
Final Examination-Standard Solutions

May 11, 2016

1. (20 points) Answer the following questions:

(a) What are the definitions of indirect and direct adaptive control?

(b) What are the four methods for robust adaptive control mentioned in our
class?

Solutions:

(a) In indirect adaptive control, the plant parameters are estimated online
and are used to calculate the controller parameters. In direct adap-
tive control, the plant model is parameterized in terms of the desired
controller parameters, which are then estimated directly without inter-
mediate calculations involving plant parameter estimates.

(b) The four methods for robust adaptive control include dead-zone modi-
fication, σ-modification, e-modification, and projection-based design.

2. (20 points) Consider the first-order plant

ẋ = −ax+ b[u+ θ1φ1(x)]− θ2φ2(x),

where a, b, θ1 and θ2 are unknown constants with b > 0, while φ1(x) and
φ2(x) are Lipschitz-continuous in x.

Design u, such that all signals in the closed-loop system are bounded and x
tracks the state xref of the following reference model given by

ẋref = arefxref + brefuc(t),

where aref < 0 and bref are known, uc(t) is the input command which is
bounded and piecewise continuous.

Solutions:

The plant can be written as

ẋ = −ax+ b[u+ θ1φ1(x)− θ2
b
φ2(x)]. (1)
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We then propose the following control algorithm

u = k̂1(t)x+ k̂2(t)uc(t)− θ̂1(t)φ1(x) + θ̂2(t)φ2(x), (2)

where θ̂1(t) and θ̂2(t) are estimates of θ1 and θ2
b , respectively.

By assuming that k̂1 and k̂2 are constants and by ignoring the terms associ-
ated with θ1 and θ2, we can get the following matching condition

k∗1 =
aref + a

b
, k∗2 =

bref
b
. (3)

Using (2), (1) can be written as

ẋ = arefx+ brefuc − arefx− brefuc − ax+ bk̂1x+ bk̂2uc

− bθ̃1φ1(x) + bθ̃2φ2(x)

= arefx+ brefuc + bk̃1x+ bk̃2uc − bθ̃1φ1(x) + bθ̃2φ2(x), (4)

where θ̃1
4
= θ̂1 − θ1, θ̃2

4
= θ̂2 − θ2/b, k̃1 = k̂1 − k1, and k̃2 = k̂2 − k2.

Define the tracking error

e = x− xref . (5)

Then the error dynamics is given by

ė = arefe+ bk̃1x+ bk̃2uc − bθ̃1φ1(x) + bθ̃2φ2(x). (6)

Note that b > 0. Consider the following Lyapunov function candidate

V =
1

2
e2 +

b

2γ1
k̃21 +

b

2γ2
k̃22 +

b

2γ3
θ̃21 +

b

2γ4
θ̃22. (7)

where γi, i = 1, . . . , 4, are positive constants. Its time derivative along (6)
is given by

V̇ =eė+
b

γ1
k̃1

˙̃
k1 +

b

γ2
k̃2

˙̃
k2 +

b

γ3
θ̃1

˙̃
θ1 +

b

γ4
θ̃2

˙̃
θ2

= arefe
2 + bk̃1xe+ bk̃2uce− bθ̃1φ1(x)e+ bθ̃2φ2(x)e

+
b

γ1
k̃1

˙̃
k1 +

b

γ2
k̃2

˙̃
k2 +

b

γ3
θ̃1

˙̃
θ1 +

b

γ4
θ̃2

˙̃
θ2

= arefe
2 +

b

γ1
k̃1(

˙̃
k1 + γ1xe) +

b

γ2
k̃2(

˙̃
k2 + γ2uce)

+
b

γ3
θ̃1(

˙̃
θ1 − γ3φ1(x)e) +

b

γ4
θ̃2(

˙̃
θ2 + γ4φ2(x)e). (8)
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We propose the following adaptive updating laws

˙̃
k1 =− γ1xe, (9)
˙̃
k2 =− γ2uce, (10)
˙̃
θ1 = γ3φ1(x)e, (11)
˙̃
θ2 =− γ4φ2(x)e. (12)

We then get from (8) that

V̇ = arefe
2 ≤ 0, (13)

which implies that V (t) ≤ V (0), ∀t ≥ 0, and consequently, e, k̃1, k̃2, θ̃1, θ̃2 ∈
L∞. Since aref < 0 and uc ∈ L∞, we have xref ∈ L∞. Thus x ∈ L∞
and thus φ1(x) and φ2(x) are bounded since they are Lipschitz continuous
in x. We can then get from (2) that u ∈ L∞ and get from (6) that ė ∈ L∞.
Overall, all signals in the system are bounded.

On the other hand, note that V̈ = 2arefeė ∈ L∞. We can get from Bar-
balat’s Lemma that limt→∞ V̇ (t) = 0, i.e., limt→∞ e(t) = 0.

3. (30 points) Consider a linear system with nonlinear matched uncertainties in
the form

ẋ = Ax+BΛ[u+ ΘTΦ(x)] + ε(t),

where x ∈ Rn×n is the state, u ∈ Rm is the control input, A ∈ Rn×n,
B ∈ Rn×m, Λm×m, Θ ∈ RN×m are constant matrices, and ε(t) ∈ Rn
is the disturbance. Assume that the pair (A,BΛ) is controllable. Φ(x) =
(φ1(x), . . . φn(x))T ∈ RN denotes the known regressor vector, whose com-
ponents φi(x) are assumed to be Lipschitz-continuous in x.

(a) Assume that ε(t) = 0, B is known, while A and Λ are unknown. In
addition, it is assumed that Λ is diagonal with m nonzero diagonal
elements λ1, λ2, . . . , λm, and the signs of all λi are known. Design
and analyze a directed MRAC scheme that can stabilize the system and
regulate x towards zero.

(b) Assume that ‖ε(t)‖ ≤ εf , ∀t > 0, where εf > 0, and A, B, Λ are all
known, while Λ is a positive diagonal matrix. Design a σ-modification
robust control algorithm that can stabilize the system and regulate x
towards the neighborhood of zero.

Solutions:

3



(a) Note that the pair (A,BΛ) is controllable, there exists a matrix K∗

such that A + BΛK∗ is Hurwitz. Since the control objective is to
regulate x towards zero, the reference model can be designed as

ẋref = Arefxref , (14)

where Aref
4
= A+BΛK∗ is Hurwitz.

We propose the following control algorithm

u = K̂(t)x− Θ̂TΦ(x), (15)

where Θ̂ is the estimate of Θ.
Using (15), we obtain

ẋ = Arefx−Arefx+Ax+BΛK̂(t)x−BΛΘ̃TΦ(x)

= Arefx+BΛK̃(t)x−BΛΘ̃TΦ(x), (16)

where Θ̃
4
= Θ̂−Θ and K̃

4
= K̂ −K∗.

Since Aref is Hurwitz, there exists a P > 0 such that

PAref +ATrefP = −Q < 0.

We then consider the following Lyapunov function candidate

V = xTPx+ tr(K̃T |Λ|K̃Γ−11 ) + tr(Θ̃|Λ|Θ̃TΓ−12 ) (17)

where Γ1 and Γ2 are positive definite constant matrixes, and

|Λ| 4= Λsgn(Λ) = Λ

 sgn(λ1)
. . .

sgn(λm)

 .

Its time derivative along (16) is given by

V̇ =− xTQx+ 2tr(K̃TΛBTPxxT )− 2tr(Θ̃ΛBTPxΦT )

+ 2tr(K̃T |Λ| ˙̃
KΓ−11 ) + 2tr(Θ̃|Λ| ˙̃Θ

T

Γ−12 ) (18)

We then choose the adaptive updating laws as

˙̂
K =− sgn(Λ)BTPxxTΓ1, (19)
˙̂
Θ =Γ2Φ(x)xTPBsgn(Λ). (20)

As a result, we have

V̇ = −xTQx ≤ 0, (21)
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which implies that V (t) ≤ V (0), ∀t ≥ 0, and consequently, x, K̃, Θ̃ ∈
L∞. We can get that Φ(x) ∈ L∞ since it is Lipschitz continuous in x.
We can then get from (15) that u ∈ L∞ and get from (16) that ẋ ∈ L∞.
Overall, all signals in the system are bounded.
On the other hand, note that V̈ = −2xTQẋ ∈ L∞. We can get from
Barbalat’s Lemma that limt→∞ V̇ (t) = 0, i.e., limt→∞ x(t) = 0.

(b) Since A, B, Γ are all known, we propose the following control algo-
rithm

u = K∗x− Θ̂TΦ(x), (22)

where Θ̂ is the estimate of Θ.
Using (22), we then obtain

ẋ = Arefx−Arefx+Ax+BΛK∗x−BΛΘ̃TΦ(x) + ε(t)

= Arefx−BΛΘ̃TΦ(x) + ε(t). (23)

Motivated by the results in (a), we proposing the following the adaptive
updating laws with σ-modification

˙̂
Θ =[Φ(x)xTPBΛ− σΘ̂]Γ, (24)

where σ is a positive constant.
We then consider the following Lyapunov function candidate

V = xTPx+ tr(Θ̃Γ−1Θ̃T ) (25)

where Γ is positive definite constant matrix.
Its time derivative along (23) is given by

V̇ =− xTQx− 2tr(ΦxTPBΛΘ̃T ) + 2xTPε(t)

+ 2tr( ˙̃
ΘΓ−1Θ̃T )

= − xTQx− 2σtr(Θ̂Θ̃T ) + 2xTPε(t). (26)

Note that

−2tr(Θ̂Θ̃T ) = − 2tr((Θ + Θ̃)Θ̃T )

= − 2tr(ΘΘ̃T )− 2tr(Θ̃Θ̃T )

≤ tr(ΘΘT ) + tr(Θ̃Θ̃T )− 2tr(Θ̃Θ̃T )

=− tr(Θ̃Θ̃T ) + tr(ΘΘT ),

and

2xTPε(t) ≤ 2λmax(P )‖x‖‖ε(t)‖

≤ λmin(Q)

2
xTx+

2λ2max(P )ε2f
λmin(Q)
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Therefore, we have

V̇ ≤ − λmin(Q)

2
xTx− σtr(Θ̃Θ̃T ) + σtr(ΘΘT ) +

2λ2max(P )ε2f
λmin(Q)

≤− βV + C, (27)

where

β
4
= min

{
λmin(Q)

2λmin(P )
, σλmin(Γ)

}
,

C
4
= σtr(ΘΘT ) +

2λ2max(P )ε2f
λmin(Q)

.

We then have

V (t) ≤ e−βtV (0) + C(1− e−βt). (28)

Clearly, V(t) is bounded and thus x, Θ̃ ∈ L∞.

4. (30 points) We denote by ‖x‖ the absolute value of x if x is a scalar and the
Euclidean norm of x if x is a vector. For functions of time, the Lp norm is
given by

‖x‖p =

(∫ ∞
0
‖x(τ)‖pdτ

) 1
p

,

for p ∈ [1,∞), while

‖x‖∞ = sup
t≥0
‖x(t)‖.

We say that x ∈ Lp when ‖x‖p <∞.

(a) Write down Barbalat’s lemma and use it to prove the following corol-
lary.

Corollary 0.1 If x ∈ L2
⋂

L∞ and ẋ ∈ L∞, then limt→∞ x(t) = 0.

(b) Consider the following first-order system

ẋ = u+ d1(t) + d2(t)x+ d3(t)x
2,

where d1(t), d2(t), and d3(t) are time-varying continuous functions
satisfying

max
t≥0
{‖d1(t)‖, ‖d2(t)‖, ‖d3(t)‖} ≤ dmax,

for some unknown positive constant dmax. Design a control algorithm
combing the adaptive and sliding control to stabilize the system and
regulate x towards to zero. (Use the corollary in (a) to prove the result.)
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Solutions:

(a) Barbalat’s Lemma: If the differentiable function f(t) has a finite limit
as t→∞, and if ḟ is uniformly continuous, then limt→∞ ḟ(t) = 0.
Proof of Corollary 0.1:
Define

f(t) =

∫ t

0
‖x(τ)‖2dτ

It follows from the fact x ∈ L2 that f(t) has a finite limit and from the
fact x, ẋ ∈ L∞ that ḟ is uniformly continuous. We can then get from
Barbalat’s Lemma that limt→∞ ḟ(t) = 0.

(b) Define d(t) = maxt≥0{d1(t), d2(t), d3(t)} and φ(x) = 1 + x + x2.
We have

ẋ = u+ d(t)φ(x).

Clearly, ‖d(t)‖ ≤ dmax. We propose the following control algorithm

u =− kx− d̂(t)sgn(x)‖φ(x)‖,
˙̂
d(t) =γ‖x‖‖φ(x)‖,

where γ is a positive constant.
Consider the following Lyapunov function candidate

V =
1

2
x2 +

1

2γ
(d̂(t)− dmax)2. (29)

Its derivative can be written as

V̇ = xẋ+
1

γ
(d̂(t)− dmax)

˙̂
d(t)

= − kx2 − d̂(t)‖x‖‖φ(x)‖+ d(t)xφ(x) + (d̂(t)− dmax)‖x‖‖φ(x)‖
≤ − kx2 ≤ 0.

Therefore, we can get that x ∈ L2
⋂
L∞ and ẋ ∈ L∞, then limt→∞ x(t) =

0.
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