Final Examination-Standard Solutions

May 11, 2016

1. (20 points) Answer the following questions:

(a) What are the definitions of indirect and direct adaptive control?
(b) What are the four methods for robust adaptive control mentioned in our
class?

Solutions:

(a) In indirect adaptive control, the plant parameters are estimated online
and are used to calculate the controller parameters. In direct adap-
tive control, the plant model is parameterized in terms of the desired
controller parameters, which are then estimated directly without inter-
mediate calculations involving plant parameter estimates.

(b) The four methods for robust adaptive control include dead-zone modi-

fication, o-modification, e-modification, and projection-based design.

2. (20 points) Consider the first-order plant
&= —azr + blu + 01¢1(x)] — O2¢2(x),

where a, b, 6, and 6 are unknown constants with b > 0, while ¢;(x) and
¢2(x) are Lipschitz-continuous in x.

Design u, such that all signals in the closed-loop system are bounded and x
tracks the state x,. s of the following reference model given by

iref = QrefTref + brefuc<t)7

where a,.y < 0 and b,y are known, u.(t) is the input command which is
bounded and piecewise continuous.

Solutions:

The plant can be written as

T = —a$+b[u+91¢1(x) - %2(;52(1‘)] (1)



We then propose the following control algorithm
u = k1 (t)a + ka(t)uc(t) — 01(t)pr () + Oa(t)p2(w), (2

where 01 (t) and 0y(t) are estimates of 0, and %2, respectively.

By assuming that 12:1 and 12:2 are constants and by ignoring the terms associ-
ated with 01 and 02, we can get the following matching condition

Qref +a x bref
el gy e 3

ki =

Using (2), (1) can be written as

T = QrefT + brepic — QrefT — breptie — ax + bl%lx + bl%guc
— bO161(x) + bO2¢a(x)
= Qres® + brefuc + bk + blgue — b1y (z) + bhaga(z),  (4)

where 51 é él — 91, ég é ég — 92/b, ];1 = ]%1 — kl, and ];72 = ];72 — ]{72.
Define the tracking error

€ =T — Tpef. 5)
Then the error dynamics is given by

e = Qrefé + biﬁl‘ + b];,‘zuc — b9~1¢1 (1’) + bégqf)g (ZL') (6)

Note that b > 0. Consider the following Lyapunov function candidate
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where v;, i = 1,...,4, are positive constants. Its time derivative along (6)
is given by
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We propose the following adaptive updating laws

k1 = — e, ©)

Ry = — Yuce, (10)

b1 = a1 ()e, (11)

b2 = — vaga(x)e. (12)
We then get from (8) that

V = ayepe’ <0, (13)

which implies that V (t) < V(0), ¥t > 0, and consequently, e, ky, ko, 01, 03 €
Leo. Since arer < 0 and ue € Lo, we have Tyop € Loo. Thus x € Lo
and thus ¢1(x) and ¢2(x) are bounded since they are Lipschitz continuous
in x. We can then get from (2) that u € Lo, and get from (6) that é € L.
Overall, all signals in the system are bounded.

On the other hand, note that V. = 2a,cpe€ € Loo. We can get from Bar-

balat’s Lemma that lim;_,, V (t) = 0, i.e., lim;_,o e(t) = 0.

. (30 points) Consider a linear system with nonlinear matched uncertainties in
the form

i = Az + BA[u+ 0Td(z)] + (1),

where © € R™ " is the state, v € R™ is the control input, A € R"*",
B € R™m™m, Am*m @ ¢ RNX™ are constant matrices, and £(t) € R"
is the disturbance. Assume that the pair (A, BA) is controllable. ®(z) =
(1(2), ... ¢n(x))T € RY denotes the known regressor vector, whose com-
ponents ¢;(x) are assumed to be Lipschitz-continuous in z.

(a) Assume that £(t) = 0, B is known, while A and A are unknown. In
addition, it is assumed that A is diagonal with m nonzero diagonal
elements Aq, Ag, ..., A\, and the signs of all \; are known. Design
and analyze a directed MRAC scheme that can stabilize the system and
regulate x towards zero.

(b) Assume that ||e(t)|| < ey, Vt > 0, where 7 > 0, and A, B, A are all
known, while A is a positive diagonal matrix. Design a o-modification
robust control algorithm that can stabilize the system and regulate x
towards the neighborhood of zero.

Solutions:



(a) Note that the pair (A, BA) is controllable, there exists a matrix K*
such that A + BAK™ is Hurwitz. Since the control objective is to
regulate x towards zero, the reference model can be designed as

j;ref = Arefxrefv (14)

where A,.cr = A+ BAK™ is Hurwitz.
We propose the following control algorithm

u=K(t)z—0Td(z), (15)

where O is the estimate of ©.

Using (15), we obtain
& = Avest — Aresr + Az + BAK (t)z — BAOT & ()
= Ayesr + BAK (t)z — BAOT®(z), (16)
where® 20 —Qand K 2 K — K*.
Since A,y is Hurwitz, there exists a P > 0 such that
PAes+ Al ;P =-Q<0.
We then consider the following Lyapunov function candidate
V =2" Pz + or(KT|AKTTY + (O]A|O7TSY)  (17)
where I'1 and Iy are positive definite constant matrixes, and
sgn(A1)
IA| £ Asgn(A) = A
591(Am)
Its time derivative along (16) is given by
V =—2"Qx + 2tr(KTABT Pza™) — 2tr(OABT Pz®")
+2r(RT|AKTY) + 20(BIA[D T3 (18)
We then choose the adaptive updating laws as
K = — sgn(A) BT PaaT, (19)
&) =Ty ®(x)zT PBsgn(A). (20)
As a result, we have

V=—2"TQz <0, (21)



(b)

which implies that V (t) < V(0), Vt > 0, and consequently, z, KK, © €
Loo. We can get that ®(x) € Lo since it is Lipschitz continuous in .
We can then get from (15) that u € L and get from (16) that x € L.
Overall, all signals in the system are bounded.

On the other hand, note that V- = —227Q# € Loo. We can get from

Barbalat’s Lemma that lim;_,o, V (t) = 0, i.e., limy_,o () = 0.

Since A, B, T" are all known, we propose the following control algo-
rithm

u=K*z—0Td(z), (22)

where © is the estimate of ©.
Using (22), we then obtain

&= Apest — Apesr + Az + BAK*z — BAOT®(z) + ¢(t)
= Apepr — BAOT®(z) + £(t). (23)

Motivated by the results in (a), we proposing the following the adaptive
updating laws with o-modification

6 =[®(2)2" PBA — 0T, (24)

where o is a positive constant.
We then consider the following Lyapunov function candidate

V = 2" Pz + w(Or1e7) (25)

where T is positive definite constant matrix.
Its time derivative along (23) is given by

V =—2"Qx — 2tr(®2" PBAOT) + 227 Pe(t)
+ 2tr((f)F71C:)T)
= —27Qx — 20tr(0O7) + 227 Pe(t). (26)
Note that
—2r(©07) = — 21r((© + ©)O7)
= —2tr(007) — 2tr(067)
< 1r(©07) 4+ r(067) — 20/(067)
=—1r(007") + (06",
and
22" Pe(t) < 2Amax(P)|z[|le(®)
< Anin(@) r -, 2o (P)e

xr x4+

o 2 )\min (Q)




Therefore, we have

y Amin (@) T ool T 2)‘12113X(P)6?”
V< - —— oyt r —otr(00Y) + otr(00° ) 4+ ————~
5 (007) (007) oo ()
<=V +C, 227
where
A . )\min(Q) )
B = min {2)\min(P) , aAmln(T)} ,
202 (P)e?
A T max f
C=0otr(00") +
( ) )\min(Q)
We then have
V(t) < e PV(0)+C(1 —e P, (28)

Clearly, V(t) is bounded and thus z, Oc Leo.

4. (30 points) We denote by ||z|| the absolute value of z if x is a scalar and the
Euclidean norm of x if x is a vector. For functions of time, the L, norm is

given by
o 1
P
lall, = ( / meupdf) ,

[2]|oc = sup [lz(2)]|-
>0

for p € [1, 00), while

We say that = € L, when ||z, < occ.

(a) Write down Barbalat’s lemma and use it to prove the following corol-
lary.
Corollary 0.1 Ifz € Lo\ Lo and & € Lo, then limy_, o x(t) = 0.

(b) Consider the following first-order system
T =u-+ dl(t) + dz(t)l‘ + d3(t){L‘2,

where d;(t),da(t), and d3(t) are time-varying continuous functions
satisfying

max{||dy (1)]], [ld2(®)[], | ds (D)} < dmax,

for some unknown positive constant dpax. Design a control algorithm
combing the adaptive and sliding control to stabilize the system and
regulate = towards to zero. (Use the corollary in (a) to prove the result.)



Solutions:

(a) Barbalat’s Lemma: If the differentiable function f(t) has a finite limit
as t — oo, and if f is uniformly continuous, then lim;_,~ f(t) = 0.

Proof of Corollary 0.1:
Define

£(t) = /0 (7 2

It follows from the fact x € L that f(t) has a finite limit and from the
fact x, & € Lo that f is uniformly continuous. We can then get from
Barbalat’s Lemma that limy_,, f(t) = 0.

(b) Define d(t) = max;>o{d1(t),da(t),ds(t)} and ¢(x) = 1 + z + 22
We have

& =u+dt)p(z).

d(t)|| < dmax- We propose the following control algorithm

Clearly,

' u=—kx — d(t)sgn(z)||o(x)|,
d(t) =)z ||| ()],

where 7y is a positive constant.
Consider the following Lyapunov function candidate

RN N 2
V= 21' + 27 (d(t) dmaz) . (29)

Its derivative can be written as
. . 1 4 X
V =xz+ ;(d(t) — dpaz)d(t)

— ka? — d(t)||z|[[|¢(x)]| + d(t)x(x) + (d(t) = dma) 2] [ 6 ()]
< —kz? <.

Therefore, we can get that x € Ly (Lo and & € L, then limy_, o 2(t) =
0.



