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Background

James Follin, A. G. Carlton, James Hanson, and Richard Bucy

developed the continuous-time Kalman filter in unpublished work for

the Johns Hopkins Applied Physics Lab in the late 1950s

Rudolph Kalman independently developed the discrete-time Kalman

filter in 1960

In April 1960 Kalman and Bucy became aware of each other’s work

and collaborated on the publication of the continuous-time Kalman

filter

The filter is sometimes referred to as the Kalman-Bucy filter
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About Kalman

Rudolf Emil Kálmán

was born in Budapest in 1930

earned his bachelor’s degree in 1953 and his master’s degree in 1954,

both from the Massachusetts Institute of Technology, completed his

doctorate in 1957 at Columbia University in New York City

has been worked at the Research Institute for Advanced Studies in

Baltimore, Maryland, Stanford University, University of Florida, Swiss

Federal Institute of Technology in Zürich, Switzerland.

died on the morning of July 2, 2016, at his home in Gainesville,

Florida

The Kalman filter 6-3



About Kalman
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Importance of Kalman filter

is a mathematical technique widely used in the digital computers of

control systems, navigation systems, avionics, and outerspace vehicles

extract a signal from a long sequence of noisy or incomplete

measurements, usually those done by electronic and gyroscopic

systems.

was initially used in vast skepticism, the Apollo program, and

furthermore, in the NASA Space Shuttle, in Navy submarines, and in

unmanned aerospace vehicles and weapons, such as cruise missiles
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Approach to deriving the Kalman filter

The Kalman filter operates by propagating the mean and covariance of

the state through time.

start with a mathematical description of a dynamic system whose

states we want to estimate

implement equations that describe how the mean of the state and the

covariance of the state propagate with time

take the dynamic system that describes the propagation of the state

mean and covariance, and implement the equations on a computer

every time that we get a measurement, we update the mean and

covariance of the state
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Problem formulation

Suppose we have a linear discrete-time system given as follows:

xk = Fk−1xk−1 +Gk−1uk−1 + wk−1

yk = Hkxk + vk

The noise processes {wk} and {vk} are zero-mean, uncorrelated, and

have known covariance matrices Qk and Rk, respectively:

wk ∼ N (0, Qk), vk ∼ N (0, Rk)

E[wkw
T
j ] = Qkδk−j , E[vkv

T
j ] = Rkδk−j

E[vkw
T
j ] = 0
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Problem formulation

our goal is to estimate the state xk based on our knowledge of the

system dynamics and the availability of the noisy measurement {yk}

The amount of information available to us for our state estimate

varies depending on the particular problem that we are trying to solve
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Different kinds of estimate

if we have all of the measurements up to and including time k

available for use in our estimate of xk, then we can form an a

posteriori estimate, x̂k. One way to formulate the a posteriori state

estimate is

x̂k = E[xk|y1, y2, · · · , yk] = a posteriori estimate

if we have all of the measurements up to but not including time k

available for use in our estimate of xk, then we can form an a priori

estimate, x̌k. One way to formulate the a priori state estimate is

x̌k = E[xk|y1, y2, · · · , yk−1] = a priori estimate
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Different kinds of estimate

if we have measurements after time k available for use in our estimate

of xk, then we can form a smoothed estimate. One way to formulate

the smoothed state estimate is

x̂k|k+N = E[xk|y1, y2, · · · , yk, · · · , yk+N ] = smoothed estimate

if we want to find the best prediction of xk more than one time step

ahead of the available measurements, then we can form a predicted

estimate. One way to form the predicted state estimate is to compute

the expected value of xk is:

x̂k|k−M = E[xk|y1, y2, · · · , yk−M ] = predicted estimate
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Notations

x̂0–our initial estimate of x0 before any measurements are available,

in general x̂0 = E(x0)

P̌k–the covariance of the estimation error of x̌k,

P̌k = E[(xk − x̌k)(xk − x̌k)T ]

P̂k–the covariance of the estimation error of x̂k,

P̂k = E[(xk − x̂k)(xk − x̂k)T ]
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propagation

update update

k − 1 k

x̌k−1

P̌k−1

x̂k−1

P̂k−1

x̌k

P̌k

x̂k

P̂k

after we process the measurement at

time (k − 1), we have an estimate of

xk−1 (denoted as x̂k−1) and the

covariance of that estimate (denoted as

P̂k−1)

when time k arrives, before we

process the measurement at time k

we compute an estimate of xk

(denoted as x̌k) and the covariance of

that estimate (denoted as P̌k)

we process the measurement at time

k to refine our estimate of xk, the

resulting estimate of xk is denoted as

x̂k, and its covariance is denoted as

P̂k
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From x̂k−1 to x̌k

begin with x̂0 = E(x0)

we want to set x̌1 = E(x1), as x̄k = Fk−1x̄k−1 +Gk−1uk−1, we

therefore obtain

x̌1 = F0x̂0 +G0u0

time update equation for x:

x̌k = Fk−1x̂k−1 +Gk−1uk−1

we do not have any additional measurements available to help us update

our state estimates after time (k − 1) and before time k

we should just update the state estimate based on our knowledge of the

system dynamics
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From P̂k−1 to P̌k

begin with P̂0 = E[(x0 − x̄0)(x0 − x̄0)T ] = E[(x0 − x̂0)(x0 − x̂0)T ]

P̂0 represents the uncertainty in our initial estimate of x0, so if we

know the initial state perfectly, P̂0 = 0, if we have absolutely no idea

of the value of x0, then P̂0 = ∞I

As P̌k = Fk−1P̂k−1F
T
k−1 +Qk−1, we have

P̌1 = F0P̂0F
T
0 +Q0

time-update equation for P (a more general equation):

P̌k = Fk−1P̂k−1F
T
k−1 +Qk−1
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Measurement-update equations for x and P

The quantity x̌k is an estimate of xk, and the quantity x̂k is also an

estimate of xk. The only difference between x̌k and x̂k is that x̂k

takes the measurement yk into account.

Recursive least-square estimate (the availability of the

measurement yk changes the estimate of a constant x)

Kk = Pk−1H
T
k (HkPk−1H

T
k +Rk)−1

= PkH
T
k R

−1
k

x̂k = x̂k−1 +Kk(yk −Hkx̂k−1)

Pk = (I −KkHk)Pk−1(I −KkHk)T +KkRkK
T
k

= (P−1
k−1 +HT

k R
−1
k Hk)−1

= (I −KkHk)Pk−1
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Relationships between estimates and covariances in

recursive least-square and Kalman filtering

RLS KF

x̂k−1: estimate before yk is processed x̌k: a priori estimate

Pk−1: covariance before yk is processed P̌k: a priori covariance

x̂k: estimate after yk is processed x̂k: a posterior estimate

Pk: covariance after yk is processed P̂k: a posterior covariance

The Kalman filter 6-17



Generalization from the RLS formulas

Kk = P̌kH
T
k (HkP̌kH

T
k +Rk)−1

= P̂kH
T
k R

−1
k

x̂k = x̌k +Kk(yk −Hkx̌k)

P̂k = (I −KkHk)P̌k(I −KkHk)T +KkRkK
T
k

= ((P̌k)−1 +HT
k R

−1
k Hk)−1

= (I −KkHk)P̌k
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The discrete-time Kalman filter

The dynamic system is given by the following equations:

xk = Fk−1xk−1 +Gk−1uk−1 + wk−1

yk = Hkxk + vk

E(wkw
T
j ) = Qkδk−j

E(vkv
T
j ) = Rkδk−j

E(wkv
T
j ) = 0

The Kalman filter is initialized as follows:

x̂0 = E(x0)

P̂0 = E[(x0 − x̂0)(x0 − x̂0)T ]
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The discrete-time Kalman filter

The Kalman filter is given by the following equations, which are

computed for each time step k = 1, 2, · · · :

P̌k = Fk−1P̂k−1F
T
k−1 +Qk−1

Kk = P̌kH
T
k (HkP̌kH

T
k +Rk)−1

= P̂kH
T
k R

−1
k

x̌k = Fk−1x̂k−1 +Gk−1uk−1 a priori state estimate

x̂k = x̌k +Kk(yk −Hkx̌k) a posteriori state estimate

P̂k = (I −KkHk)P̌k(I −KkHk)T +KkRkK
T
k

= ((P̌k)−1 +HT
k R

−1
k Hk)−1

= (I −KkHk)P̌k
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Remark

the first expression for P̂k is called the Joseph stabilized version of the

covariance measurement update equation, which is more stable and

robust than the third expression for P̂k

the first expression for P̂k guarantees that P̂k will always be

symmetric semi-positive definite, as long as P̌k is symmetric

semi-positive definite

the third expression for P̂k is computationally simpler than the first

expression, but its form does not guarantee symmetry or semi-positive

definiteness for P̂k

the second form for P̂k is rarely implemented but will be useful in the

derivation of the information filter
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Remark

if the second expression for Kk is used, then the second expression for

P̂k must be used

if xk is a constant (random variable unchanged), then Fk = I,Qk = 0

and uk = 0, and the Kalman filter reduces to the recursive least

squares algorithm for the estimation of a constant vector

the calculation of P̌k,Kk, and P̂k does not depend on the

measurements yk, but depends only on the system parameters

Fk, Hk, Qk and Rk

the computational effort of calculating Kk can be saved during

real-time operation by precomputing it

the performance of the filter can be investigated and evaluated before

the filter is actually run (P̂k indicates the accuracy)
The Kalman filter 6-22



The Kalman filter 6-23



Bayesian Inference

Assume we have a joint Gaussian over a pair of variables (x, y)

p(x, y) = N









µx

µy



 ,





Σxx Σxy

Σyx Σyy









According to Schur complement, we have

[

Σxx Σxy

Σyx Σyy

]

=
[

I ΣxyΣ
−1
yy

0 I

] [

Σxx − ΣxyΣ
−1
yy Σyx 0

0 Σyy

] [

I 0

Σ
−1
yy Σyx I

]

and the inversion gives,

[

Σxx Σxy

Σyx Σyy

]

−1

=

[

I 0

−Σ
−1
yy Σyx I

][

(Σxx − ΣxyΣ
−1
yy Σyx)−1 0

0 Σ
−1
yy

][

I −ΣxyΣ
−1
yy

0 I

]
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Bayesian Inference

Suppose X = [xT , yT ]T , the joint distribution p(x, y) is

p(x, y) =
1

√

(2π)N det Σ
exp

(

−1

2
(X − µ)T Σ−1(X − µ)

)

the quadratic part
([

x

y

]

−

[

µx

µy

])T

Σ−1

([

x

y

]

−

[

µx

µy

])

= [(x − µx)T , (y − µy )T ]·
[

I 0

−Σ
−1
yy Σyx I

]

·

[

(Σxx − ΣxyΣ
−1
yy Σyx)−1 0

0 Σ
−1
yy

]

·

[

I −ΣxyΣ
−1
yy

0 I

]

·

[

x − µx

y − µy

]

=

[

(x − µx)T
− (y − µy)T Σ

−1
yy Σyx (y − µy)T

]

·

[

(Σxx − ΣxyΣ
−1
yy Σyx)−1 0

0 Σ
−1
yy

]

·

[

x − µx − ΣxxΣ
−1
yy (y − µy)

y − µy

]

= [(x − µx) − ΣxyΣ
−1
yy (y − µy)]T (Σxx − ΣxyΣ

−1
yy Σyx)−1[· · · ] + (y − µy )T Σ

−1
yy (y − µy)

the determinant

det
([

Σxx Σxy

Σyx Σyy

])

= det(Σyy) · det(Σxx − ΣyxΣ−1
yy Σxy)
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Bayesian Inference

As

p(x, y) = p(x|y)p(y)

we then have

p(x|y) = N
(

µx + ΣxyΣ−1
yy (y − µy),Σxx − ΣxyΣ−1

yy Σyx

)

and

p(y) = N (µy ,Σyy)

Both are Gaussian!
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Kalman filter via Bayesian Inference

Assume the Gaussian posteriori estimate at k − 1 is

p(xk−1|x̂0, u0:k−2, y1:k−1) = N (x̂k−1, P̂k−1)

Prediction step (uk−1 is available but yk is not)

p(xk|x̂0, u0:k−1, y1:k−1) = N (x̌k, P̌k)

where

x̌k = E(xk) = Fk−1x̂k−1 +Gk−1uk−1

P̌k = P (xk) = Fk−1P̂k−1F
T
k−1 +Qk−1

The Kalman filter 6-27



Kalman filter via Bayesian Inference

Correction step (yk is available),

p(xk, yk|x̂0, u0:k−1, y1:k−1) = N









µx

µy



 ,





Σxx Σxy

Σyx Σyy









= N









x̌k

Hkx̌k



 ,





P̌k P̌kH
T
k

HkP̌k HkP̌kH
T
k +Rk









The conditional density for xk (the posterior) is,

p(xk|x̂0, u0:k−1, y1:k) = N
(

µx + ΣxyΣ−1
yy (yk − µy),Σxx − ΣxyΣ−1

yy Σyx

)

Define x̂k as the mean and P̂k as the covariance, and we have the

same expressions as before.
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Kalman filter properties: unbiasedness

the error dynamics:

ěk=x̌k−xk,êk=x̂k−xk

Using the Kalman filter equations, we can derive:

ěk=Fk−1êk−1−wk−1,êk=(I−KkHk)ěk+Kkvk

êk=(I−KkHk)Fk−1êk−1−(I−KkHk)wk−1+Kkvk
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Consistency of state estimators

In the problem of estimating a parameter that is constant,

consistency of an estimator (i.e., a static estimator) was defined as

convergence of the estimate to the true value.

This implies that there is a steadily increasing amount of information

(in the sense of Fisher) about the parameter that asymptotically

reduces to zero the uncertainty about its true value.

When estimating the state of a dynamic system, in general, no

convergence of its estimate occurs.

What one has, in addition to the “current" estimate of the state, x̂k,

is the associated covariance matrix, P̂k.
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Consistency of state estimators

A state estimator (filter) is called consistent if its state estimation

errors satisfy

E(xk − x̂k) = 0

E[(xk − x̂k)(xk − x̂k)T ] = Pk

This is a finite-sample consistency property, that is, the estimation

errors based on a finite number of samples (measurements) should be

consistent with their theoretical statistical properties:

Have mean zero (i.e., the estimates are unbiased)

Have covariance matrix as calculated by the filter
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For an estimator,

If P̂k < E[êkê
T
k ], the KF “underestimate” the true uncertainty, the

filter is optimistic.

If P̂k > E[êkê
T
k ], the KF “overestimate” the true uncertainty, the

filter is pessimistic.
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E[ê0 êT
0 ]=P̂0,E(v)=0,E(w)=0 v,w are white

Causes of inconsistency:

Modeling errors

Numerical errors

Programming errors
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Practical evaluation of consistency

Define the normalized (state) estimation error squared (NEES) as,

ǫ(k) = x̃T
k P̂

−1
k x̃k,

under the linear Gaussian assumption, one has

E[x̃T
k P̂

−1
k x̃k] = nx

that is, the NEES follows a χ2 distribution and the average equals nx.

Hypothesis H0: the filter is consistent and the linear Gaussian

assumption, ǫ(k) is χ2 distributed with nx degrees of freedom, and

the test is whether

E[ǫ(k)]

can be accepted.
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Kalman filter properties: overall optimality

The error ek = xk − x̂k is a random variable determined by the stochastic

process {wk} and {vk}. Suppose we want to find the estimator that

minimizes (at each time step) a weighted two-norm of the expected value of

the estimation error ek:

min E[eT
k Skek] (1)

where Sk is a positive definite user-defined weighting matrix.

if {wk} and {vk} are Gaussian, zero-mean, uncorrelated, and white, then

the Kalman filter is the solution to the problem (1)

if {wk} and {vk} are zero-mean, uncorrelated, and white, the Kalman filter

is the best linear unbiased estimate to the problem (1)
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Orthogonality principle in discrete-time Kalman filter

Preliminaries

Initial estimate x̂0 = E(x0) = 0 (a fixed value), suppose uk = 0

Uncorrelated properties:

wi, vi are uncorrelated with all past or present states, i.e.,

E[wix
T
j ] = 0, E[vix

T
j ] = 0, ∀j ≤ i

wi, vi are orthogonal to past outputs, i.e.,

E[wiy
T
j ] = 0, E[viy

T
j ] = 0, ∀j < i
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Time update

Since x̌k should be the optimum LMMSE estimate, xk − x̌k must satisfy

the orthogonality condition, i.e.,

E[(xk − x̌k)yT
i ] = 0, ∀i = 1, 2, . . . , k − 1

Define yk−1 = [y1, . . . , yk−1]T , and we have

E[(xk − x̌k)yT
i ] = E[(Fk−1xk−1 + wk−1 − Fk−1x̂k−1)yT

k−1]

+E[(Fk−1x̂k−1 − x̌k)yT
k−1] = 0.

As x̂k−1 is the LMMSE estimate of xk−1 given yk−1, there is

E[(xk−1 − x̂k−1)yT
k−1] = 0,

then we have

x̌k = Fk−1x̂k−1

P̌k = Fk−1P̂k−1F
T
k−1 +Qk−1
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Measurement update

As x̂k−1 is the LMMSE estimate given yk−1, the following is valid,

E[(xk−1 − x̂k−1)yT
k−1] = 0,

Since x̂k−1 is the linear function of yk−1, we can write x̂k−1 as,

x̂k−1 = Jk−1yk−1.

Now assume x̂k = Jkyk, according to the orthogonality condition, we

then have

E[(xk − Jkyk)yT
k ] = 0
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Measurement update

Suppose x̂k = Kkyk +Gkyk−1, substituting the expression of yk yields,

x̂k = Kk(Hkxk + vk) +Gkyk−1

= Kk(Hk(Fk−1xk−1 + wk−1) + vk) +Gkyk−1

As x̂k is the LMMSE estimate given yk, we have

E[(xk − x̂k)yT
k ] = 0,

i.e.,

E







(xk − x̂k) ·





y
T
k−1

yT
k











= 0

From the equality E[(xk − x̂k)yT
k−1] = 0, we have

E[(Fxk−1+wk−1−KkHkFk−1xk−1−KkHkwk−1−Kkvk−Gkyk−1)yT
k−1] = 0
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And further the following is true,

E[((I−KkHk)F (xk−1 −x̂k−1)+(I−KkHk)F x̂k−1 −Gkyk−1)yT
k−1] = 0

as wk−1, vk are uncorrelated with y
T
k−1.

According to the fact x̂k−1 is the LMMSE estimate, the orthogonality

principle holds, i.e.,

E[(I −KkHk)F (xk−1 − x̂k−1)yT
k−1] = 0,

and then we can take

Gkyk−1 = (I −KkHk)F x̂k−1

And we have

x̂k = Kkyk+Gkyk−1 = Kkyk+(I−KkHk)Fk−1x̂k−1 = x̌k+Kk[yk−Hkx̌k]
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According to the propagation of error

êk = xk − x̂k = (I −KkHk)Fk−1êk−1 + (I −KkHk)wk−1 −Kkvk

and we write yk as

yk = Hkxk + vk = HkFk−1xk−1 +Hkwk−1 + vk

as the equality E[(xk − x̂k)yT
k ] = 0 holds, we then have

E[êky
T
k ] = Fk−1P̂k−1F

T
k−1H

T
k +Qk−1H

T
k −KkHkFk−1P̂k−1F

T
k−1H

T
k

−KkHkQk−1H
T
k −KkRk = 0

Recalling the expression for P̌k, and we have,

Kk = P̌kH
T
k [HkP̌kH

T
k +Rk]−1

and the posteriori covariance can be expressed as

P̂k = P̌k −KkHkP̌k
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The block diagram of Kalman filter:
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Example

Considering a simple 1-dimensional example,

xk+1 = 0.5xk + wk

yk = xk + vk

wk and vk are uncorrelated white noise with zero mean, i.e.,

E{wk} = 0, E{vk} = 0, E{wkwj} = 1 · δk−j , E{vkvj} = 2 · δk−j

Initial value: x̂0 = 0, P0 = 1; Observations y1 = 4, y2 = 2. Find the

optimal linear estimate of xk.
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Example

Initialization: x̂0 = 0, P̂0 = P0 = 1

Computation of the gain Kk as well as P̌k, P̂k, i.e.,

P̌1 = F0P̂0F
T
0 +Q0 = 1.25

K1 = P̌1H
T
1 (H1P̌1H

T
1 +R1)−1 = 0.3846

P̂1 = [I −K1H1]P̌1[I −K1H1]T +K1R1K
T
1 = 0.7692

P̌2 = F1P̂1F
T
1 +Q1 = 1.1923

K2 = P̌2H
T
2 (H2P̌2H

T
2 +R2)−1 = 0.3735
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Estimation of the state sequence:

x̌1 = F0x̂0 = 0

x̂1 = x̌1 +K1(y1 −H1x̌1) = 1.5385

x̌2 = F1x̂1 = 0.7692

x̂2 = x̌2 +K2(y2 −H2x̌2) = 1.2289

Computation of Kk when time increases:

K1 = 0.3846 P̌1 = 1.2500 P̂1 = 0.7692

K2 = 0.3735 P̌2 = 1.1923 P̂2 = 0.7470

K3 = 0.3724 P̌3 = 1.1867 P̂3 = 0.7448

K4 = 0.3723 P̌4 = 1.1862 P̂4 = 0.7446

K5 = 0.3723 P̌5 = 1.1861 P̂5 = 0.7446

K6 = 0.3723 P̌6 = 1.1861 P̂6 = 0.7446
...

...
...
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The former example:
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Steady-state Kalman filter

when time increases, the Kalman filter gain and error covariance

reaches a steady-state value.

The term “steady-state” Kalman filtering means that the Kalman

filter is time-invariant and the Kalman gain is in steady-state
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Properties of steady-state Kalman filter

the dynamic system is time-invariant

a constant gain K can be pre-computed, K = PHT (HPHT +R)−1

P reaches a steady-state

P = FPFT − FPHT (HPHT +R)−1HPFT +Q

and the above equation is called discrete time algebraic Riccati

equation (DARE).

the savings in computations deserve any loss in the estimated state

quality
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Conditions for the existence of the steady-state

Kalman filter

The DARE has a unique positive semidefinite solution P iff both of the

following conditions hold.

(F,H) is detectable

A system is detectable if all the unobservable states are stable.

(F, J) is stabilizable (J is any matrix such that JJT = Q)

A system is said to be stabilizable when all uncontrollable state variables

can be made to have stable dynamics.
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Conditions for the existence of the steady-state

Kalman filter

If the signal process model is time invariant and asymptotically stable,

then

1. For any nonnegative symmetric initial condition P̂0, one has

lim
k→∞

P̌k = P

and P satisfies the discrete time algebraic Riccati equation.

P = FPF
T − FPH

T (HPHT +R)−1
HPF

T +Q

2. The Kalman filter gain K reaches a constant value and the matrix

(I −KH)F is stable.
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Steady-state Kalman filter error

Steady-state Kalman filter is a time-invariant observer (also

time-invariant system):

x̌k = F x̂k−1 +Guk−1

x̂k = x̌k +K(yk −Hx̌k)

= (I −KH)F x̂k−1 + (I −KH)Guk−1 +KHFxk−1 +Kvk

compared with the state space expression

xk = Fxk−1 +Guk−1 + wk−1

yk = Hxk + vk

the state estimation error is

êk = xk − x̂k = (I −KH)F êk−1 +KHGuk−1 + wk−1 −Kvk
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Stability of steady-state Kalman filter

the estimation error propagates according to a linear system, with

closed-loop dynamics (I −KH)F , driven by the input KHGuk−1

and the process wk−1 −Kvk, which is IID with zero mean and

covariance KRKT +Q

The stability of (I −KH)F is requisite for the stability of the filter.

If the DARE has a unique positive semidefinite solution, then the

steady-state Kalman filter is stable.
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A simple example in 1-dimension

The truth model is given by the following equation,

xk+1 = ϕxk + wk

yk = hxk + vk

in which wk and vk are stationary random process, with wk ∼ N (0, q)

and vk ∼ N (0, r). Assume the system is stable.

Considering the discrete time algebraic Riccati equation, we have,

p = ϕ2p− ϕph
1

h2p+ r
hpϕ+ q

By reordering, we have,

h2p2 + (r − ϕ2r − h2q)p− qr = 0 (2)
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Solving the second-order equation (2) gives the solution of steady-state

p.

Next consider two special cases.

no measurement noise: r = 0. then we have p = q and k = 1
h

and

x̂k+1 =
ϕ

h
yk

at this time, the estimate x̂k+1 depends entirely on the measurement,

and does not depend on past estimate x̂k. This is because no

measurement error exists, and the state can be estimated without the

dynamic model.
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the model is accurate: q = 0. then we have p = 0. at this time,

x̂k+1 = ϕx̂k

the estimate depends entirely on the dynamic model, which is due to

the model is precise.
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Importance of continuous-time Kalman filter

Although the vast majority of Kalman filter applications are

implemented in digital computers, there are still opportunities to

implement Kalman filters in continuous time (i.e., in analog circuits)

the derivation of the continuous-time filter is instructive from a

pedagogical point of view

steady-state continuous-time estimators can be analyzed using

conventional frequency-domain concepts, providing an advantage over

discrete-time estimators
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Continuous-time dynamic system

Suppose that we have a continuous-time system given as

ẋ = Ax +Bu+ w

y = Cx+ v

w ∼ N (0, Qc)

v ∼ N (0, Rc)
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Assume t = tk and xk = x(tk), the continuous-time system can be

approximated by the following discrete-time system:

xk = Fk−1xk−1 +Gk−1uk−1 + wk−1

yk = Hkxk + vk

Next we will derive the expression for Fk−1, Gk−1, Hk and the stochastic

properties of {wk} and {vk}.
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Recalling from the sampled-data system, the solution of x(t) when

t = tk can be computed as

x(tk) = eA(tk−tk−1)x(tk−1) +

∫ tk

tk−1

eA(tk−τ)[Bu(τ) + w(τ)]dτ

Suppose u(t) = u(tk−1), ∀t ∈ [tk−1, tk]. This is reasonable if

tk − tk−1 → 0. Further, we have

xk = eA(tk−tk−1)xk−1 +

∫ tk

tk−1

eA(tk−τ)Bdτuk−1 +

∫ tk

tk−1

eA(tk−τ)w(τ)dτ
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Suppose the sample time is T , i.e., T = tk − tk−1, Define

F = exp(AT )

G =

∫ tk

tk−1

eA(tk−τ)Bdτ

then for small T , we have

F ≈ I +AT

and

G =

∫ tk

tk−1

(I +A(tk − τ))Bdτ

≈ BT
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Define wk−1 =
∫ tk

tk−1
eA(tk−τ)w(τ)dτ , then

w̄k−1 = 0

and

E[wkw
T
j ] =

∫ tk+1

tk

∫ tj+1

tj

eA(tk+1−τ)E[w(τ)wT (t)]eAT (tj+1−t)dτdt

=

∫ tk+1

tk

∫ tj+1

tj

0dτdt ∀k 6= j

= 0, ∀k 6= j.
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The covariance of {wk} is:

E[wkw
T
k ] =

∫ tk+1

tk

∫ tk+1

tk

eA(tk+1−τ)E[w(τ)wT (t)]eAT (tk+1−t)dtdτ

=

∫ tk+1

tk

∫ tk+1

tk

eA(tk+1−τ)Qc(τ)δ(t − τ)eAT (tk+1−t)dtdτ

=

∫ tk+1

tk

eA(tk+1−t)Qc(t)e
AT (tk+1−t)dt

≈ QcT assume T is small
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The discretization of the measurement equation can be interpreted as:

yk ≈ Cxk +
1

T

∫ tk+1

tk

v(t)dt

Define vk = 1
T

∫ tk+1

tk
v(t)dt, then

v̄k = 0

and

E[vkv
T
j ] =

1

T 2

∫ tk+1

tk

∫ tj+1

tj

E[v(τ)vT (t)]dτdt

=
1

T 2

∫ tk+1

tk

∫ tj+1

tj

0dτdt

= 0
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Besides,

E[vkv
T
k ] =

1

T 2

∫ tk+1

tk

∫ tk+1

tk

E[v(t)vT (τ)]dtdτ

=
1

T 2

∫ tk+1

tk

∫ tk+1

tk

Rcδ(t− τ)dtdτ

=
1

T 2

∫ tk+1

tk

Rcdτ

=
Rc

T
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Define

H = C

we have the discretization of the continuous-time dynamic system with a

sample time T :

xk = Fxk−1 +Guk−1 + wk−1

yk = Hxk + vk

with the process noise and measurement noise as:

wk ∼ N (0, Q), Q = QcT, vk ∼ N (0, R), R = Rc/T
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The discrete-time Kalman filter gain for this system was derived as:

Kk = P̌kH
T (HP̌kH

T +R)−1

= P̌kC
T (CP̌kC

T +Rc/T )−1

then

Kk

T
= P̌kC

T (CP̌kC
TT +Rc)−1 (3)

lim
T →0

Kk

T
= P̌kC

TR−1
c (4)
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The estimation-error covariances were derived as

P̂k = (I −KkH)P̌k

P̌k+1 = FP̂kF
T +Q

For small values of T , this can be written as

P̌k+1 = (I +AT )P̂k(I +AT )T +QcT

= P̂k + (AP̂k + P̂kA
T +Qc)T +AP̂kA

TT 2

Substituting for P̂k gives

P̌k+1 = (I −KkC)P̌k +AP̂kA
TT 2+

[A(I −KkC)P̌k + (I −KkC)P̌kA
T +Qc]T
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Substracting P̌k from both sides and then dividing by T gives

P̌k+1 − P̌k

T
=

−KkCP̌k

T
+AP̂kA

TT+

(AP̌k +AKkCP̌k + P̌kA
T −KkCP̌kA

T +Qc)

Taking the limit as T → 0 and using the expression for Kk gives

Ṗ = lim
T →0

P̌k+1 − P̌k

T

= −PCTR−1
c CP +AP + PAT +Qc
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Differential Riccati equation

The equation

Ṗ = −PCTR−1
c CP +AP + PAT +Qc

is called a differential Riccati equation and can be used to compute

the estimation-error covariance for the continuous-time Kalman filter

this requires n2 integrations because P is an n× n matrix

as P is symmetric, so in practice we only need to integrate

n(n+ 1)/2 equations in order to solve for P
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The continuous-time Kalman filter equations for x̂

The discrete-time version:

x̌k = F x̂k−1 +Guk−1

x̂k = x̌k +Kk(yk −Hx̌k)

Assume that T is small, the measurement update equation can be

written as

x̂k = F x̂k−1 +Guk−1 +Kk(yk − HFx̂k−1 −HGuk−1)

≈ (I +AT )x̂k−1 +BTuk−1 +Kk(yk − C(I +AT )x̂k−1 − CBTuk−1)
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Now subtract x̂k−1 from both sides, divide by T to obtain

x̂k − x̂k−1

T
= Ax̂k−1 +Buk−1

+ P̌kC
T (CP̌kC

TT +Rc)−1(yk − C(I +AT )x̂k−1 − CBTuk−1)

Taking the limit as T → 0 gives

˙̂x = Ax̂ +Bu+ PCTR−1
c (y − Cx̂)
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The framework of the continuous-time Kalman filter

The continuous-time system dynamics and measurement equations

are given as

ẋ = Ax+Bu + w

y = Cx + v

w ∼ N (0, Qc)

v ∼ N (0, Rc)

in which w(t) and v(t) are continuous-time white noise processes
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The framework of the continuous-time Kalman filter

The continuous-time Kalman filter equations are given as

x̂(0) = E[x(0)]

P (0) = E[(x(0) − x̂(0))(x(0) − x̂(0))T ]

K = PCTR−1
c (This K is not the limit of Kk as T → 0)

˙̂x = Ax̂+Bu +K(y − Cx̂)

Ṗ = −PCTR−1
c CP +AP + PAT +Qc
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Example

Suppose the system dynamic is,

ẋ(t) = −x(t) + w(t)

y(t) = x(t) + v(t)

in which w(t) and v(t) are white noises with zero mean, and the

statistical property is as follows,

E{w(t)} = E{v(t)} = 0

E{w(t)w(τ)} = 2.5δ(t− τ)

E{v(t)v(τ)} = 2δ(t− τ)

E{w(t)v(τ)} = 0

Assume P (0) = 3, E{x(0)} = m0. Design the continuous-time Kalman

filter.
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According to the filter design principle,

K(t) = 0.5P (t)

and the derivation of P (t) is,

Ṗ (t) = −2P (t) − 0.5P 2(t) + 2.5

Denote P = P (t), then the above differential equation can be written as,

dP
dt

= −0.5(P − 1)(P + 5)

dP
P −1 − dP

P +5 = −3dt
∫ P

3

(

dP
P −1 − dP

P +5

)

=
∫ t

0 −3dt

ln(P − 1) − ln 2 − ln(P + 5) + ln 8 = −3t

P −1
P +5 = e−3t−2 ln 2

P −1
P +5 = 1

4e
−3t
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Therefore, we have,

P (t) =
1 + 5

4e
−3t

1 − 1
4e

−3t

As t −→ ∞, P (t) −→ 1.

The Kalman gain K(t) is,

K(t) =
1 + 5

4e
−3t

2
(

1 − 1
4e

−3t
)

and K(t) −→ 0.5 as t −→ ∞.

When time increases, the Kalman filter gain and error covirance reaches

a steady-state value.
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Also, if we want to directly know the steady-state covariance, just let

Ṗ (t) = 0, which gives,

−2P (t) − 0.5P 2(t) + 2.5 = 0

that is,

P (t) = 1, or P (t) = −5(is not reasonable, hence delete)

The steady-state covariance and gain is independent of the initial value

P (0).
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Example

obtain measurements of the velocity of an object that is moving in

one dimension

the object is subject to random accelerations

we want to estimate the velocity x from noisy velocity measurements

the system and measurement equations are given as

ẋ = w

y = x+ v

w ∼ N (0, Q)

v ∼ N (0, R)
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The covariance matrix is

Ṗ = −PCTR−1CP +AP + PAT +Q

= −P 2/R+Q

Integrate both sides from 0 to t yields:

∫ P (t)

P (0)

dP

Q− P 2/R
=

∫ t

0

dτ

Then we have (assume
√
Q > P/

√
R)

√
R

2
√
Q

ln

(√
Q + P/

√
R√

Q − P/
√
R

)

|P (t)
P (0) = t
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Solving the differential equation for P gives

P =
√

QR

[

P0 − √
QR+ (

√
QR+ P0) exp(2t

√

Q/R)√
QR− P0 + (

√
QR+ P0) exp(2t

√

Q/R)

]

Take the limit as t → ∞ we have

lim
t→∞

P =
√

QR
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The Kalman gain is

K = PCTR−1 = P/R

Take the limit as t → ∞ we have

lim
t→∞

K =
√

Q/R

The state estimate update expression is

˙̂x = Ax̂+Bu+K(y − Cx̂) = K(y − x̂) →
√

Q

R
(y − x̂)
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Remarks

If the process noise increases (i.e., Q increases) then K increases,

meaning that we have less confidence in our system model, and

relatively more confidence in our measurements. So we change x̂

more aggressively to be consistent with our measurements

if we have large measurement noise (i.e., R is large) then K

decreases, meaning that we have less confidence in our

measurements. So we change x̂ less aggressively to be consistent with

our measurements

if either Q or R increase then P increases. An increase in the noise in

either the system model or the measurements will degrade our

confidence in our state estimate.
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Steady-state continuous-time Kalman filter

The continuous analytical Riccati equation has a unique positive

semidefinite solution P if and only if both of the following conditions

hold.

1. (A,C) is detectable.

2. (A,G) is stabilizable (G is any matrix such that GGT = Q).

Furthermore, the corresponding steady-state Kalman filter is stable.

That is, the eigenvalues of (A−KC) have negative real parts.
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Steady-state continuous-time Kalman filter

The continuous algebraic Riccati equation has at least one positive

semidefinite solution P if (A,C) is detectable.

Furthermore, at least one such solution results in a marginally stable

steady-state Kalman filter.
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Example

We consider the following two-state system:

ẋ =





1 0

0 1



x+ w

y =





1 0

0 1



 x+ v

Q =





0 0

0 0





R =





1 0

0 1





Solve the steady-state continuous-time Kalman filter.
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The differential Riccati equation for the Kalman filter is given as

Ṗ = −PCTR−1CP +AP + PAT +Q

This can be written as the following three coupled differential equations:

ṗ11 = 2p11 − p2
11 − p2

12

ṗ12 = 2p12 − p11p12 − p12p22

ṗ22 = 2p22 − p2
12 − p2

22

The Kalman filter 6-91



Let Ṗ = 0 and calculate the steady-state value for P yields,

P =





2 0

0 2



 or P =





0 0

0 0



 or P =





c ±
√

2c− c2

±
√

2c− c2 2 − c





in which c ∈ [0, 2] is a scalar. Then we have

K = PCTR−1 = P

=





2 0

0 2



 or K =





0 0

0 0



 or K =





c ±
√

2c− c2

±
√

2c− c2 2 − c




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Hence the estimate for x is

˙̂x = (A− KC)x̂+Ky

= (−x̂+Ky) or (x̂+Ky) or





1 − c ∓
√

2c− c2

∓
√

2c− c2 c− 1



 x̂+Ky

in which only the first steady-state continuous-time Kalman filter is

stable (the eigenvalues of the first are -1, -1, of the second are 1, 1, of

the third are 1, -1). The other two filters are unstable Kalman filters.
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Correlated process and measurement noise

Suppose that we have a system given by

xk = Fk−1xk−1 +Gk−1uk−1 + wk−1

yk = Hkxk + vk

wk ∼ (0, Qk)

vk ∼ (0, Rk)

E[wkw
T
j ] = Qkδk−j

E[vkv
T
j ] = Rkδk−j

E[wkv
T
j ] = Mjδk−j+1
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An example to explain this

suppose our system is an airplane and winds are buffeting the plane

we are using an anemometer to measure wind speed as an input to

our Kalman filter

the random gusts of wind affect both the process (i.e., the airplane

dynamics) and the measurement (i.e., the sensed wind speed)

the process noise wk affects the state xk+1, while vk+1 affects the

measurement yk+1, and wk is correlated with vk+1
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update equation for the state estimate

x̌k = Fk−1x̂k−1 +Gk−1uk−1

x̂k = x̌k +Kk(yk −Hkx̌k)

The gain matrix Kk will not be the same. Define the estimation error as

ěk = xk − x̌k

êk = xk − x̂k
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update equation for the estimation error

ěk = xk − x̌k

= (Fk−1xk−1 +Gk−1uk−1 + wk−1) − (Fk−1x̂k−1 +Gk−1uk−1)

= Fk−1êk−1 + wk−1

êk = xk − [x̌k +Kk(yk −Hkx̌k)]

= ěk −Kk(Hkxk + vk − Hkx̌k)

= ěk −Kk(Hkěk + vk)

= (I −KkHk)ěk −Kkvk
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A priori and a posteriori estimation-error covariances

P̌k = E[ěk(ěk)T ]

= Fk−1P̂k−1F
T
k−1 +Qk−1

P̂k = E[êk(êk)T ]

= E{[ěk −Kk(Hk ěk + vk)][· · · ]T }
= P̌k −KkHkP̌k −KkE[vk(ěk)T ] − P̌kH

T
k K

T
k +

KkHkP̌kH
T
k K

T
k +KkE[vk(ěk)T ]HT

k K
T
k −

E(ěkv
T
k )KT

k +KkHkE(ěkv
T
k )KT

k +KkE(vkv
T
k )KT

k
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Simplify the expression for P̂k

E(ěkv
T
k ) = E[(xk − x̌k)vT

k ]

= E(xkv
T
k − x̌kv

T
k )

= E[(Fk−1xk−1 +Gk−1uk−1 + wk−1)vT
k ] − E[x̌kv

T
k ]

= 0 + 0 +Mk − 0

The last term is 0 because the a priori state estimate at time k is

independent of vk.

The Kalman filter 6-99



Simplify the expression for P̂k

Substituting the expression of E(ěkv
T
k ) into the expression for P̂k gives

P̂k = P̌k −KkHkP̌k −KkM
T
k − P̌kH

T
k K

T
k +KkHkP̌kH

T
k K

T
k +

+KkM
T
k H

T
k K

T
k −MkK

T
k +KkHkMkK

T
k +KkRkK

T
k

= (I −KkHk)P̌k(I −KkHk)T +KkRkK
T
k +

Kk(HkMk +MT
k H

T
k )KT

k −MkK
T
k −KkM

T
k
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Find the optimal Kk

We get the optimal gain matrix Kk by minimizing Tr(P̂k). Recall that

∂Tr(ABAT )

∂A
= 2AB if B is symmetric.

We can use this fact to derive

∂Tr(P̂k)
∂Kk

= −2(I −KkHk)P̌kH
T
k + 2KkRk+

2Kk(HkMk +MT
k H

T
k ) −Mk −Kk

= 2[Kk(HkP̌kH
T
k +HkMk +MT

k H
T
k +Rk) − P̌kH

T
k −Mk]

Setting the partial derivative to be zero gives the optimal gain Kk as

Kk = (P̌kH
T
k +Mk)(HkP̌kH

T
k +HkMk +MT

k H
T
k +Rk)−1
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The estimation-error covariance propagation

P̂k = (I −KkHk)P̌k(I −KkHk)T +KkRkK
T
k +

Kk(HkMk +MT
k H

T
k )KT

k −MkK
T
k −KkM

T
k

= P̌k −Kk(HkP̌k +MT
k )
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The general discrete-time Kalman filter

The system and measurement equations are given as

xk = Fk−1xk−1 +Gk−1uk−1 + wk−1

yk = Hkxk + vk

wk ∼ (0, Qk)

vk ∼ (0, Rk)

E[wkw
T
j ] = Qkδk−j

E[vkv
T
j ] = Rkδk−j

E[wkv
T
j ] = Mjδk−j+1

The Kalman filter is initialized as

x̂0 = E(x0)

P̂0 = E[(x0 − x̂0)(x0 − x̂0)T ]
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The general discrete-time Kalman filter

For each time step k = 1, 2, . . . , the Kalman filter equations are given

as

P̌k = Fk−1P̂k−1F
T
k−1 +Qk−1

Kk = (P̌kH
T
k +Mk)(HkP̌kH

T
k +HkMk +MT

k H
T
k +Rk)−1

x̌k = Fk−1x̂k−1 +Gk−1uk−1

x̂k = x̌k +Kk(yk −Hkx̌k)

P̂k = (I −KkHk)P̌k(I −KkHk)T +KkRkK
T
k +

Kk(HkMk + MT
k H

T
k )KT

k −MkK
T
k −KkM

T
k

= P̌k −Kk(HkP̌k +MT
k )
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Using the orthogonality principle

initial estimate

x̂0 = E(x0), P̂0 = E(x0 − x̂0)(x0 − x̂0)T

the a priori estimate at time k = 1

x̌1 = E(x1) = F0x̂0 +G0u0, P̌1 = F0P̂0F
T
0 +Q0

Determine the a posteriori estimate at time k = 1 (the orthogonality

principle): find x̂1 such that

E(ê1y
T
1 ) = 0
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ê1 = (I −K1H1)ě1 +K1v1

E(ê1y
T
1 ) = E[(I −K1H1)ě1 +K1v1][H1x1 + v1]T = 0

E[(I −K1H1)ě1 +K1v1][H1(x̌1 − ě1) + v1]T = 0

E(ě1v
T
1 ) = M1, E(ě1x̌

T
1 ) = 0, E(v1x̌

T
1 ) = 0

Proof through mathematical induction
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Example

Consider the following scalar system:

xk = 0.8xk−1 + wk−1

yk = xk + vk

E[wkw
T
j ] = 1 · δk−j

E[vkv
T
j ] = 0.1 · δk−j

E[wkv
T
j ] = M · δk−j+1

Standard Filter Correlated Filter

Correlation M (M=0 assumed) (correct M used)

0 0.076 0.076

0.25 0.030 0.019

-0.25 0.117 0.052
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Colored process noise

Suppose we have an LTI system given as

xk = Fxk−1 + wk−1

where the covariance of wk is equal to Qk. Further suppose that the

process noise is the output of a dynamic system:

wk = ψwk−1 + ζk−1

where ζk−1 is zero-mean white noise that is uncorrelated with wk−1.

Hence, we have

E(wkw
T
k−1) = E(ψwk−1w

T
k−1 + ζk−1w

T
k−1) = ψQk−1
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Augmenting the state

Suppose x′
k = [xT

k , w
T
k ]T , we have

[

xk

wk

]

=

[

F I

0 ψ

][

xk−1

wk−1

]

+

[

0

ζk−1

]

i.e.,

x
′
k = F

′
x

′
k−1 + w

′
k−1

This is an augmented system with a new state x′, a new system matrix F ′ and

a new process noise vector w′ whose covariance is given as follows:

E(w′
k(w′

k)T ) =

[

0 0

0 E(ζkζ
T
k )

]

= Q
′
k

computational effort increases because the state dimension has

doubled
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Colored measurement noise

Now suppose that we have colored measurement noise. The system and

measurement equations are given as

xk = Fk−1xk−1 +Gk−1uk−1 + wk−1

yk = Hkxk + vk

vk = ψk−1vk−1 + ηk−1,

wk ∼ N (0, Qk), vk ∼ N (0, Rk)

E[wkw
T
j ] = Qkδk−j

E[ηkη
T
j ] = Qηkδk−j

E[wkη
T
j ] = 0

The measurement noise is itself the output of a linear system with

E[vkv
T
k−1] = E[(ψk−1vk−1 + ηk−1)vT

k−1] = ψk−1E[vk−1v
T
k−1]
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Augmenting the state

We augment the original system model as follows:





xk

vk



 =





Fk−1 0

0 ψk−1









xk−1

vk−1



+





wk−1

ηk−1





yk =
[

Hk I
]





xk

vk



+ 0

This can be written as

x′
k = F ′

k−1x
′
k−1 + w′

k−1

yk = H ′
kx

′
k + v′

k
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The process noise and measurement noise

E[w′
kw

′
k

T
] = E









wk

ηk





(

wT
k ηT

k

)



 =





Qk 0

0 Qηk





E[v′
kv

′
k

T ] = 0

There is no measurement noise.

practically speaking, a singular measurement-noise covariance often

results in numerical problems
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Measurement differencing

Define an auxiliary signal y′
k as follows:

y′
k−1 = yk − ψk−1yk−1

Substitute for yk and yk−1 in the above definition,

y′
k−1 = Hkxk + vk − ψk−1(Hk−1xk−1 + vk−1)

= Hk(Fk−1xk−1 + wk−1) + vk − ψk−1(Hk−1xk−1 + vk−1)

= (HkFk−1 − ψk−1Hk−1)xk−1 +Hkwk−1 + vk − ψk−1vk−1

= (HkFk−1 − ψk−1Hk−1)xk−1 + (Hkwk−1 + ηk−1)

= H ′
k−1xk−1 + v′

k−1
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The equivalent system

xk = Fk−1xk−1 + wk−1

y′
k = H ′

kxk + v′
k

The covariance of the new measurement noise v′,

E[v′
kv

′
k

T
] = E[(Hk+1wk + ηk)(Hk+1wk + ηk)T ]

= Hk+1QkH
T
k+1 +Qηk

E[wkv
′
k

T
] = E[wk(Hk+1wk + ηk)T ]

= QkH
T
k+1
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Find the optimal Kk

Define the a priori and a posteriori state estimates for the equivalent

system as:

x̌k = E[xk|y1, . . . , yk]

x̂k = E[xk|y1, . . . , yk, yk+1] = x̌k +Kk(y′
k −H ′

kx̌k)

this definition is slightly different, as y′
k−1 = yk − ψk−1yk−1

Choose the gain Kk to minimize the trace of the covariance of the

estimation error:

Kk = argmin Tr E[(xk − x̂k)(xk − x̂k)T ]
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Example

Consider the linear system with colored measurement noise

xk =





0.70 −0.15

0.03 0.79



xk−1 +





0.15

0.21



wk−1

yk =





1 0

0 1



xk + vk

vk = ψvk−1 + ζk−1

E[wkw
T
j ] = 1 · δk−j

E[ζkζ
T
j ] =





0.05 0

0 0.05



 δk−j

E[wkζ
T
j ] = 0

The Kalman filter 6-116



Standard Augmented Measurement

Color ψ Filter Filter Differencing

0 0.245 0.245 0.247

0.2 0.260 0.258 0.259

0.5 0.308 0.294 0.295

0.9 0.631 0.407 0.406
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Motivation

All systems are ultimately nonlinear (Even a device as simple as a

resistor is only approximately linear, and even then only in a limited

range of operation)

Many systems are close enough to linear that linear estimation

approaches give satisfactory results

However, there is some system does not behave linearly even over a

small range of operation, and our linear approaches for estimation no

longer give good results

Then we need to explore nonlinear estimators

Some nonlinear estimation methods including nonlinear extensions of

the Kalman filter, unscented filtering, and particle filtering have

become widespread.
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The discrete-time extended Kalman filter

Suppose we have the system model

xk = fk−1(xk−1, uk−1, wk−1)

yk = hk(xk, vk)

wk ∼ N (0, Qk)

vk ∼ N (0, Rk)
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Linearization

We perform a Taylor series expansion of the state equation around

xk−1 = x̂k−1 and wk−1 = 0 to obtain the following:

xk ≈ fk−1(x̂k−1, uk−1, 0) + ∂fk−1

∂x
|(x̂k−1,0)(xk−1 − x̂k−1)

+
∂fk−1

∂w
|(x̂k−1,0)wk−1

= fk−1(x̂k−1, uk−1, 0) + Fk−1(xk−1 − x̂k−1) + Lk−1wk−1

= Fk−1xk−1 + [fk−1(x̂k−1, uk−1, 0) − Fk−1x̂k−1] + Lk−1wk−1

= Fk−1xk−1 + ũk−1 + w̃k−1

where Fk−1 = ∂fk−1

∂x
|(x̂k−1,0), Lk−1 = ∂fk−1

∂w
|(x̂k−1,0). The input is

ũk = fk(x̂k, uk, 0) − Fkx̂k. The process noise w̃k ∼ N (0, LkQkL
T
k ).
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Linearization

We linearize the measurement equation around xk = x̌k and vk = 0 to

obtain

yk ≈ hk(x̌k, 0) + ∂hk

∂x
|(x̌k,0)(xk − x̌k) + ∂hk

∂v
|(x̌k,0)vk

= Hkxk + [hk(x̌k, 0) −Hkx̌k] +Mkvk

= Hkxk + zk + ṽk

where Hk = ∂hk

∂x
|(x̌k,0) and Mk = ∂hk

∂v
|(x̌k,0). The signal zk and the

noise signal ṽk are defined as

zk = hk(x̌k, 0) −Hkx̌k

ṽk ∼ N (0,MkRkM
T
k )
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The discrete-time extended Kalman filter

1. The system and measurement equations are given as follows:

xk = fk−1(xk−1, uk−1, wk−1)

yk = hk(xk, vk)

wk ∼ N (0, Qk)

vk ∼ N (0, Rk)

2. Initialize the filter as follows:

x̂0 = E(x0)

P̂0 = E[(x0 − x̂0)(x0 − x̂0)T ]
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The discrete-time extended Kalman filter

3. For k = 1, 2, . . . , perform the following.

compute the partial derivative matrices:

Fk−1 =
∂fk−1

∂x
|(x̂k−1,0)

Lk−1 =
∂fk−1

∂w
|(x̂k−1,0)

perform the time update

P̌k = Fk−1P̂k−1F
T
k−1 + Lk−1Qk−1L

T
k−1

x̌k = fk−1(x̂k−1, uk−1, 0)

compute the partial derivative matrices:

Hk = ∂hk

∂x
|(x̌k,0)

Mk = ∂hk

∂v
|(x̌k,0)
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The discrete-time extended Kalman filter

perform the measurement update

Kk = P̌kH
T
k (HkP̌kH

T
k +MkRkM

T
k )−1

x̂k = x̌k +Kk[yk − hk(x̌k, 0)]

P̂k = (I −KkHk)P̌k
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Remark

The key to the EKF lies in the linearization of the original

nonlinear dynamic system.

if the linearization does not provide a reasonably accurate description

of the system dynamics, the state estimates may diverge.

The computation of partial derivative matrices as well as the error

covariance requires the estimates x̂k and x̌k. As a result, the EKF

can not be tested off-line; it requires real or simulated data.
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=
[

0.3585 0.4979

0.4978 1.0970

]

[

p̂1

ˆ̇p1

]

=
[

2.5

4

]

+
[

0.39

0.55

]

(0.52 − 0.49) =
[

2.51

4.02

]
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Linear parameters identification

Consider a single-input single-output discrete-time system given by the

difference equation

yk = f(yk−1, . . . , yk−na
, uk−1, . . . , uk−nb

)

Approximate it by a linear relationship

yk =

na
∑

i=1

aiy(n− i) +

nb
∑

i=1

biu(n− i) + vk

where vk is the model error term.
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State-space formulation

The linear relationship can be expressed as

xk+1 = xk

yk = ckxk + vk

where

xk = [a1, . . . , ana
, b1, . . . , bnb

]T

and

ck = [yk−1, . . . , yk−na
, uk−1, . . . , uk−nb

]
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Then we can use linear discrete-time Kalman filter to estimate xk,

which is actually the system parameters.

Recall what we have learned in recursive least squares!

Compare with system identification method you have learned.
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Nonlinear system identification

if the function f is nonlinear, an accurate model can be constructed

by using a neural network

For a simple 2 neurons neural network model

yk = c1χ1,k + c2χ2,k + vk

χj,k = act[a1jyk−1 + b1juk], j = 1, 2

where act denotes the activation function.

The equation for a feedforward NN model with q hidden nodes are

yk =

q
∑

j=1

cjχj,k + vk

χj,k = act

[

N
∑

i=1

aijyk−i +

M
∑

i=0

bijuk−i

]

, j = 1, . . . , q
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State space formulation

Define

θj = [a1j , . . . , aNj , b0j , . . . , bMj ]T c = [c1, . . . , cq]T

Denote φk as the (N +M − 1)-element vector,

φk = [yk−1, . . . , yk−N , uk, . . . , uk−M ]T ,

we have

yk =

q
∑

j=1

cjact[φT
k θj ] + vk

Let xk denote the q(N +M + 2)-element state vector defined by

xk = [θ1, . . . , θq, c
T ]T
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State space formulation

The state space formulation can be obtained,

xk+1 = xk

yk = γ(xk) + vk

where

γ(xk) =

q
∑

j=1

cjact[φT
k θj ]
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Time update (Propagation)

x̌k+1 = x̂k

P̌k+1 = P̂k
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Measurement update (Correction)

Compute the partial derivative matrices:

Hk =
∂γ

∂x
|x̌k

=
[

∂γ
∂θ1

. . . ∂γ
∂θq

∂γ
∂c

]T

|x̌k

while
∂γ

∂θj

= cj

∂act(η)

∂η
φT

k , j = 1, . . . , q, η = φT
k θj

and
∂γ

∂c
=
[

act(φT
k θ1) . . . act(φT

k θq)
]

Update the matrices

Kk = P̌kH
T
k (HkP̌kH

T
k +Rk)−1

x̂k = x̌k +Kk[yk − γ(x̌k, 0)]

P̂k = (I −KkHk)P̌k
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Comparison with what we have learned in recursive least squares

estimation?

Comparison with the dominant method for neural network training?

The Kalman filter 6-141



Insufficiency of EKF

The first-order approximation of the dynamic system, however, can

introduce large errors in the true posterior mean and covariance of

the transformed (Gaussian) random variable, which may lead to

sub-optimal performance and sometimes divergence of the filter.

the UKF approximates the probability distribution instead of the

system dynamics
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Motivation of unscented transform

In 1994 Jeffrey Uhlmann noted that the EKF takes a nonlinear

function and partial distribution information of the state of a system

but applies an approximation to the known function rather than to

the imprecisely-known probability distribution

He suggested that a better approach would be to use the exact

nonlinear function applied to an approximating probability distribution

Jeffrey Uhlmann explained that "unscented" was an arbitrary name

that he adopted to avoid it being referred to as the “Uhlmann filter".
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Idea of Unscented Transform

The unscented transformation is a method for calculating the

statistics of a random variable which undergoes a nonlinear

transformation

uses the intuition (which also applies to the particle filter) that it is

easier to approximate a probability distribution than it is to

approximate an arbitrary nonlinear function or transformation.
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Idea of Unscented Transform: A simple example

Linearization based Gaussian approximation:

Problem: Determine the mean and covariance of y:

x ∼ N (µ, σ2)

y = sin(x)

Linearization based approximation:

y = sin(µ) +
∂ sin(µ)

∂µ
(x − µ) + . . .

which gives

E(y) ≈ E(sin(µ) + cos(µ)(x − µ)) = sin(µ)

Cov(y) ≈ E[(sin(µ) + cos(µ)(x − µ) − sin(µ))2] = cos2(µ)σ2
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A simple example

Form 3 sigma points as follows:

X0 = µ,X1 = µ+ σ,X2 = µ− σ

We may now select some weights W0,W1,W2 such that the original

mean and covariance can be always recovered by

µ = W0X0 +W1X1 +W2X2

σ2 =
2
∑

i=0

Wi(Xi − µ)2

Approximating the distribution of y = sin(x) as follows:

µy =
2
∑

i=0

Wi sin(Xi)

σ2
y =

2
∑

i=0

Wi(sin(Xi) − µy)2
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A simple example

Set W0 = 0,W1 = W2 = 1
2

We get

µy ≈ sinµ cosσ, σ2
y ≈ cos2 µ sin2 σ

Compare with the first-order linearization
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Figure: Comparison of the linearized transformation and unscented

transformation.Left: µ = 1, σ = 0.1. Right: µ = 1, σ = 1.

Table: The mean and variance for the two cases

σ = 0.1 σ = 1

nonlinear linearized unscented nonlinear linearized unscented

mean 0.8312 0.8355 0.8338 0.5839 0.8499 0.4744

variance 0.0573 0.0549 0.0508 0.4712 0.4720 0.4366
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Principle of Unscented Transform

1. For vectors x ∼ N (m,P ), the generalization of standard deviation σ

is the Cholesky factor L =
√
P :

P = LLT

2. The (2n+ 1) sigma points can be formed using columns of L:

X0 = m

Xi = m+
√
n+ λLi

Xn+i = m−
√
n+ λLi

where []i denotes the i-th column of the matrix.

3. For transformation y = g(x) the approximation is:

E[g(x)] =
2n
∑

i=0

W
(m)
i g(Xi)

Cov[g(x)] =
2n
∑

i=0

W
(c)
i (g(Xi) − µy)(g(Xi) − µy)T .
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Parameter setting

λ is a scaling parameter defined as λ = α2(n+ κ) − n

α and κ determine the spread of the sigma points.

Weights W
(m)
i and W

(c)
i are given as follows:

W
(m)
0 =

λ

n+ λ
,W

(c)
0 =

λ

n+ λ
+ (1 − α2 + β)

W
(m)
i = W

(c)
i =

1

2(n+ λ)
, i = 1, . . . , 2n

β can be used for incorporating priori information on the

(non-Gaussian) distribution of x.
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Unscented transform approximation of nonlinear

augmented function

The unscented transform approximation to the joint distribution of x

and y = g(x) + q where x ∼ N (m,P ) and q ∼ N (0, Q) is





x

y



 ∼ N









m

µ



 ,





P C

CT S









The sub-matrices are formed as follows:

Form the set of (2n+ 1) sigma points as follows:

X0 = m,

Xi = m+
√
n+ λ Li,

Xn+i = m−
√
n+ λ Li, i = 1, . . . , n
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Unscented transform approximation of nonlinear

transforms

Propagate the sigma points through g(·):

Yi = g(Xi), i = 0, . . . , 2n

The sub-matrices are then given as:

µ =
2n
∑

i=0

W
(m)
i Yi

S =
2n
∑

i=0

W
(c)
i (Yi − µ)(Yi − µ)T +Q

C =
2n
∑

i=0

W
(c)
i (Xi −m)(Yi − µ)T
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Unscented Kalman Filter (UKF): Derivation

Assume that the filtering distribution of previous step is Gaussian

p(xk−1|y1:k−1) ≈ N (mk−1, Pk−1)

The joint distribution of xk−1 and xk = f(xk−1) + qk−1 can be

approximated with UT as Gaussian

p(xk−1, xk|y1:k−1) ≈ N









xk−1

xk



 |





m′
1

m′
2



 ,





P ′
11 P ′

12

(P ′
12)T P ′

22









Form the sigma points Xi of xk−1 ∼ N (mk−1, Pk−1) and compute

the transformed sigma points as X̂i = f(Xi).
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Unscented Kalman Filter (UKF): Derivation

The expected values can now be expressed as

m′
1 = mk−1

m′
2 =

∑

i

W
(m)
i X̂i

The blocks of covariance can be expressed as:

P ′
11 = Pk−1

P ′
12 =

∑

i

W
(c)
i (Xi −mk−1)(X̂i −m′

2)T

P ′
22 =

∑

i

W
(c)
i (X̂i −m′

2)(X̂i −m′
2)T +Qk−1
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Unscented Kalman Filter (UKF): Derivation

The prediction mean and covariance of xk are then m′
2 and P ′

22 and

thus we get

m̌k =
∑

i

W
(m)
i X̂i

P̌k =
∑

i

W
(c)
i (X̂i − m̌k)(X̂i − m̌k)T +Qk−1

For the joint distribution of xk and yk = h(xk) + rk we similarly get

p(xk, yk|y1:k−1) ≈ N









xk

yk



 |





m′′
1

m′′
2



 ,





P ′′
11 P ′′

12

(P ′′
12)T P ′′

22








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Unscented Kalman Filter (UKF): Derivation

If X̌i are the sigma points of xk ∼ N (m̌k, P̌k) and Ŷi = h(X̌i), we

get

m′′
1 = m̌k

m′′
2 =

∑

i

W
(m)
i Ŷi

∆
= µk

P ′′
11 = P̌k

P ′′
12 =

∑

i

W
(c)
i (X̌i − m̌k)(Ŷi −m′′

2 )T ∆
= Ck

P ′′
22 =

∑

i

W
(c)
i (Ŷi −m′′

2 )(Ŷi −m′′
2 )T +Rk

∆
= Sk
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Unscented Kalman Filter (UKF): Derivation

Recall that if




x

y



 ∼ N









a

b



 ,





A C

CT B









then

x|y ∼ N (a+ CB−1(y − b), A− CB−1CT )

Thus we get the conditional mean and covariance

m̂k = m̌k + P ′′
12(P ′′

22)−1(yk −m′′
22) = m̌k + CkS

−1
k (yk − µk)

P̂k = P̌k − P ′′
12(P ′′

22)−1(P ′′
12)T = P̌k − CkS

−1
k CT

k
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Unscented Kalman Filter (UKF)

Prediction step

Form the matrix of sigma points:

Xk−1 = [ x̂k−1 · · · x̂k−1 ] +
√
n+ λ

[

0
√

P̂k−1 −
√

P̂k−1

]

Propagate the sigma points through the dynamic model:

X̂k,i = f(Xk−1,i), i = 0, 1, . . . , 2n

Compute the predicted mean and covariance

x̌k =
∑

i

W
(m)
i X̂k,i

P̌k =
∑

i

W
(c)
i (X̂k,i − x̌k)(X̂k,i − x̌k)T +Qk−1
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Unscented Kalman Filter (UKF)

Update step

Form the matrix of sigma points:

X̌k = [ x̌k · · · x̌k ] +
√
n+ λ[ 0

√

P̌k −
√

P̌k ]

Propagate the sigma points through the measurement model:

Ŷk,i = h(X̌k,i), i = 0, 1, . . . , 2n

Compute the following terms:

µk =

∑

i

W
(m)
i

Ŷk,i, Sk =

∑

i

W
(c)
i

(Ŷk,i − µk)(Ŷk,i − µk)T + Rk

Ck =

∑

i

W
(c)
i

(X̌k,i − x̌k)(Ŷk,i − µk)

Compute the filter gain Kk and the filtered state mean mk and

covariance P̂k, conditional to the measurement yk:

Kk = CkS
−1
k

, x̂k = x̌k + Kk(yk − µk)

P̂k = P̌k − KkSkKT
k
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UKF: Short example solution

Prediction

n = 2, choose λ = 1

√

P̂0 =





0.1 0

0 1





choose 5 sigma points

x̂
(0)
0 = x̂0, x̂

(i)
0 = x̂0 +

√
3[
√

P̂0]i, i = 1, 2

x̂
(i+2)
0 = x̂0 −

√
3[
√

P̂0]i, i = 1, 2

x̂
(0)
0 = [0, 5]T , x̂

(1)
0 = [0.2, 5]T , x̂

(2)
0 = [0, 6.7]T , x̂

(3)
0 = [−0.2, 5]T , x̂

(4)
0 =

[0, 3.3]T
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UKF: Short example solution

Prediction

x̌
(i)
1 = f0(x̂

(i)
0 , u0, 0), i = 0, 1, . . . , 4

x̌
(0)
1 = [2.5, 4]T , x̌

(1)
1 = [2.7, 4]T , x̌

(2)
1 = [3.4, 5.7]T , x̌

(3)
1 =

[2.3, 4]T , x̌
(4)
1 = [1.6, 2.3]T

W
(m)
0 = W

(c)
0 = 1/3,W

(m)
i = W

(c)
i = 1/6, i = 1, . . . , 4

x̌1 =
4
∑

i=0

Wix̌
(i)
1 = [2.5, 4]T

P̌k =
4
∑

i=0

Wi(x̌
i
k − x̌k)(x̌i

k − x̌k)T +Qk−1 =





0.36 0.5

0.5 1.1




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UKF: Short example solution

Correction

√

P̌1 =





0.51 0

0.98 0.20





choose 5 sigma points

x̌
(0)
1 = x̌1, x̌

(i)
1 = x̌1 +

√
3[
√

P̌1]i, i = 1, 2

x̌
(i+2)
1 = x̌1 −

√
3[
√

P̌1]i, i = 1, 2

x̌
(0)
1 = [2.5, 4]T , x̌

(1)
1 = [3.54, 5.44]T , x̌

(2)
1 = [2.5, 5.10]T , x̌

(3)
1 =

[1.46, 2.56]T , x̌
(4)
1 = [2.5, 2.90]T

the output ŷ
(i)
1 = h1(x̌

(i)
1 , 0), i = 0, . . . , 2n

ŷ
(0)
1 = 28.1, ŷ

(1)
1 = 28.7, ŷ

(2)
1 = 28.1, ŷ

(3)
1 = 27.4, ŷ

(4)
1 = 28.1
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UKF: Short example solution

Correction

µ1 =
2n
∑

i=0

W
(m)
i ŷ

(i)
1 = 28.1

S1 =
2n
∑

i=0

W
(c)
i (ŷ

(i)
k − µk)(ŷ

(i)
k − µk)T +Rk = 0.16

C1 =
2n
∑

i=0

W
(i)
c (x̌

(i)
k − x̌k)(ŷ

(i)
k − µk)T = [0.23, 0.32]T

K1 = C1S
−1
1 = [1.47, 2.05]T

x̂1 = x̌1 +K1(y1 − µ1) = [5.33, 7.93]T

P̂1 = P̌1 −K1S1K
T
1 =





0.0143 0.0178

0.0178 0.4276




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Comparison of EKF and UKF

Local approximation vs larger area approximation

Require differentiability of F and h vs not require

Closed form derivatives or expectations vs no such forms are needed

First order approximation of the nonlinear dynamics vs captures

higher order moments of distribution
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Disadvantages of UKF

Not a truly global approximation, based on a small set of trial points.

Does not work well with nearly singular covariances, i.e., with nearly

deterministic systems.

Requires more computations than EKF, e.g., Cholesky factorizations

on every step.

Can only be applied to models driven by Gaussian noises
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Introduction of particle filter

In a linear system with Gaussian noise, the Kalman filter is optimal.

In a system that is nonlinear, the Kalman filter can be used for state

estimation, but the particle filter may give better results at the

price of additional computational effort.

In a system that has non-Gaussian noise, the Kalman filter is the

optimal linear filter, but again the particle filter may perform

better.

The UKF provides a balance between the low computational effort

of the Kalman filter and the high performance of the particle filter.
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An illustration
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Introduction of particle filter

The particle filter has some similarities with the UKF in that it transforms

a set of points via known nonlinear equations and combines the results to

estimate the mean and covariance of the state.

However, in the particle filter the points are chosen randomly, whereas in

the UKF the points are chosen on the basis of a specific algorithm

(unscented transform).

the number of points used in a particle filter generally needs to be much

greater than the number of points in a UKF.

the estimation error in a UKF does not converge to zero in any sense, but

the estimation error in a particle filter does converge to zero as the

number of particles (and hence the computational effort) approaches

infinity
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Particle filtering methods–Sequential importance

sampling algorithm

The sequential importance sampling (SIS) algorithm is a Monte Carlo

(MC) method that forms the basis for most sequential MC filters

developed over the past decades.

Let {x
i
0:k, ω

i
k} denote a random measure that characterizes the

posterior pdf p(x0:k|y1:k), where {x
i
0:k, i = 0, . . . , Ns} is a set of

support points with associated weights {wi
k, i = 1, . . . , Ns} and

x0:k = {xj, j = 0, . . . , k} is the set of all states up to time k. The

posterior density at time k can be approximated as

p(x0:k|y1:k) ≈
Ns
∑

i=1

ωi
kδ(x0:k − x

i
0:k),

in which
∑Ns

i=1 ω
i
k = 1 and δ is the Kronecker delta function.
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Sequential importance sampling algorithm

The weights ωi
k are chosen using the principle of importance

sampling.

Suppose p(x) ∝ π(x) is a probability density from which it is difficult to

draw samples but for which π(x) can be evaluated.

Let xi ∼ q(x), i = 1, . . . , Ns be samples that are easily generated from a

proposal q(·) called an importance density.

A weighted approximation to the density p(·) is given by

p(x) ≈
Ns
∑

i=1

ωiδ(x− xi)

where ωi ∝ π(xi)
q(xi) is the normalized weight of the i-th particle.
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Weights calculation

If the samples x
i
0:k were drawn from an importance density

q(x0:k|z1:k), then the weights becomes

ωi
k ∝ p(xi

0:k|z1:k)

q(xi
0:k|z1:k)

.

From ωi
k−1 to ωi

k (p(xi
0:k−1|z1:k−1)—>p(xi

0:k|z1:k))

Suppose the importance density is chosen as

q(x0:k|z1:k) = q(xk|x0:k−1, z1:k)q(x0:k−1|z1:k−1)
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Weights update

Express p(x0:k|z1:k) in terms of p(x0:k−1|z1:k−1), p(zk|xk), and

p(x|xk−1), i.e.,

p(x0:k|z1:k) =
p(zk|x0:k,z1:k−1)p(x0:k|z1:k−1)

p(zk|z1:k−1)

=
p(zk|x0:k,z1:k−1)p(xk|x0:k−1z1:k−1)

p(zk|z1:k−1)
· p(x0:k−1|z1:k−1

)

=
p(zk|xk)p(xk|xk−1)

p(zk|z1:k−1)
· p(x0:k−1|z1:k−1)

∝ p(zk|xk)p(xk|xk−1)p(x0:k−1|z1:k−1)

According to the expression for q(x0:k|z1:k), we have

ωi
k ∝ p(zk|xi

k
)p(x

i
k

|xi
k−1

)p(x
i
0:k−1

|z1:k−1)

q(x
i
k

|xi
0:k−1

,z1:k)q(x
i
0:k−1

|z1:k−1)

= ωi
k−1

p(zk|xi
k

)p(x
i
k

|xi
k−1

)

q(x
i
k

|xi
0:k−1

,z1:k)

Furthermore, if q(xk|x0:k−1, z1:k) = q(xk|xk−1, zk), then we have

ωi
k ∝ ωi

k−1

p(zk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

k−1, zk)
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SIS particle filter

Algorithm: SIS particle filter [{x
i
k, ω

i
k}Ns

i=1] = SIS[{x
i
k−1, ω

i
k−1}Ns

i=1, zk]

For i = 1 : Ns

Draw x
i
k ∼ q(xk|xi

k−1, zk)

Assign the particle a weight ωi
k according to

ω
i
k ∝ ω

i
k−1

p(zk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

k−1, zk)

Approximate the posterior as

p(xk|z1:k) ≈
Ns
∑

i=1

ω
i
kδ(xk − x

i
k).

End For
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Degeneracy problem existed in particle filter

After a few iterations, all but one particle will have negligible weight.

the brute force approach: use a very large Ns

good choice of importance density

Resampling
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Other related particle filters

sampling importance resampling (SIR) filter

auxiliary sampling importance resampling (ASIR) filter

regularized particle filter (RPF)
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