér — Kyon
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A priori and a posteriori estimation-error covariances

The Kalman filter

Elex(ér)”]

Fr 1P FT |+ Qo

Eley(éx)"]

B{lér — Ki(Hyeéx +vi)][---]"}

Py — KyHy Py, — KpEv(éx)T] — PoHT KT +
KyHyPyHF KT + K Efo(éx) T HF KT —
EEv)KE + Ky H Bl ) KE + Ky E(vpvl ) KF
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E(éxvy)

Simplify the expression for D,

El(zy, — Z1)v ]
E(xkvg - ikvg)
E[(Fy—1zk-1 4+ Gr_1uk—1 + wip—1)v}] — Eligol]

04+0+Mr—0

The last term is 0 because the a priori state estimate at time k is

independent of vy.

The Kalman filter
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Simplify the expression for D,

Substituting the expression of E(é;v{) into the expression for P, gives

P, = DPy— KyH,Py — KeMT — P HF KT + K Hy P HT KT+
+EK.MIHT KT — M KT + K H My KE + K Ry KT

= (I — KpHy)Po(I — KpHy)T + KRy KF+
Ki(HeMy + MFHD) KT — M KT — K MT

The Kalman filter 6-100



Find the optimal K}

We get the optimal gain matrix K}, by minimizing Tr(P;). Recall that

OTr(ABAT)

74 = 2AB if B is symmetric.

We can use this fact to derive
B = (I - KpHy) P HT + 2K Ri+
2Ky (Hp My + MIHF) — My, — Ky,
= 2[Ky(Hy P HE + H My, + MIH! + Ry) — PoHL — My

Setting the partial derivative to be zero gives the optimal gain K}, as

K = (ﬁng + Mk)(Hkpng + H My, + MTHT + Ry) ™1
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The estimation-error covariance propagation

Py = (I - KpHy)Po(I — KpHy)" + KRy KF+
Kk(HkMk+MgHg)Kg—Mng—KkMg
= pk—Kk(Hkpk-f—Mg)
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The general discrete-time Kalman filter

o The system and measurement equations are given as

zp = Froizp—1 +Gro1up—1 +wp—1
ye = Hygwg+og
wr, ~  (0,Qk)
vy ~ (0,Ry)
EBlwpw]] = Qudr—;
Elvkvj] = Ridp—;
Elwgo]] = M;d—j1

o The Kalman filter is initialized as

{%0 = E(xo)

Py = E[(zo— &0)(xo — £0)7]
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The general discrete-time Kalman filter

o For each time step kK =1, 2,..., the Kalman filter equations are given
as
Py = Fi 1P FL | +Qr
K, = (ﬁkaT—i—Mk)(HkﬁkaT—i—HkMk+M,€TH,€T+R1€)71
T = Fp1Zr—1 +Gro1ur—1
Ty = @+ Ky(yr — Hpiy)
P. = (I - KpHp)Po(I — KpH)" + KRy K+

Kk(HkMk + MI?HZ)K% — Mng — KkMg
= P, — Ki(Hp P, + M)
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Using the orthogonality principle

o initial estimate
&0 = E(x0), Py = E(wo — o) (x0 — 20) "
o the a priori estimate at time k=1
i1 = B(z1) = Foio + Gouo, Py = FoByF + Qo

o Determine the a posteriori estimate at time k = 1 (the orthogonality

principle): find ; such that

E(ey{) =0
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él = (I — KlHl)él + Kl’Ul
E(é1yl) = E[(I — K1H,)é1 + Ko |[Hyzy +v1]7 =0
E[(I — K1Hy)é1 + Kyvi][Hi (% — &) +v1]T =0

E(&vl) = My, E(&127) =0, BE(vniaT) =0

o Proof through mathematical induction

The Kalman filter
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Example

Consider the following scalar system:

zrp = 0.8Tp_1 + wi—1
Y = Tkt Ug
Elwpw]] = 1-6,;
Elppo]] = 0.1-64;
Elugv]] = M- 0p—j11

Standard Filter ~ Correlated Filter
Correlation M (M =0 assumed) (correct M used)

0 0.076 0.076
0.25 0.030 0.019
-0.25 0.117 0.052
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Colored process noise
Suppose we have an LTI system given as
T = Farp_1 + wp—1

where the covariance of wy, is equal to Q. Further suppose that the

process noise is the output of a dynamic system:
wg = Ywg—1 + (k-1

where (i_1 is zero-mean white noise that is uncorrelated with wg_1.

Hence, we have
E(wkwﬁﬂ = E(wwk—NUgfl + Ck—lwﬁﬂ =PQr_1
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Augmenting the state
Suppose z;, = [z}, wi]|”, we have

TE | oI Tr-1
Wi 0 Wh—1

! ! ! /
Ty = Fop_ +wi_y

0
Cr—1

This is an augmented system with a new state z’, a new system matrix F’ and

a new process noise vector w’ whose covariance is given as follows:

0 0 /
-
0 E(Cklk)

o computational effort increases because the state dimension has

doubled
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Colored measurement noise

Now suppose that we have colored measurement noise. The system and

measurement equations are given as

xr = Fpo1zkp—1 +Gr_1up—1 + wr—1
ye = Hygwg +uog
Vg = Yk-1Uk—1 + k-1,
wry, ~ N(0,Q), vk ~N(0,Rg)
Blupw]] = Qudr—j
Elmnf] = Quidr—j
Elwgnj] = 0

The measurement noise is itself the output of a linear system with

Elvrvi_q] = El($e—10k—1 + Me—1)Vj_1] = Y1 E[vk—10]{_,]
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Augmenting the state

We augment the original system model as follows:

T Fy_q 0 Th_1 Wi—1
= +
Vg, 0 Yr Vk—1 Mh—1
T
Vk

This can be written as

— / ! !
r, = IFp_ x4 w4

— ! ! /
yr = Hpx, +vy

The Kalman filter
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The process noise and measurement noise

WE Qk 0
Elwju}"] = E (wf of)|=
Nk 0 an

10T _
Elvv,"] = 0
o There is no measurement noise.

o practically speaking, a singular measurement-noise covariance often

results in numerical problems
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Measurement differencing

Define an auxiliary signal ;. as follows:

Yp1 = Yk — Vk—1Yp—1
Substitute for g and yi_1 in the above definition,

Y1 = Hpze +or — e (Hi—125-1 + vg-1)

= Hp(Fy_17p-1 +wk—1) + v — Yrp—1(Hp—1Tp—1 + Vk—1)
= (HpFp-1 —Yp—1Hyp 1)xp—1 + Hpwg—1 + v — r_1vp1
= (Hplk—1 — Yx—1Hr—1)zr—1 + (Hpwp—1 + ng—1)

A !
= Hj_ zp—1+u,_,
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The equivalent system

Ty = Fpazp 1+ wp
v, = Hpzi+o,

The covariance of the new measurement noise v/,

B, = B[(Hgwaws + ni)(Hipawy, + )]
= HpnQuHL 4+ Qy,

Elwgv,"] = Blwg(Hysrwy, +m1)7]
= QkHIZ:rl
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Find the optimal K}

o Define the a priori and a posteriori state estimates for the equivalent
system as:

Ty = Elzklys, - - -, yr]

&r = Elzk|yr, -y Yk Ykr1] = En + Ki(y), — Hydr)

o this definition is slightly different, as yj,_; = yx — Yr—1yx—1

o Choose the gain K} to minimize the trace of the covariance of the

estimation error:

K}, = argmin Tr E[(zy — 23)(zp — &1)7]
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Example

Consider the linear system with colored measurement noise

T

Yk

Vg

Elwyw] ]
E[¢¢]]

E[wijT]

The Kalman filter

0.70 -0.15
Tr—1+
0.03 0.79
1 0
TE + Vg

0 1
Yop_1 + (-1
16k

005 0

Ok—;
0 0.05

0.15
0.21

Wg—1
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Standard Augmented

Measurement

Color Filter Filter Differencing
0 0.245 0.245 0.247
0.2 0.260 0.258 0.259
0.5 0.308 0.294 0.295
0.9 0.631 0.407 0.406

The Kalman filter
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Motivation

o All systems are ultimately nonlinear (Even a device as simple as a
resistor is only approximately linear, and even then only in a limited
range of operation)

o Many systems are close enough to linear that linear estimation
approaches give satisfactory results

o However, there is some system does not behave linearly even over a
small range of operation, and our linear approaches for estimation no
longer give good results

o Then we need to explore nonlinear estimators

o Some nonlinear estimation methods including nonlinear extensions of
the Kalman filter, unscented filtering, and particle filtering have

become widespread.
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Nonlinear Kalman Filtering

Linear § Nonlinea
regime } r regime
Y.

Current

Linear systems do not
exist in reality!

Ohm'staw: [ = V/R

Voltage

X = B (X Wy Wy y)

How can we adapt the Kalman
- . : _ti current  previous  inputs  process
Filter to nonlinear discrete-time o Mo e
systems?
Vi = hy(x, vp)
measurement state measurement
noise
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EKF | Linearizing a Nonlineefa(r) System

Choose an operating point a and

approximate the nonlinear function by

a tangent line at that point

Mathematically, we compute this linear approximation using a first-order Taylor expansion:

0f )

x=a

First-order terms

The Kalman filter

fOrfla)+—=—| «-al+

1 )

20 o2

x=a

fla) Sope = L&
ox

x
a

1 Fw

3
31 ox2 +

(x—a)’+

—a)

x=a

Higher-order terms
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The discrete-time extended Kalman filter

Suppose we have the system model

rp = fe—1(Th—1,Up—1, Wk—1)
yr = hi(zk, vi)
wg  ~N(0,Qk)
v ~N(0,Ry)
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Linearization

We perform a Taylor series expansion of the state equation around

Tk—1 = Tx—1 and wg_1 = 0 to obtain the following:

. O f A
v~ freo1(Tr—1,up—1,0) + gcz1|(ik,1,0)(xk—1—xk—1)

Ofrk—1
+ ow |(ik7170)wk*1

= fe—1(Zr—1,uk—1,0) + Fy—1 (k-1 — &x—1) + Ly—1wp—1
= Fpoizp—1 + [foe—1(Zk—1,ur—1,0) — Fx—1&r—1] + Ly—1wi_1

= Fr_1xp—1 + Gp—1 + Wi—1

. O , .
where Fj,_; = fa’} (1,00 L1 = J(;"wl l(2,_1,0)- The input is

@k = fr(Zk, ur,0) — Fx2y. The process noise wy ~ N (0, LyQrLL).
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Linearization

We linearize the measurement equation around z; = ¥ and vy = 0 to

obtain

hi(Zx,0) + %kiho)(% — &) + %kik,o)vk
Hyxp, + [hk(sz,()) — kak] + Mvp
= Hixp + 2z, + 0

Q

Yk

where Hj, = Bz (2,00 and My = 81} (i,,0)- Thesignal z; and the

noise signal ¥ are defined as

Zk = hk(fk,O) - Hk:fk
o~ N(0, MkRkMg)
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The discrete-time extended Kalman filter

1. The system and measurement equations are given as follows:

T = fro—1(Tp—1, Uk—1, Wk—1)
yr = hi(zk, vi)
wi  ~N(0,Qk)
v ~N(0,Rg)

2. Initialize the filter as follows:

=

o
Il

S|
—~

8
(=}
~—

Jas
Il
=
=
o

|
8>
(=}
S~—
N
o

|
>
(=}
S—
)
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The discrete-time extended Kalman filter

3. Fork=1,2,..., perform the following.

o compute the partial derivative matrices:

0

Fe1 = 5 G0
Ofs_

Ly = 5w1|(ik:—1»0)

o perform the time update

P, = Fo1Po  FL |+ Ly 1Qr LY,
Ir = fe—1(&r-1,ur-1,0)

o compute the partial derivative matrices:

_ Ohy
Hi = FE|@g.0

. Ohg
My = G0
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The discrete-time extended Kalman filter

o perform the measurement update

Ky, = P.HI(H.PH] + MR M])~?
Ty = Ip+ Kilyr — ha(2r,0)]
P, = (I - KyHy)b,
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Remark

o The key to the EKF lies in the linearization of the original

nonlinear dynamic system.

o if the linearization does not provide a reasonably accurate description

of the system dynamics, the state estimates may diverge.

o The computation of partial derivative matrices as well as the error
covariance requires the estimates Z;, and Zj. As a result, the EKF

can not be tested off-line; it requires real or simulated data.
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EKF | Short Example

Height Motion/Process model

X = f(X_p W, W)

1 Ar 0
= [0 1 ] X+ [Al] Wy + Wy

Landmark measurement model

Ve = = h(pio vi)

S
=tan! + v
D —py

Noise densities
Ve ~ M0, 0.01) Wi ~ H(0,(0.1)1,,,)

Position

Sand D are known in advance
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EKF | Short Example

Height

Position

Fk* 1

Lk— 1

Motion model Jacobians

_ o _ [1 At]
0 1
Rl P
of
:V =1,
gm0

Measurement model Jacobians

H,

M,

The Kalman filter

_oh
B 0X;

_ N
T @-pr+s?
X0

‘
oh

=—| =1
oy

%0
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EKF | Short example

Height . Data
o o[ 0.01 0
w0 )
At=0.5s

uy=-2 [m/s?] ¥ =30 [deg]
Position

1

S =20 [m] D =40 [m]

Using the Extended Kalman Filter equations, what is our updated position?
P
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EKF | Short Example Solution

Prediction

= (%o, up, 0) This is the same
result as in the
linear Kalman Filter

P 1 05| [o 0 2.5
v | = -2)= xample b
p‘l] [0 1 ] [5] * [0‘5]( ) [4] o moion moder

already linear!

i’ =F, PDF(J + LUQOL()

|
ol s 8-

e
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EKF | Short example solution

Correction
K, = PH[(H P H] + MR M])"!

_ [036 0.5] [0.011 0.36 0.5 [0.011
_[0.5 Ll” 0 ]([0011 OJ[ IH 0
_fo39

0.55

% =% + K@y, — (%, 0) b _(;BOMKS!H)IV)
1= A -KH)P,

-1
+ 1(0.01)(1))

| o.3s85  o0.4979
| o0.4978 1.0970

n =]l Jes-oan =[5 ]
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Linear parameters identification

Consider a single-input single-output discrete-time system given by the

difference equation

Yk = f(yk—lv s Yk—ng Uk—1, - - -;uk’—nb)

Approximate it by a linear relationship
Na np
Yk = Zaiy(n — i)+ Zblu(n — 1)+ v
i=1 i=1

where v is the model error term.
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State-space formulation

The linear relationship can be expressed as

T+l = Tk
Y = CkTk + Uk
where
Tp = [a1,... an, b1, .. by, )T
and
C = [ykfl, ooy Yk—ng s Uk—1, - - - 7uk,nb]
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o Then we can use linear discrete-time Kalman filter to estimate xy,

which is actually the system parameters.
o Recall what we have learned in recursive least squares!

o Compare with system identification method you have learned.
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Nonlinear system identification

o if the function f is nonlinear, an accurate model can be constructed
by using a neural network

o For a simple 2 neurons neural network model

Y = Ci1X1,k + CaX2,k T Vg
Xik = actlajyr—1 +bijukl,j=1,2
where act denotes the activation function.

o The equation for a feedforward NN model with ¢ hidden nodes are

q
Yk = Z CiXj,k + Uk
j=1

N M
Xj,k = act Zaijyk—i + Zbijuk—i 7=1,...,q
i=1 i=0
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State space formulation

Define

0j = [alj,...,aNj,bOj,...,ij]T CcC = [Cl,...,cq]T

Denote ¢y, as the (N + M — 1)-element vector,

T
¢/€ = [ykfla' < Yk—N, Uk, - ~~auk7M]

)

we have

q
yk =Y cjact[df 0] + v
j=1

Let xj denote the ¢(N + M + 2)-element state vector defined by
rp = [01,...,0,c" )"
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State space formulation

The state space formulation can be obtained,

Tk+1 = Tk

ye = y(xg)+ vk

where

q
v(zg) = Z cjact[¢f 6;]
i=1
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Time update (Propagation)

Try1 = T
Pow = B
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Measurement update (Correction)

o Compute the partial derivative matrices:

HkZ%m: { g—% g—% % :|T|:nk
while
g_;j Jam( LT, j=1,....qn=dL0,
and
% = | act(@T01) ... act(¢76,) |
o Update the matrices
Ky = PoHI(H PHT + Rp)™!
Tr = &+ Kilys — 7(3,0)]
B, = (I-KpH)P,
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o Comparison with what we have learned in recursive least squares

estimation?

o Comparison with the dominant method for neural network training?
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Insufficiency of EKF

o The first-order approximation of the dynamic system, however, can
introduce large errors in the true posterior mean and covariance of
the transformed (Gaussian) random variable, which may lead to

sub-optimal performance and sometimes divergence of the filter.

o the UKF approximates the probability distribution instead of the

system dynamics
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Limitations of the EKF | Linearization error

The EKF works by finearizing the nonlinear  £(x)
motion and measurement models to update
the mean and covariance of the state /
Ijnearizat\o
n error

The difference between the linear

approximation and the nonlinear
f(x)
ax

function is called finearization error fla) slope =
In general, linearization error depends on X
a
1. How nonlinear the function is
of(x)

forfla)+——| @&—-a)
ox

x=a

2. How far away from the operating point the
linear approximation is being used

6-143
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Linearization Error | Example

Let’s look at an example of how linearization error affects the mean and covariance of a
random variable transformed by a nonlinear function:

Linearized Linearized
" covariance, . "
Polar coordinates Cartesian coordinates_"°2"
101 -
19 Nonlinear transformation STy
x=rcosd 100
18 o
y=rsin6 09
17
imean 0%
ES ﬂ =007
Lo 0.96
Linearized transformation '
14 _ _ o
cos B+ cos @ (r— F) 0:95 X
13 ind - {)) 0.04 True covariance I
sind +sind (r—7) i .
3 7 204

12 . y -
0985 0090 099 LO00 1005 w 1015 —02 ) 02 0.4
r x

True covariance

The Kalman filter 6-144



Motivation of unscented transform

o In 1994 Jeffrey Uhlmann noted that the EKF takes a nonlinear
function and partial distribution information of the state of a system
but applies an approximation to the known function rather than to
the imprecisely-known probability distribution

o He suggested that a better approach would be to use the exact
nonlinear function applied to an approximating probability distribution

o Jeffrey Uhlmann explained that "unscented" was an arbitrary name

that he adopted to avoid it being referred to as the “Uhlmann filter".
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Idea of Unscented Transform

o The unscented transformation is a method for calculating the
statistics of a random variable which undergoes a nonlinear

transformation

o uses the intuition (which also applies to the particle filter) that it is
easier to approximate a probability distribution than it is to

approximate an arbitrary nonlinear function or transformation.
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The Unscented Transform

“It is easier to approximate a probability distribution than it is to approximate an
arbitrary nonlinear function” — S. Julier, J. Uhimann, and H. Durrant-Whyte
(2000)

P 1. Choose sigma points Py

=)

2. Transform sigma points

3. Compute
weighted mean and
covariance of
transformed sigma

points
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Idea of Unscented Transform: A simple example

Linearization based Gaussian approximation:

o Problem: Determine the mean and covariance of y:

x ~ N (u,0?)

y = sin(x)
o Linearization based approximation:

Osin(p)

y = sin(u) + o (x—p)+...

which gives

E(y) ~ E(sin(p) + cos(u)(x — p)) = sin(p)

Cov(y) = El(sin(u) + cos(p)(x — p) — sin(p))?] = cos®(u)o

The Kalman filter

2
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A simple example

©

Form 3 sigma points as follows:
Xo=pXi=p+o0,Xo=p—o0

o We may now select some weights Wy, Wy, Wy such that the original

mean and covariance can be always recovered by

= WoXo+ W1 X1+ WaXy

2
o =3 Wi(X; —n)*
1=0

o Approximating the distribution of y = sin(z) as follows:
2
py = Y Wisin(X;)
i=0

2
7%= 3 Wilsin(X) )
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A simple example

oSetWon,W1=W2=%

o We get

2

[y A2 Sin pcos o, UZ ~ cos? usin? o

o Compare with the first-order linearization
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20

Figure: Comparison of the linearized transformation and unscented

transformation.Left: 4 =1,0 =0.1. Right: p=1,0 = 1.

Table: The mean and variance for the two cases

o=0.1 o=1
nonlinear linearized unscented nonlinear linearized unscented
mean 0.8312 0.8355 0.8338 0.5839 0.8499 0.4744
variance 0.0573 0.0549 0.0508 0.4712 0.4720 0.4366

The Kalman filter
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The Unscented Transform vs. Linearization

Let’s revisit our nonlinear transformation example from the previous video.

Polar coordinates Cartesian coordinates
101 - —
L9 Nonlinear transformation e Linearized
8 D T
! y=rsin@ g
0.99
L7
0.98
L6
< # =007
15
0.96
1 0.95
13 0.94
1.2 0. .
0985 099 0995 1600 L1005 L0 LOLs 20 02 0o 02 0.1

T T

The Unscented Transform gives a much
better approximation for similar work!
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Th

Principle of Unscented Transform

is the Cholesky factor L = v/P:

P=LLT

. The (2n + 1) sigma points can be formed using columns of L:

X():m
Xi=m++vn—+AL;
X,H_i:m—\/n—&—)\Li

where []; denotes the i-th column of the matrix.

. For transformation y = g(x) the approximation is:

e Kalman filter

Elg(a)] = ; W g(X,)

Covlg(2)] = 3 W (g(Xi) — 1) (9(X2) — )7

=0

. For vectors x ~ N (m, P), the generalization of standard deviation o

6-153



Parameter setting

o ) is a scaling parameter defined as A = a?(n + k) — n
o « and k determine the spread of the sigma points.

o Weights W™ and W are given as follows:

wm _ A e A 1 o2
0 T N0 n+)\+( o+ 5)
1
wrm w19
i i Ty

o [3 can be used for incorporating priori information on the

(non-Gaussian) distribution of x.
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Unscented transform approximation of nonlinear
augmented function

The unscented transform approximation to the joint distribution of x

and y = g(x) + q where x ~ A (m, P) and q ~ N(0,Q) is

X m P C
~ N R
y m ct s
The sub-matrices are formed as follows:

o Form the set of (2n + 1) sigma points as follows:

XO =1m,
X, =m++vn+ AL,
Xpyi =m—vn+AL,i=1...,n
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Unscented transform approximation of nonlinear

transforms

o Propagate the sigma points through g(-):

o The sub-matrices are then given as:

2n (m)
n= Zwimyi
=0

2n
S= ;)ch>(5€ — W)Y — T +Q

2n
€= 3 WK =m)(Y; = )"
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Unscented Kalman Filter (UKF): Derivation

o Assume that the filtering distribution of previous step is Gaussian

p(zh—1|y1—1) = N(mp—1, Pr_1)

o The joint distribution of z;_1 and xz = f(zx—1) + gx—1 can be

approximated with UT as Gaussian

! / /

{Ek,1 ml Pl P2

P(Th—1, Tp|y1:p—1) RN | ; 1T !
Tk my (Pl) Py,

o Form the sigma points X; of w51 ~ N (mg_1, Px—1) and compute

the transformed sigma points as X; = f(X;).
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Unscented Kalman Filter (UKF): Derivation

o The expected values can now be expressed as

my =mg_1
my = S WX,
o The blocks of covariance can be expressed as:
Pl =P
Ply =S W (Xi — my_1)(X; —m))T

Py =S WX — mh) (X —mh)T + Qi
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Unscented Kalman Filter (UKF): Derivation

o The prediction mean and covariance of xj, are then m/, and Ps, and
thus we get
g = WM™ X;
Py = S WK — ) (i — 7)™ + Qi

o For the joint distribution of zj and yi = h(xy) + ri we similarly get

" 2 /!
P(Trs Yr|yre—1) * N | /1/ : //lT 1”
Yk my (P12) P
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Unscented Kalman Filter (UKF): Derivation

o If X; are the sigma points of zj, ~ N (g, Pi) and Y; = h(X;), we
get
my = my
§= Z WY 2
P, = b,
Py = ZW“)( X =) (Vi —mf)" 2 O

QQ_ZW m’z’)(?i—m ) + Rr = Sk
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Unscented Kalman Filter (UKF): Derivation

o Recall that if

T a A C
~N
cT B

then
zly ~N(a+CB Yy —b),A—CB'CT)

o Thus we get the conditional mean and covariance

T = 1 + Ply(Pgy) "  (yr — mYy) = 1 + CrSyy (v — )
D = Pe — P{y(Pg) " (Ply)T = B, — CyS; 'CF

The Kalman filter
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Unscented Kalman Filter (UKF)

o Prediction step

o Form the matrix of sigma points:
Xp1=[ &1 -+ da ]+\/m[ 0 VB VB }
o Propagate the sigma points through the dynamic model:
Xpi = f(Xp—14),i=0,1,...,2n
o Compute the predicted mean and covariance
= W™ X

b= > Wi(C) (Xnyi — ) (Xni — 1) + Qi1
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Unscented Kalman Filter (UKF)

o Update step

o Form the matrix of sigma points:
Xe=[@ - @& l+Votdlo VB —VB ]

o Propagate the sigma points through the measurement model:

Vii=h(Xes),i=0,1,...,2n

o Compute the following terms:
K = E W,;(m)Yk.'iv Sk = Z ch)(f’k,i =) s — n) T+ By

Cp = ZW;C)(XA-,,«; — &) (Y, — 1g)

i

o Compute the filter gain K and the filtered state mean my and

covariance Py, conditional to the measurement yy:

-1 3
K =CpS "y dp = & + Ky — i)
Py =Py — K SpKL
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UKF | Short example

Motion/Process model

Height X = f0%p wyp Wyy)

1 At 0
s = [O 1 ] X1 [At] Wy + Wiy

------ Landmark measurement model

Positon Yk = P = (P vi)

D s
= tan™! + v
H . D—py
u=p

p

o]

Noise densities
Ve~ N0, 0.01)  w, ~ A(0,(0.1)1,,,)

Sand D are known in advance
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UKF | Short example

Height

v (B 1)

At =0.5s
Uy =—2 [m/s?] ¥ =30 [deg]

Position

1

§=20 [m] D =40 [m]

Using the Unscented Kalman Filter equations, what is our updated position?
h
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UKF: Short example solution

Prediction

o n=2, choose A =1
= 0.1 0
o P():
0 1

o choose 5 sigma points

0, A(i) :fﬁo-l-\/_[\/p_oz‘,i: 1,2

° A(i+2 = Zo \/_[\/;0]1,171 2

o A(O) =0, 5]T A(l) =10.2, 5]T A(2) =0, 67]T A(d) =1[-0.2, 5]T A(4)
[0,3.3]7

° i(()o) =2z
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UKF: Short example solution

Prediction
° 5;11') — fo(féi),uo,o) i=0,1,...,4

o #0 =[25,47 2V = [27] P = 34,577, 8% =

o W™ = W“’ 1/3W<’"> W =1/6,i=1,....4

1=0
O 0.36 0.5
o P, = Z VVl(:E}C —xk)(x}c —xk) +Qk—1 =
i=0 0.5 1.1
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UKF: Short example solution

Correction
. \/]3—1 _ 051 0
0.98 0.20
o choose 5 sigma points
o #0 =z, fﬁ” — &1+ V3V Py = 1,2
o v(z+2) \/_[\/;1]1,1 —1,2

V“’) [25 4]T 0 = [3.54,5.44)7,2? = [2.5,5.10]T,
[1.46, 2.56]T,5:§4) [2.5,2.90]7

. ) _

x

o the output ¢ ( —hl(ijll),O),i:O,...,Zn

o 91V =281, 9" =28.7, 9P = 281,91 = 27.4, (Y = 28.1

The Kalman filter
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UKF: Short example solution

Correction

2n .
o =S WMyl =281

=0
° 85 = Z WG — )@ — i)™ + Ry, = 0.16
° Oy = ;}Wé“ @ — &) (9 — )™ = [0.23,0.32]"
o K; = 515;1 = [1.47,2.05)7
o &y =i+ Ki(y1 — ) = [6.33,7.93]"
o By — B — KuSiKF = 0.0143 0.0178

0.0178 0.4276
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Comparison of EKF and UKF

©

Local approximation vs larger area approximation

©

Require differentiability of F' and h vs not require

©

Closed form derivatives or expectations vs no such forms are needed

©

First order approximation of the nonlinear dynamics vs captures

higher order moments of distribution
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Disadvantages of UKF

©

Not a truly global approximation, based on a small set of trial points.

©

Does not work well with nearly singular covariances, i.e., with nearly
deterministic systems.
o Requires more computations than EKF, e.g., Cholesky factorizations

on every step.

©

Can only be applied to models driven by Gaussian noises
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Introduction of particle filter

o In a linear system with Gaussian noise, the Kalman filter is optimal.

o In a system that is nonlinear, the Kalman filter can be used for state
estimation, but the particle filter may give better results at the

price of additional computational effort.

o In a system that has non-Gaussian noise, the Kalman filter is the
optimal linear filter, but again the particle filter may perform
better.

o The UKF provides a balance between the low computational effort

of the Kalman filter and the high performance of the particle filter.
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An illustration

nonlinear or linear Gaussian
% g;ysr:;ﬁussian glarticle 5 systems
ter
g 7 :
¥ UKF M
§ / o particle
E EKF S KF —> UKF —> oo
computational effort computational effort
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Introduction of particle filter

o The particle filter has some similarities with the UKF in that it transforms
a set of points via known nonlinear equations and combines the results to

estimate the mean and covariance of the state.

o However, in the particle filter the points are chosen randomly, whereas in
the UKF the points are chosen on the basis of a specific algorithm

(unscented transform).

o the number of points used in a particle filter generally needs to be much

greater than the number of points in a UKF.

o the estimation error in a UKF does not converge to zero in any sense, but
the estimation error in a particle filter does converge to zero as the
number of particles (and hence the computational effort) approaches
infinity
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Particle filtering methods—Sequential importance
sampling algorithm

o The sequential importance sampling (SIS) algorithm is a Monte Carlo
(MC) method that forms the basis for most sequential MC filters
developed over the past decades.

o Let {x{,,w}} denote a random measure that characterizes the
posterior pdf p(xo.x|y1:x), where {x} ,,i =0,..., Ny} is a set of
support points with associated weights {w,@,z =1,...,Ns} and
Xo:e = {X;,7 = 0,...,k} is the set of all states up to time k. The

posterior density at time k can be approximated as
N
p(XO:k|}’1;k) ~ Zwllc‘s(XO:k - X%):k)ﬂ
i=1

in which >".7 wi =1 and § is the Kronecker delta function.
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Sequential importance sampling algorithm

o The weights w,i are chosen using the principle of importance
sampling.
o Suppose p(z) o m(z) is a probability density from which it is difficult to
draw samples but for which 7 (z) can be evaluated.
o Let 2 ~ q(x),i =1,..., N5 be samples that are easily generated from a

proposal ¢(-) called an importance density.

o A weighted approximation to the density p(-) is given by
N
p(x) =~ Zwlzs(x —z")
i=1

where w; Z((;:)) is the normalized weight of the i-th particle.
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Weights calculation

o If the samples x},, were drawn from an importance density

q(x0:k|Z1.1), then the weights becomes

- p(X6:k|Z11k)
q(x{.5|Z1:)

o From wj_; to wj (p(Xpx—1[21:5-1)—>P(X(k|21:5))

o Suppose the importance density is chosen as

q(x0:x|21:%) = ¢(Xk|X0:k—1,Z1:%)¢(X0:k—1]Z1:k—1)
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Weights update

o Express p(xo.x|z1.x) in terms of p(xo.x—1|21.5—-1), p(Zk|Xk), and

p(xlxi1), i

P(zk]%0:k,21: 6 —1)P(X0:k Z1:6—1)
P(zklz1:6—1)
P(Zk|X0:k:21:k—1)P(Xk [X0:k—121:k—1)
p(zklz1:—1)
P(z |k )P(Xp | X —1)
= Y X0-k—11Z1-7—
P(zk|Z1:6—1) P(Xosk-1]Z1:5-1)

p(xO:k|Z1:k) -

p(xoik—l\zlzk—l)

o p(zk|x5)p(Xe|Xk—1)P(X0:k—1]Z1:1-1)

o According to the expression for q(xg.x|Z1.1), we have
i Pk |xi)p(xL [xh_)p(ch . 1Z16-1)

k a(xLIx) 1 Z1)a(el  |Z1e—1)

— i p(zg %} )p(x] 1%}, 1)
k=1 g(xLIxd 1 oZ1:k)

o Furthermore, if ¢(xk|X0:k—-1,21:%) = ¢(Xk|Xk—1,2k), then we have

i i p(ZMXZ)p(XﬂXZ_l)
Wi X WE_q ——
q(x}, x5 1, Zk)
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SIS particle filter

Algorithm: SIS particle filter [{x%,wi} =] = SIS[{xL_,,wi 1N 2]
o Fori=1:Ng
o Draw x}, ~ q(xx|xi_1,2k)

o Assign the particle a weight w}. according to

i i p(zk|x};)p(x};|x§v,1)
Wi X W1 T
q(x}|x},_ 1, 2Zk)

o Approximate the posterior as

P(Xk|2Z1:%) Zwk6 Xk — Xp)-

o End For
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Degeneracy problem existed in particle filter

©

After a few iterations, all but one particle will have negligible weight.

©

the brute force approach: use a very large N,

©

good choice of importance density

©

Resampling

The Kalman filter 6-180



Other related particle filters

o sampling importance resampling (SIR) filter
o auxiliary sampling importance resampling (ASIR) filter

o regularized particle filter (RPF)
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