
(Fall Semester of 2024) Final Examination of
Nonlinear and Adaptive Control

January 2, 2025

P.S.: This paper was memorized and typeset after the examination ended, and
there’s no cheating behaviour during the examination.

1. (10 points) Please write down the main content of this course.

2. (15 points) Consider the system defined by the following equations:

ẋ1 = 2x2

ẋ2 = − 3x1 + x2(1− 3x21 − 2x22)

(a) Show that the points defined by (i) x = (0, 0) and (ii) 1−(3x21+2x22) =
0 are invariant sets.

(b) Using the linearization at x = (0, 0) to study the stability of the origin.

(c) Study the stability of the origin and the invariant set 1− (3x21+2x22) =
0, respectively, using LaSalle’s Invariant Theorem.

3. (15 points) Euler equations for a rotating rigid spacecraft are given by

J1ω̇1 = (J2 − J3)ω2ω3 + u1,

J2ω̇2 = (J3 − J1)ω3ω1 + u2,

J3ω̇3 = (J1 − J2)ω1ω2 + u3,

where ω1 to ω3 are the components of the angular velocity vector ω along
the principal axes, u1 to u3 are the torque inputs applied about the principal
axes, and J1 to J3 are the principal moments of inertia.

(a) Show that with u1 = u2 = u3 = 0 the origin ω = 0 is stable. Is it
asymptotically stable?

(b) Suppose the torque inputs apply the feedback control ui = −kiωi,
where k1 to k3 are positive constants. Show that the origin of the
closed-loop system is globally asymptotically stable.
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4. (10 points) Consider the following nonlinear systems

ẋ1 = −x51 − x2 + θϕ1(x1),

ẋ2 = u+ θϕ2(x1, x2),

where ϕ1(x1) and ϕ2(x1, x2) are Lipschitz continuous and satisfying ϕ1(0) =
0 and ϕ2(0, 0) = 0. Design an adaptive backstepping controller u(x1, x2, θ̂)
such that limt→∞ x1(t) = limt→∞ x2(t) = 0.

5. (10 points) Consider a linear system with nonlinear matched uncertainties in
the form

ẋ = Ax+B
(
u+ΘTΦ(x)

)
+ ε(t),

where x ∈ Rn is the state, u ∈ Rm is the control input, A ∈ Rn×n,
B ∈ Rn×m, Λ ∈ Rm×m, Θ ∈ RN×m are constant matrices, and ε(t) ∈ Rn

is the disturbance. Assume that the pair (A,BΛ) is controllable. Φ(x) =
(ϕ1(x), . . . , ϕn(x))

T ∈ RN denotes the known regressor vector, whose
compononts ϕi(x) are assumed to be Lipschitz-continuous in x.

Assume that ∥ε(t)∥ ≤ εf ,∀t > 0, where εf > 0, and A,B,Λ are all known,
while Λ is a positive diagonal matrix. Design a σ-modification robust control
algorithm that can stabilize the system and regulate x towards the neighbor-
hood of zero.

(Hint: For positive definite matrices P and Γ, we have

λmin(P )xTx ≤ xTPx ≤ λmax(P )xTx
xTPε(t) ≤ λmax(P )∥x∥∥ε(t)∥

1

λmax(Γ)
tr(ΘΘT ) ≤ tr(ΘΓ−1ΘT ) ≤ 1

λmin(Γ)
tr(ΘΘT )

2 tr(ΘΘ̃T ) ≤ tr(ΘΘT ) + tr(Θ̃Θ̃T )

where λmin(·) and λmax(·) denote, respectively, the minimum and maximum
eigenvalues of a positive definite matrix.)

6. (20 points) We denote by ∥x∥ the absolute value of x if x is a scalar and
Euclidean norm of x if x is a vector. For functions of time, the Lp norm is
given by

∥x∥p =
(∫ ∞

0
∥x(τ)∥pdτ

)1
p
,

for p ∈ [1,∞), while
∥x∥∞ = sup

t≥0
∥x(t)∥.

We say that x ∈ Lp when ∥x∥p < ∞.

(a) Write down Barbalat’s lemma and use it to prove the following corol-
lary.
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Corollary 0.1 If x ∈ L2
⋂
L∞ and ẋ ∈ L∞, then limt→∞ x(t) = 0.

(b) Consider the following first-order system

ẋ = u+ d1(t) + d2(t)x+ d3(t)x
2,

where d1(t), d2(t), and d3(t) are time-varying continuous functions
satisfying

max
t≥0

{∥d1(t)∥, ∥d2(t)∥, ∥d3(t)∥} ≤ dmax,

for some unknown positive constant dmax. Design a control algorithm
to stabilize the system and regulate x towards zero. (Use the corollary
in (a) to prove the result.)

7. (20 points) The nonlinear dynamic equations for an m-link robot take the
form

M(q)q̈ + C(q, q̇)q̇ +Dq̇ + g(q) + d(q, q̇, t) = u,

where q ∈ Rp is the vector of generalized coordinates representing the joint
positions, M(q) ∈ Rp×p is the symmetric positive-definite inertia matrix,
C(q, q̇)q̇ ∈ Rp is the vector of Coriolis and centrifugal torques, Dq̇ is the
vector of viscous damping with D being a constant matrix, g(q) ∈ Rp is
the gravitational torque, and u ∈ Rp is the control torque. The following
assumptions hold:

(A1) There exist positive constants km and km such that 0 < kmIp ≤
M(q) ≤ kmIp. For x, y, z ∈ Rp, 0 ≤ ∥C(x, y)z∥ ≤ KC∥y∥∥z∥.

(A2) Ṁ(q)− 2Ċ(q, q̇) is skew symmetric and D is positive semidefinite.

(A3) g(q) = 0 has an isolated root at q = 0.

(A4) There are parameter uncertainties in M(q), C(q, q̇), D and g(q). For
x, y, z ∈ Rp, M(q)x+C(q, q̇)y+Dz+g(q) = Y (q, q̇, x, y, z)Θ, with
Θ being an unknown constant vector.

(a) Assume that d(q, q̇, t) = 0. With u = g(q)−Kp(q−qd)−Kv q̇, where
Kp and Kv are positive diagonal matrices, and qd is a constant desired
position. Show that the point (q = qd, q̇ = 0) is asymptotically stable.

(b) Design an adaptive controller (using sliding mode variables) such that
q(t) asymptotically tracks a reference trajectory qd(t), where qd(t),
q̇d(t), and q̈d(t) are continuous and bounded.
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