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Problem 1

Consider the system defined by the following equations:

ẋ1 =
2
3

x2

ẋ2 = − x1 + x2(1 − 3x2
1 − 2x2

2)

(a) Show that the points defined by (i) x = (0, 0) and (ii) 1 − (3x2
1 + 2x2

2) = 0 are invariant sets.

(b) Study the stability of the origin and the invariant set 1 − (3x2
1 + 2x2

2) = 0, respectively, using LaSalle’s
Invariant Theorem.

Theorem (LaSalle)
For autonomous system

ẋ = f (x) (1)

where f : D → Rn is a continuous and differentiable function, D ⊂ Rn is a field containing the origin. Suppose that

Ω ⊂ D is a compact positive invariant set;

V : D → R is a continuous and differentiable function, and V̇(x) ≤ 0, ∀x ∈ Ω;

E = {x ∈ Ω : V̇(x) = 0};

M is the largest invariant set in E.

Then every solution starting in Ω approaches M as t → ∞.
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Problem 1 (a)

Consider the system defined by the following equations:

ẋ1 =
2
3

x2

ẋ2 = − x1 + x2(1 − 3x2
1 − 2x2

2)

(a) Show that the points defined by (i) x = (0, 0) and (ii) 1 − (3x2
1 + 2x2

2) = 0 are invariant sets.

Solution: For (i), x = (0, 0) implies that the system equation becomes

ẋ1 = 0

ẋ2 = 0

Hence, if we have x(0) = 0, t = t0, then ∀t ≥ t0, x(t) ≡ 0. Therefore, x = (0, 0) is an invariant set.
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Problem 1 (a) (Cont.)

Consider the system defined by the following equations:

ẋ1 =
2
3

x2

ẋ2 = − x1 + x2(1 − 3x2
1 − 2x2

2)

(a) Show that the points defined by (i) x = (0, 0) and (ii) 1 − (3x2
1 + 2x2

2) = 0 are invariant sets.

Solution: For (ii), the system equation becomes

ẋ1 =
2
3

x2

ẋ2 = − x1

Consider function f (x1, x2) = 3x2
1 + 2x2

2, we have

ḟ = 6x1ẋ1 + 4x2ẋ2 = 0

integrating both sides yields
f (x1, x2) = 3x2

1 + 2x2
2 ≡ 1,∀t ≥ t0

which implies that any trajectory starting at (x1, x2) that satisfies 1 − (3x2
1 + 2x2

2) = 0 stays on this
trajectory function. Therefore, 1 − (3x2

1 + 2x2
2) = 0 is an invariant set.
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Problem 1 (b)

Consider the system defined by the following equations:

ẋ1 =
2
3

x2

ẋ2 = − x1 + x2(1 − 3x2
1 − 2x2

2)

(b) Study the stability of the origin and the invariant set 1 − (3x2
1 + 2x2

2) = 0, respectively, using LaSalle’s
Invariant Theorem.

Solution: For the origin, consider V(x) = 3
4 x2

1 +
1
2 x2

2. Its derivative along the trajectory is

V̇(x) =
3
2

x1ẋ1 + x2ẋ2

= x1x2 + x2(−x1 + x2(1 − 3x2
1 − 2x2

2))

= x2
2(1 − 3x2

1 − 2x2
2)

which is positive definite in the neighborhood of origin. Therefore, the origin is not stable.
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Problem 1 (b) (Cont.)

Consider the system defined by the following equations:

ẋ1 =
2
3

x2

ẋ2 = − x1 + x2(1 − 3x2
1 − 2x2

2)

(b) Study the stability of the origin and the invariant set 1 − (3x2
1 + 2x2

2) = 0, respectively, using LaSalle’s
Invariant Theorem.

Solution: For the invariant set S = {(x1, x2)|3x2
1 + 2x2

2 = 1}, consider V(x) = 1
8 (1 − 3x2

1 − 2x2
2)

2. Its
derivative along the trajectory is

V̇(x) =
1
4
(3x2

1 + 2x2
2 − 1)(6x1ẋ1 + 4x2ẋ2)

=
1
4
(3x2

1 + 2x2
2 − 1)(−4x2

2(3x2
1 + 2x2

2 − 1))

= −x2
2(3x2

1 + 2x2
2 − 1)2 ≤ 0

Note
V evaluates the “distance” from the limit cycle. Note that V need not to be positive definite.
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Problem 1 (b) (Cont.)

Consider the system defined by the following equations:

ẋ1 =
2
3

x2

ẋ2 = − x1 + x2(1 − 3x2
1 − 2x2

2)

(b) Study the stability of the origin and the invariant set 1 − (3x2
1 + 2x2

2) = 0, respectively, using LaSalle’s
Invariant Theorem.

Solution:

V(x) =
1
8
(1 − 3x2

1 − 2x2
2)

2, V̇(x) = −x2
2(3x2

1 + 2x2
2 − 1)2 ≤ 0

Consider ΩC = {x ∈ R2|V(x) ≤ c}. We know from the derivative above that it’s an invariant set.
Then consider E = {x ∈ ΩC|V̇ = 0}, We have E = S ∪ {x ∈ ΩC|x2 = 0}.
Define M as the largest invariant set in E, i.e. M = S ∪ (0, 0).
Choose c ∈ (0, 1

8 ), ΩC includes the ellipse but not the origin. Then LaSalle’s Theorem shows that every
motion initiating in ΩC converges to the limit cycle, and therefore S is stable.

Note
Choose c = 1

8 − ε, where ε > 0 is an arbitrarily small number, we can show that states initiating in any neighborhood of
the origin will not approach the origin, which also implies that the origin is not stable.
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Problem 2
It is known that a given dynamical system with the state x = (x1, x2) has an equilibrium point at the origin.
For this system, a function V(·) have been proposed, and its derivative V̇(·) has been computed. Assuming
that V(·) and V̇(·) are given below you are asked to classify the origin, in each case, as (a) stable, (b) locally
uniformly asymptotically stable, and/or (c) globally uniformly asymptotically stable. Explain you answer in
each case.

(i) V(x, t) = x2
1 + x2

2, V̇(x, t) = −x2
1.

(ii) V(x, t) = x2
1 + x2

2, V̇(x, t) = −(x2
1 + x2

2)e
−t .

(iii) V(x, t) = x2
1 + x2

2, V̇(x, t) = −(x2
1 + x2

2)e
t .

(iv) V(x, t) = (x2
1 + x2

2)e
t , V̇(x, t) = −(x2

1 + x2
2)(1 + sin2 t).

(v) V(x, t) = (x2
1 + x2

2)e
−t , V̇(x, t) = −(x2

1 + x2
2).

(vi) V(x, t) = (x2
1 + x2

2)(1 + e−t), V̇(x, t) = −x2
1e−t .

(vii) V(x, t) = (x2
1 + x2

2)(1 + cos2 t), V̇(x, t) = −(x2
1 + x2

2)e
−t .

(viii) V(x, t) = (x2
1 + x2

2)(1 + cos2 t), V̇(x, t) = −(x2
1 + x2

2)(1 + e−t).
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Problem 2

(i) V(x, t) = x2
1 + x2

2, V̇(x, t) = −x2
1.

Solution: Let W1(x) = x2
1 + x2

2 and W2(x) = 2x2
1 + 2x2

2, we have

W1(x) = V(x, t) ≤ W2(x), V̇(x, t) ≤ 0.

Thus, V is positive definite and decrescent, and V̇ is negative semidefinite.
If x1 = 0, x2 ̸= 0, then V̇ = 0, while any positive definite function has a positive value. Hence, we
cannot find a proper positive definite function W3(x) such that V̇(x, t) ≤ −W3(x).
Therefore, the origin is (uniformly) stable.

(ii) V(x, t) = x2
1 + x2

2, V̇(x, t) = −(x2
1 + x2

2)e
−t .

Solution: Let W1(x) = x2
1 + x2

2 and W2(x) = 2x2
1 + 2x2

2. Analogous to (i), V is positive definite and
decrescent, and V̇ is negative semidefinite.
Note that V̇(x, t) can become arbitrarily small when t is sufficiently large. Hence we cannot find a
proper positive definite function W3(x) such that V̇(x, t) ≤ −W3(x).
Therefore, the origin is (uniformly) stable.

(iii) V(x, t) = x2
1 + x2

2, V̇(x, t) = −(x2
1 + x2

2)e
t .

Solution: Let W1(x) = x2
1 + x2

2, W2(x) = 2x2
1 + 2x2

2, and W3(x) = x2
1 + x2

2, we have

W1(x) = V(x, t) ≤ W2(x), V̇(x, t) ≤ −W3(x).

Additionally, W1(x) is radially unbounded. Therefore, the origin is globally uniformly asymptotically
stable.
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Problem 2

(iv) V(x, t) = (x2
1 + x2

2)e
t , V̇(x, t) = −(x2

1 + x2
2)(1 + sin2 t).

Solution: Choose W1(x) = x2
1 + x2

2, We see that V(x, t) ≥ W1(x), which implies that V is positive
definite. Choose W3(x) = x2

1 + x2
2, we also have V̇(x, t) ≤ −W3(x), which implies that V̇ is negative

definite. However, V is not decrescent since as t → ∞, V(x, t) → ∞.
We then consider the function

V′(x, t) = V(x, t)e−t = x2
1 + x2

2

Thus we have W1(x) ≜ x2
1 + x2

2 = V′(x, t) ≤ 2(x2
1 + x2

2) ≜ W2(x). And the derivative should be

V̇′(x, t) = V̇(x, t)e−t − V(x, t)e−t

= −(x2
1 + x2

2)(1 + sin2 t)e−t − (x2
1 + x2

2)

≤ −(x2
1 + x2

2) ≜ −W3(x).

With W1(x) radially unbounded, we conclude that the origin is globally uniformly asymptotically
stable.

Note
The Lyapunov stability theorem is only sufficient!
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Problem 2

(v) V(x, t) = (x2
1 + x2

2)e
−t , V̇(x, t) = −(x2

1 + x2
2).

Solution: We cannot find a positive definite function W1(x) such that V(x, t) ≥ W1(x), which shows
V(x, t) is positive definite.
Consider a new Lyapunov function V′(x, t) = V(x, t)et = x2

1 + x2
2. Analogous to (iv), it’s positive

definite and decrescent, and its derivative should be

V̇′(x, t) = V̇(x, t)et + V(x, t)et

= (x2
1 + x2

2)(1 − et) ≤ 0

Therefore, the origin is uniformly stable.

Note
The Lyapunov stability theorem is only sufficient!

(vi) V(x, t) = (x2
1 + x2

2)(1 + e−t), V̇(x, t) = −x2
1e−t .

Solution: Let W1(x) = x2
1 + x2

2 and W2(x) = 2x2
1 + 2x2

2, and then we have

W1(x) ≤ V(x, t) ≤ W2(x), V̇(x, t) ≤ 0.

Analogous to (i), we cannot find a proper positive definite function W3(x) such that V̇(x, t) ≤ −W3(x).
Therefore, the origin is (uniformly) stable.
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Problem 2

(vii) V(x, t) = (x2
1 + x2

2)(1 + cos2 t), V̇(x, t) = −(x2
1 + x2

2)e
−t .

Let W1(x) = x2
1 + x2

2 and W2(x) = 2x2
1 + 2x2

2, and then we have

W1(x) ≤ V(x, t) ≤ W2(x), V̇(x, t) ≤ 0.

Analogous to (ii), we cannot find a proper positive definite function W3(x) such that
V̇(x, t) ≤ −W3(x). Therefore, the origin is (uniformly) stable.

(viii) V(x, t) = (x2
1 + x2

2)(1 + cos2 t), V̇(x, t) = −(x2
1 + x2

2)(1 + e−t).
Let W1(x) = x2

1 + x2
2, W2(x) = 2x2

1 + 2x2
2, W3(x) = x2

1 + x2
2 and then we have

W1(x) ≤ V(x, t) ≤ W2(x), V̇(x, t) ≤ −W3(x).

With W1(x) radially unbounded, we conclude that the origin is globally uniformly asymptotically
stable.
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Problem 3

A pendulum with time-varying friction is represented by

ẋ1 = x2,

ẋ2 = − sin x1 − g(t)x2.

Suppose that g(t) is continuously differentiable and satisfies

0 < a < α ≤ g(t) ≤ β < ∞ and ġ(t) ≤ γ < 2

for all t ≥ 0. Consider the Lyapunov function candidate

V(t, x) =
1
2
(a sin x1 + x2)

2 + [1 + ag(t)− a2](1 − cos x1)

(a) Show that V(t, x) is positive definite and decrescent.

(b) Show that

V̇ ≤ −(α− a)x2
2 − a(2 − γ)(1 − cos x1) + O(∥x∥3),

where O(∥x∥3) is a term bounded by k∥x∥3 in some neighborhood of the origin.

(c) Show that the origin is uniformly asymptotically stable.
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Problem 3 (a)

A pendulum with time-varying friction is represented by

ẋ1 = x2,

ẋ2 = − sin x1 − g(t)x2.

Suppose that g(t) is continuously differentiable and satisfies

0 < a < α ≤ g(t) ≤ β < ∞ and ġ(t) ≤ γ < 2

for all t ≥ 0. Consider the Lyapunov function candidate

V(t, x) =
1
2
(a sin x1 + x2)

2 + [1 + ag(t)− a2](1 − cos x1)

(a) Show that V(t, x) is positive definite and decrescent.

Proof:

V(t, x) >
1
2
(a sin x1 + x2)

2 + 2 sin2 x1

2
[1 + a2 − a2]

=
1
2
(a sin x1 + x2)

2 + 2 sin2 x1

2
= W1(x)

Let D = {(x1, x2)|x1 ∈ [−π, π], x2 ∈ R}, then W1(x) ≥ 0, and x1 = x2 = 0 ⇐⇒ W1(x) = 0. Therefore,
W1(x) is positive definite and V(t, x) is positive definite.
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Problem 3 (a) (Cont.)

A pendulum with time-varying friction is represented by

ẋ1 = x2,

ẋ2 = − sin x1 − g(t)x2.

Suppose that g(t) is continuously differentiable and satisfies

0 < a < α ≤ g(t) ≤ β < ∞ and ġ(t) ≤ γ < 2

for all t ≥ 0. Consider the Lyapunov function candidate

V(t, x) =
1
2
(a sin x1 + x2)

2 + [1 + ag(t)− a2](1 − cos x1)

(a) Show that V(t, x) is positive definite and decrescent.

Proof:

V(t, x) ≤
1
2
(a sin x1 + x2)

2 + (1 + aβ − a2)(1 − cos x1) = W2(x)

Since 1 + aβ − a2 > 0, W2(x) ≥ 0; and we have x1 = x2 = 0 ⇐⇒ W2(x) = 0. Hence, W2(x) is positive
definite. Thus V(t, x) is decrescent.
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Problem 3 (b)

(b) Show that

V̇ ≤ −(α− a)x2
2 − a(2 − γ)(1 − cos x1) + O(∥x∥3),

where O(∥x∥3) is a term bounded by k∥x∥3 in some neighborhood of the origin.

Proof:

V̇(t, x) =
∂V
∂t

+
∂V
∂x

f (t, x)

V(t, x) =
1

2
(a sin x1 + x2)

2
+ [1 + ag(t) − a2

](1 − cos x1)

= aġ(t)(1 − cos x1) + [(a sin x1 + x2)(a cos x1) + (1 + ag(t)− a2) sin x1]ẋ1 + (a sin x1 + x2)ẋ2

ẋ1 = x2, ẋ2 = − sin x1 − g(t)x2

= aġ(t)(1 − cos x1) + [(a sin x1 + x2)(a cos x1) + (1 + ag(t)− a2) sin x1]x2

+ (a sin x1 + x2)(− sin x1 − g(t)x2)

= aġ(t)(1 − cos x1) + (a sin x1 + x2)(a cos x1)x2 +���x2 sin x1 +(((((ag(t)x2 sin x1 − a2x2 sin x1

− a sin2 x1 −(((((ag(t)x2 sin x1 −���x2 sin x1 − g(t)x2
2

= aġ(t)(1 − cos x1) + a2x2 sin x1 cos x1 + ax2
2 cos x1 − a2x2 sin x1 − a sin2 x1 − g(t)x2

2
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Problem 3 (b) (Cont.)

(b) Show that

V̇ ≤ −(α− a)x2
2 − a(2 − γ)(1 − cos x1) + O(∥x∥3),

where O(∥x∥3) is a term bounded by k∥x∥3 in some neighborhood of the origin.

Proof:

V̇(t, x) = aġ(t)(1 − cos x1) + a2x2 sin x1 cos x1 + ax2
2 cos x1 − a2x2 sin x1 − a sin2 x1 − g(t)x2

2

= (a cos x1 − g(t))x2
2 + aġ(t)(1 − cos x1) + a2x2 sin x1(cos x1 − 1)− a(1 − cos2 x1)

= −(g(t)− a cos x1)x2
2 − a(2 − ġ(t))(1 − cos x1) + a2x2 sin x1(cos x1 − 1)

− a(−2 + 1 + cos x1)(1 − cos x1)

0 < a < α ≤ g(t) ≤ β < ∞ and ġ(t) ≤ γ < 2

≤ −(α− a)x2
2 − a(2 − γ)(1 − cos x1) + a2x2 sin x1(cos x1 − 1) + a(1 − cos x1)

2

cos x1 = 1 −
1

2
x2
1 + O(∥x∥4

), sin x1 = x1 + O(∥x∥3
)

= −(α− a)x2
2 − a(2 − γ)(1 − cos x1) + a2x2(O(∥x1∥))(O(∥x1∥2)) + a(O(∥x1∥2))2

= −(α− a)x2
2 − a(2 − γ)(1 − cos x1) + O(∥x∥3)
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Problem 3 (c)

(c) Show that the origin is uniformly asymptotically stable.

Proof:

V̇ ≤ −(α− a)x2
2 − a(2 − γ)(1 − cos x1) + O(∥x∥3)

≤ −(α− a)x2
2 − a(2 − γ)

(
1
2

x2
1 + O(∥x∥4)

)
+ O(∥x∥3)

= −(α− a)x2
2 −

a(2 − γ)

2
x2

1 + O(∥x∥3)

Let k = min{α− a, a(2−γ)
2 }, and we have

V̇ ≤ −k∥x∥2 + O(∥x∥3) = −∥x∥2
(

k −
O(∥x∥3)

∥x∥2

)
Define W3(x) = ∥x∥2

(
k − O(∥x∥3)

∥x∥2

)
. Since O(∥x∥3)

∥x∥2 → 0 as ∥x∥ → 0, we have

∀ε > 0, ∃δ > 0, s.t. ∥x∥ ≤ δ,

∥∥∥∥O(∥x∥3)

∥x∥2

∥∥∥∥ ≤ ε

Choose ε = 1
2 k, then W3(x) is positive definite in the neighborhood corresponding to this ε.

From (a), V(t, x) is positive definite and decresent. Therefore, the origin is (locally) uniformly
asymptotically stable.
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Problem 4

We denote by |x| the absolute value of x if x is scalar and the euclidean norm of x is x is a vector. For
functions of time, the L2 norm is given by

∥x∥p =

(∫ ∞

0
|x(τ)|pdτ

) 1
p
,

for p ∈ [1,∞], while

∥x∥∞ = sup
t≥0

|x(t)|.

We say that x ∈ Lp when ∥x∥p < ∞.

(a) Write down the Barbalat’s lemma, the Lyapunov-like lemma, and the Lashalle-Yoshizawa theorem.

(b) Use Barbalat’s lemma to prove the Lyapunov-like lemma, Lashalle-Yoshizawa theorem, and the
following corollary.
Corollary: If x ∈ L2

⋂
L∞ and ẋ ∈ L∞, then lim

t→∞
x(t) = 0.
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Problem 4 (Cont.)
Barbalat’s lemma and Lyapunov-like lemma

Lemma (Barbalat)
If a differentiable function f (t) has a finite limit as t → ∞, and if ḟ (t) is uniformly continuous, then lim

t→∞
ḟ (t) = 0.

Lemma (Lyapunov-like)
If a scalar function V(t, x) satisfies the following conditions:

V(t, x) is lower bounded,

V̇(t, x) is negative semi-definite,

V̇(t, x) is uniformly continuous,

then lim
t→∞

V̇(t, x) = 0.

Proof of Lyapunov-like lemma:
From the first two conditions of V(t, x), we know that V(t, x) is non-increasing and bounded below. Hence,
it converges to some finite value V∞ as t → ∞, i.e., lim

t→∞
V(t, x) = V0.

With the third condition, by Barbalat’s lemma, we have lim
t→∞

V̇(t, x) = 0.
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Problem 4 (Cont.)
LaSalle-Yoshizawa Theorem

Theorem (LaSalle-Yoshizawa)
Let x = 0 be an equilibrium point of ẋ = f (t, x) and suppose that f (t, x) is piecewise continuous in t and locally Lipschitz
in x and uniformly in t. Let V(t, x) be a continuously differentiable function such that ∀t ≥ 0, x ∈ Rn

α1(∥x∥) ≤ V(t, x) ≤ α2(∥x∥)

V̇ =
∂V
∂t

+
∂V
∂x

f (t, x) ≤ −W(x) ≤ 0

where α1(·) and α2(·) are class K∞ functions and W(x) is a continuous function. Then the solutions of ẋ = f (t, x) satisfy

lim
t→∞

W(x(t)) = 0

In addition, if W(x) is positive definite, x = 0 is globally uniformly asymptotically stable.

Basic idea:
Barbalat’s lemma f has finite limit ḟ is uniformly continuous =⇒ ḟ → 0

⇕ ⇕
LaSalle-Yoshizawa Theorem

∫ t
0 W(x(τ))dτ has finite limit W is uniformly continuous w.r.t. t =⇒ W(x(t)) → 0

⇑ ⇑∫ t
0 W(x(τ))dτ W is uniformly continuous w.r.t. x

is non-decreasing and upper bounded x is uniformly continuous w.r.t. t
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Problem 4 (Cont.)
LaSalle-Yoshizawa Theorem

Basic idea:
Barbalat’s lemma f has finite limit ḟ is uniformly continuous =⇒ ḟ → 0

⇕ ⇕
LaSalle-Yoshizawa Theorem

∫ t
0 W(x(τ))dτ has finite limit W is uniformly continuous w.r.t. t =⇒ W(x(t)) → 0

⇑ ⇑∫ t
0 W(x(τ))dτ W is uniformly continuous w.r.t. x

is non-decreasing and upper bounded x is uniformly continuous w.r.t. t

Since V̇ ≤ −W(x) ≤ 0, integrating both sides yields V(t)− V(0) ≤ −
∫ t

0 W(x(τ))dτ , i.e.,∫ t

0
W(x(τ))dτ ≤ V(0, x)− V(t, x) ≤ V(0, x).

This implies
∫ t

0 W(x(τ))dτ has an upper bound.
Besides, W(x) ≥ 0, which means

∫ t
0 W(x(τ))dτ is non-decreasing.

Thus,
∫ t

0 W(x(τ))dτ has a finite limit.
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Problem 4 (Cont.)
LaSalle-Yoshizawa Theorem

Basic idea:
Barbalat’s lemma f has finite limit ḟ is uniformly continuous =⇒ ḟ → 0

⇕ ⇕
LaSalle-Yoshizawa Theorem

∫ t
0 W(x(τ))dτ has finite limit W is uniformly continuous w.r.t. t =⇒ W(x(t)) → 0

⇑ ⇑∫ t
0 W(x(τ))dτ W is uniformly continuous w.r.t. x

is non-decreasing and upper bounded x is uniformly continuous w.r.t. t

Since V̇ ≤ 0, and α1(∥x∥) ≤ V(t, x) ≤ α2(∥x∥), then we have

α1(∥x∥) ≤ V(t, x) ≤ V(0, x),

where α1(∥x∥) belongs to class K∞, i.e., α1(∥x∥) is strictly increasing. Thus, we have

∥x(t)∥ ≤ α−1
1 (V(0, x(0))) ≜ R.

Therefore, the domain of W(x) is bounded and closed, i.e., the domain is a compact set. From the fact that
every continuous function on a compact set is uniformly continuous, W(x) is uniformly continuous in x on
∥x(t)∥ ≤ R.
Notice that f (t, x) is locally Lipschitz in x and uniformly in t, then we have, ∀t2 > t1,

∥x(t2)− x(t1)∥ =

∥∥∥∥∥
∫ t2

t1
f (τ, x(τ)) dτ

∥∥∥∥∥ ≤ LR

∫ t2

t1
∥x(τ)∥ dτ ≤ LRR|t2 − t1|,

this implies x(t) is uniformly continuous in t. Since W(x) is uniformly continuous in x, thus, W(x(t)) is
uniformly continuous in t. From Barbalat’s lemma, we have lim

t→∞
W(x(t)) = 0.
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Problem 4 (Cont.)
Corollary

Corollary
If x ∈ L2

⋂
L∞ and ẋ ∈ L∞, then lim

t→∞
x(t) = 0.

Basic idea: (The idea presented below is used for an extended version of the corollary above: If
x ∈ L2

⋂
L∞ and ẋ ∈ L∞, then lim

t→∞
x(t) = 0.)

Barbalat’s lemma f has finite limit ḟ is uniformly continuous =⇒ ḟ → 0
⇕ ⇕

Corollary
∫ t

0 |x(τ)|pdτ has finite limit xp is uniformly continuous in t =⇒ xp → 0 =⇒ x → 0
⇑ ⇑

x ∈ Lp
dxp
dt = pxp−1 ẋ is bounded ⇐ x, ẋ ∈ L∞

The proof can be immediately constructed from the guidance above.
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Problem 5

Consider the following multi-dimensional system

ẋ = Ax + B(u +ΘTΦ(x))

where x ∈ Rn is the state, A ∈ Rn×n, B ∈ Rn×m are known matrices, u ∈ Rm is the control input,
Φ(x) ∈ Rk is a bounded function, and Θ ∈ Rk×m is an unknown constant matrix. Assume that (A,B) is
controllable.

(a) Design an adaptive control law to stabilize the system.

(b) Design an adaptive control law with adaptive σ-modification to stabilize the system.
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Problem 5 (a)

ẋ = Ax + B(u +ΘTΦ(x))

(a) Design an adaptive control law to stabilize the system.

Solution:
If Θ is known, we can design the following control law:

u = Kx −ΘTΦ(x)

where K ∈ Rn×m, then the system dynamic is as follow:

ẋ = Ax + B(u +ΘTΦ(x)) = (A + BK)x

Let A + BK ≜ A∗, we can find a proper K to make A∗ Hurwitz, since (A,B) is controllable.
Since Θ is unknown, we modify the control law as follow:

u = Kx − Θ̂TΦ(x)

Then the system dynamic is as follow:

ẋ = Ax + B(u +ΘTΦ(x)) = (A + BK)x + B(ΘTΦ(x)− Θ̂TΦ(x)),
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Problem 5 (a) (Cont.)
Define Θ̃ ≜ Θ̂−Θ, then the system can be written as

ẋ = A∗x − BΘ̃TΦ(x).

Consider the following Lyapunov function candidate

V = xTPx + tr(Θ̃TΓ−1Θ̃)

where Γ ∈ Rk×k,P ∈ Rn×n are positive definite and symmetric, and P satisfies

PA∗ + A∗TP = −Q

where Q ∈ Rn×n is positive definite.
The derivative of V is shown below:

V̇ = ẋTPx + xTPẋ + 2tr(Θ̃TΓ−1Θ̂)

= (A∗x − BΘ̃TΦ(x))TPx + xTP(A∗x − BΘ̃TΦ(x)) + 2tr(Θ̃TΓ−1 ˙̂
Θ)

= xTA∗TPx − ΦT(x)Θ̃BTPx + xTPA∗x − xTPBΘ̃TΦ(x) + 2tr(Θ̃TΓ−1 ˙̂
Θ)

= −xTQx − 2tr(Θ̃TΦ(x)xTPB) + 2tr(Θ̃TΓ−1 ˙̂
Θ)

= −xTQx + 2tr(Θ̃T(Γ−1 ˙̂
Θ− Φ(x)xTPB))
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Problem 5 (a) (Cont.)
where the fourth equality follows from

ΦT(x)Θ̃BTPx = tr(ΦT(x)Θ̃BTPx) [scalar]

= tr(xTPBΘ̃TΦ(x)) = xTPBΘ̃TΦ(x) [tr(AT) = tr(A), scalar]

= tr(Θ̃TΦ(x)xTPB) [tr(AB) = tr(BA)]

Let ˙̂
Θ = ΓΦ(x)xTPB, then we have

V̇ = −xTQx ≤ 0,

which implies ∀t > 0, V(t) ≤ V(0), i.e., x, Θ̃ ∈ L∞. From LaSalle-Yoshizawa Theorem, lim
t→∞

xTQx = 0,
i.e., lim

t→∞
x(t) = 0.

Oliver Wu Homework Solutions December 22, 2024 34 / 36



Problem 5 (b)

(b) Design an adaptive control law with adaptive σ-modification to stabilize the system.

Solution: Consider the adaptive control law with adaptive σ-modification:
˙̂
Θ = Γ(Φ(x)xTPB − Σ(Θ̂− Θ̂1)),

˙̂
Θ1 = ∆(Θ̂− Θ̂1),

where Σ and ∆ are constant positive definite matrices, Θ̂1 is the estimation of Θ̂.
Define Θ̃1 = Θ̂1 −Θ. Consider the following Lyapunov function candidate

V = xTPx + tr(Θ̃TΓ−1Θ̃) + tr(Θ̃T
1Σ∆−1Θ̃1).

Then its derivative is

V̇ = ẋTPx + xTPẋ + 2tr(Θ̃TΓ−1 ˙̂
Θ) + 2tr(Θ̃T

1Σ∆−1 ˙̂
Θ1)

= −xTQx + 2tr(Θ̃T(Γ−1 ˙̂
Θ− Φ(x)xTPB)) + 2tr(Θ̃T

1Σ∆−1 ˙̂
Θ1)

= −xTQx − 2tr(Θ̃TΣ(Θ̂− Θ̂1)) + 2tr(Θ̃T
1Σ(Θ̂− Θ̂1))

= −xTQx − 2tr((Θ̃− Θ̃1)
TΣ(Θ̂− Θ̂1))

= −xTQx − 2tr((Θ̃− Θ̃1)
TΣ(Θ̃− Θ̃1)) ≤ 0,

which implies ∀t > 0, V(t) ≤ V(0), i.e., x, Θ̃, Θ̃1 ∈ L∞. Thus tr((Θ̃− Θ̃1)
TΣ(Θ̃− Θ̃1)) is bounded.

From LaSalle-Yoshizawa Theorem, lim
t→∞

xTQx = 0, i.e., lim
t→∞

x(t) = 0.
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