答题内容写在边线外视为无效

哈尔滨工业大学深圳研究生院

2016 年 春 季学期期末考试试卷

HIT Shenzhen Graduate School Examination Paper

Course Name: 自适应控制 Lecturer: 梅 杰

Question	One	Two	Three	Four	Five	Six	Seven	Eight	Nine	Ten	Total
Mark											

- 1. (20 points) Answer the following questions:
 - (a) What are the definitions of indirect and direct adaptive control?
 - (b) What are the four methods for robust adaptive control mentioned in our class?
- 2. (20 points) Consider the first-order plant

$$\dot{x} = -ax + b[u + \theta_1\phi_1(x)] - \theta_2\phi_2(x),$$

where a, b, θ_1 and θ_2 are unknown constants with b > 0, while $\phi_1(x)$ and $\phi_2(x)$ are Lipschitz-continuous in x.

Design u, such that all signals in the closed-loop system are bounded and x tracks the state x_{ref} of the following reference model given by

$$\dot{x}_{ref} = a_{ref} x_{ref} + b_{ref} u_c(t),$$

where $a_{ref} < 0$ and b_{ref} are known, $u_c(t)$ is the input command which is bounded and piecewise continuous.

3. (30 points) Consider a linear system with nonlinear matched uncertainties in the form

$$\dot{x} = Ax + B\Lambda[u + \Theta^T\Phi(x)] + \varepsilon(t),$$

where $x \in \mathbb{R}^{n \times n}$ is the state, $u \in \mathbb{R}^m$ is the control input, $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $\Lambda^{m \times m}$, $\Theta \in \mathbb{R}^{N \times m}$ are constant matrices, and $\varepsilon(t) \in \mathbb{R}^n$ is the disturbance. Assume that the pair $(A, B\Lambda)$ is controllable. $\Phi(x) = (\phi_1(x), \dots \phi_n(x))^T \in \mathbb{R}^N$ denotes the known regressor vector, whose components $\phi_i(x)$ are assumed to be Lipschitz-continuous in x.

(a) Assume that $\varepsilon(t)=0$, B is known, while A and Λ are unknown. In addition, it is assumed that Λ is diagonal with m nonzero diagonal elements $\lambda_1, \lambda_2, \ldots, \lambda_m$, and the signs of all λ_i are known. Design and analyze a directed MRAC scheme that can stabilize the system and regulate x towards zero.

(b) Assume that $\|\varepsilon(t)\| \leq \varepsilon_f$, $\forall t > 0$, where $\varepsilon_f > 0$, and A, B, Λ are all known, while Λ is a positive diagonal matrix. Design a σ -modification robust control algorithm that can stabilize the system and regulate x towards the neighborhood of zero.

(*Hint*: For positive definite matrixes P and Γ , we have

$$\begin{split} &\lambda_{\min}(P)x^Tx \leq x^TPx \leq \lambda_{\max}(P)x^Tx, \\ &x^TP\varepsilon(t) \leq \lambda_{\max}(P)\|x\|\|\varepsilon(t)\| \\ &\frac{1}{\lambda_{\max}(\Gamma)}\mathrm{tr}(\widetilde{\Theta}\widetilde{\Theta}^T) \leq \mathrm{tr}(\widetilde{\Theta}\Gamma^{-1}\widetilde{\Theta}^T) \leq \frac{1}{\lambda_{\min}(\Gamma)}\mathrm{tr}(\widetilde{\Theta}\widetilde{\Theta}^T), \\ &2\mathrm{tr}(\Theta\widetilde{\Theta}^T) \leq \mathrm{tr}(\Theta\Theta^T) + \mathrm{tr}(\widetilde{\Theta}\widetilde{\Theta}^T), \end{split}$$

where $\lambda_{\min}(\cdot)$ and $\lambda_{\min}(\cdot)$ denote, respectively, the minimum and maximum eigenvalues of a positive definite matrix.

4. (30 points) We denote by ||x|| the absolute value of x if x is a scalar and the Euclidean norm of x if x is a vector. For functions of time, the L_p norm is given by

$$||x||_p = \left(\int_0^\infty ||x(\tau)||^p d\tau\right)^{\frac{1}{p}},$$

for $p \in [1, \infty)$, while

$$||x||_{\infty} = \sup_{t \ge 0} ||x(t)||.$$

We say that $x \in \mathbb{L}_p$ when $||x||_p < \infty$.

(a) Write down Barbalat's lemma and use it to prove the following corollary.

Corollary 0.1 If $x \in \mathbb{L}_2 \cap \mathbb{L}_\infty$ and $\dot{x} \in \mathbb{L}_\infty$, then $\lim_{t \to \infty} x(t) = 0$.

(b) Consider the following first-order system

$$\dot{x} = u + d_1(t) + d_2(t)x + d_3(t)x^2,$$

where $d_1(t), d_2(t)$, and $d_3(t)$ are time-varying continuous functions satisfying

$$\max_{t>0} \{ \|d_1(t)\|, \|d_2(t)\|, \|d_3(t)\| \} \le d_{\max},$$

for some unknown positive constant d_{max} . Design a control algorithm combing the adaptive and sliding control to stabilize the system and regulate x towards to zero. (Use the corollary in (a) to prove the result.)