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1 Introduction

1.1 Why Nonlinear Control?

1. All systems are nonlinear—nonlinear control extends range of possible operation and linear
systems are not rich enough to describe many commonly observed phenomena.

2. Some hardware nonlinearities do not have linear approximations.

3. System uncertainty should be treated with nonlinear control.

4. Some nonlinear control designs based on physical principles—provide better intuition and
understanding.

5. Better cost/performance than assembly of local linear controls.

6. Empowered by modern computational tools.

Definition 1 An adaptive controller is a fixed-structure controller with adjustable parameters
and a mechanism for automatically adjusting those parameters.

Why adaptive control?

1. Systems to be controlled have parameter uncertainty.

2. Systems experience unpredictable parameter variations.

3. Unknown disturbance characteristics.
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Adaptive Control

1. Adaptive control is superior to robust control in dealing with uncertainties in constant
or slow-varying parameters.

2. An adaptive controller improves its performance as adaptation goes on.

3. An adaptive controller requires litter or no priori information about the unknown pa-
rameters.

Robust Control

1. Robust control has advantages in dealing with disturbance, quickly varying parameters
and unmodeled dynamics.

2. A robust controller attempts to keep consistent performance.

3. A robust controller requires reasonable a prior estimates of the parameter bounds.

1.2 Nonlinear System Representation

Consider a simple nonlinear system whose dynamics is described by the following first-order differ-
ential equation of the form

ẋ = f(t, x, u), x(0) = x0 (1)

where x ∈ Rn is the state vector, x0 is the state at time 0, and u ∈ Rm is the control input. And

x =

 x1

. . .
xn

 , u =

 u1

. . .
um

 , f ∈
 f1

. . .
fn


f : [0,∞)× Rn × Rm → Rn.

One could expect that corresponding to each input u

1. has at least one solution. (Existence of solutions)

2. has exactly one solution. (Uniqueness of solutions)

3. has exactly one solution for all time. (Existence of solution up to t→∞)

For linear system ẋ = Ax, the solution is x = eAtx, all the above statements are true.

Example 1

1. Lack of existence of solution

ẋ = −sign(x) =

{
−1 x ≥ 0
1 x < 0

Condition argument ?

2. Lack of uniqueness of solutions
ẋ = 3x2/3, x(0) = 0

3



(a) x(t) = t3

(b) x(t) = 0

∀t∗ > 0, x(t) =

{
0 t ≤ t∗
(t− t∗)3 t > t∗

3. Finite escape time

Consider the system
ẋ = 1 + x2, x(0) = 0

It has a solution x(t) = tan(t). There is no solution defined outside the interval
[
0, π2

)
.

Question 1 What requirements on the existence, uniqueness and extension of the solution of (1)?

Answer 1 f : [0,∞)×Rn×Rm → Rn is piecewise continuous in t and locally Lipschitz in x and
u.

Definition 2 Given two metric spaces (X, dX) and (Y, dY ), where dX denotes the metric on the
set X and dY is the metric on set Y , a function f : X → Y is called Lipschitz continuous if
there exists a real constant K ≥ 0 such that, for all x1 and x2 in X,

dY (f(x1), f(x2)) ≤ KdX(x1, x2)

where K is referred to as a Lipschitz constant for the function f .

1.3 Autonomous Systems and Equilibrium Points

Consider a system of the form (1) with the input u(t) a fixed function of time and state. Then, the
system takes the form

ẋ = f(t, x) (2)

Definition 3 The system (2) is said to be autonomous or time-invariant if f(t, x) is not explicitly
dependent on time t, i.e., the system equation is

ẋ = f(x) (3)

Otherwise, the system is non-autonomous or time-varying.

Definition 4 A Lyapunov function candidate V (x) : Rn → R defined such that lim||x||→∞ V (x)→
∞ is called radially unbounded.

Definition 5 x∗ is said to be an equilibrium point iff f(t, x∗) ≡ 0,∀t ≥ 0.

Remark 1 For autonomous systems, find the equilibrium points corresponding to solve f(x) = 0.
In the linear case Ax = 0

1. An unique solution: A is nonsingular.
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2. A continuum of solutions: A is singular.

Definition 6 An equilibrium point x0 is isolated if there exists some δ > 0, such that there is no
other equilibrium points in the ball B = {x : ||x− x0|| < δ}.

Example 2
1. Pendulum Equation
Using Newton’s second law of motion, the equation of the motion of the pendulum in the

tangential direction
mlθ̈ = −mgsinθ − klθ̇

To obtain a state model for the pendulum, let x1 = θ, x2 = θ̇. Then the system equations are

ẋ1 = x2

ẋ2 = −g
l
sinx1 −

k

m
x2

To find the equilibrium points, we set ẋ1 = 0, ẋ2 = 0. We have x2 = 0, sinx1 = 0. We can obtain
that the equilibrium points are (kπ, 0), k = 0,±1, . . .

2. Mass-Spring System

mÿ = F − Fsp − Ff
Ff = cẏ

Here, Fsp = g(y) = k(1 + a2y2)y. Therefore, for an unforced mass-spring system, F = 0, we have

mÿ = −cẏ − k(1 + a2y2)y

Let x1 = y, x2 = ẏ. The state model is

ẋ1 = x2

ẋ2 = − c

m
x2 −

k

m
(1 + a2x2

1)x1

Equilibrium points: x2 = 0, x1 =
{

0,± i
a

}
. (x1 = ± i

a is meaningless.)
3. Negative-Resistance Oscillator
..
4. Common nonlinearities
..

2 Stability for Autonomous Systems

2.1 Concepts of Stability

Definition 7 The equilibrium point x = 0 of (3) is

stable, if for each ε > 0, ∃δ = δ(ε) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε,∀t ≥ 0
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unstable, if it is not stable;

asymptotically stable, if it is stable and δ can be chosen such that

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0

exponentially stable, if there exist two real constants, α, λ > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ ≤ α‖x(0)‖e−λt,∀t ≥ 0

marginally stable, if it is stable but not asymptotically stable;

globally asymptotically/exponentially stable, if it holds for all initial state.

Remark 2 Exponentially stable means that limt→∞ x(t) = 0 at a rate faster than an exponential
function. Generally, exponentially stable⇒ asymptotically stable. For linear systems, exponentially
stable ⇔ asymptotically stable.

Example 3

ẋ = −(1 + sin2 x)x

The solution is x(t) = x(0)e−
∫ t
0

(1+sin2 τ)dτ ⇒ ‖x(t)‖ ≤ ‖x(0)‖e−t.
⇒ exponentially converge to x = 0 with a rate λ = 1.

Example 4

ẋ = −x2, x(0) = 1

The solution is x(t) = 1
t+1 ⇒ asymptotically stable but not exponentially stable.

2.2 Positive Definite Functions

Definition 8 A function V : D → R is said to be positive semidefinite in D containing the or-gin,
if it satisfies the following conditions:

1. V (0) = 0

2. V (x) ≥ 0,∀xinD-{0}

Further, V is said to be positive definite, if condition 2 is replaced by V (x) > 0,∀xinD-{0}.
And V is said to be negative definite (semidefinite) in D if −V is positive definite (semidefinite).

Example 5 The simplest and perhaps most important class of positive definite functions is a
quadratic form V (x) : Rn → R = xTPx, P ∈ Rn×n, P = PT , we have

V is

{
PD ⇔ xTPx > 0,∀x 6= 0 ⇔ λi(P ) > 0
PSD ⇔ xTPx ≥ 0,∀x 6= 0 ⇔ λi(P ) ≥ 0
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Example 6 Let x =

[
x1

x2

]
, then

V (x) =



x2
1 PSD
x2

1 + x2
2 PD

x2
1 + x2

2 + 1 NA
x2
1

1+x2
1

+ x2
2 PD[

x2
1 x2

2

]T
NA

x2(4− x2)

{
PD x ∈ (−2, 2)
PSD x ∈ [−2, 2]

Remark 3 Positive definite functions can be seen as an abstraction of the total “energy” stored
in the system. All the Lyapunov stability theorems focus on the study of the time derivative of a
positive definite function along the trajectories of the system.

2.3 Stability Theorems

Theorem 1 Let x = 0 be an equilibrium point for (3) and D ⊂ Rn be a domain containing x = 0.
Let V : D → R be a continuously differentiable function such that

1. V (0) = 0 and V (x) > 0inD-{0}

2. V̇ (x) ≤ 0inD

Then, x = 0 is stable.
Moreover, if V̇ (x) < 0inD-{0} then x = 0 is asymptotically stable.

Remark 4 In other word, the origin is stable if there is a continuously differentiable positive
definite function V (x) so that V̇ is negative semidefinite, and it is asymptotically stable if V̇ (x) is
negative definite.

Example 7 Consider the pendulum equation without friction

ẋ1 = x2

ẋ2 = −a sinx1, a > 0

Let us study the stability of the equilibrium point at the origin.
A natural Lyapunov function candidate candidate is the energy function

V (x) =
1

2
x2

2 + k(1− cosx1), k > 0, x1 ∈
(
−π

2
,
π

2

)
The time derivative of V (x) along the trajectories of the system is given by

V̇ = x2ẋ2 + kẋ1 sinx1

= (k − a)x2 sinx1

If k = a, then V̇ = 0, NSD. The origin is stable.
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Example 8 When considering friction

ẋ1 = x2

ẋ2 = −a sinx1 − bx2; a, b > 0

Then we have V̇ = −bx2
2, NSD.

We can only conclude that the origin is stable. But actually, when b > 0, the origin is asymp-
totically stable. The chosen Lyapunov function candidate fails to show this fact.

Replace the term 1
2x

2
2 by the more general quadratic form 1

2x
TPx, x =

[
x1

x2

]
, for some positive

definite matrix P .

V (x) =
1

2
xTPx+ a(1− cosx1)

=
1

2

[
x1 x2

] [ P11 P12

P12 P22

] [
x1

x2

]
+ a(1− cosx1)

where P11 > 0, P11P22 − P 2
12 > 0.

The time derivative of V is given

V̇ (x) =
[
x1 x2

] [ P11 P12

P12 P22

] [
x2

−a sinx1 − bx2

]
+ ax2 sinx1

=
[
x1 x2

] [ P11x2 + P12(−a sinx1 − bx2)
P12x2 + P22(−a sinx1 − bx2)

]
+ ax2 sinx1

= P11x1x2 + P12x1(−a sinx1 − bx2) + P12x
2
2 + P22x2(−a sinx1 − bx2) + ax2 sinx1

= (P11 − bP12)x1x2 − aP12x1 sinx1 + (P12 − bP22)x2
2 − a(P22 − 1)x2 sinx1

Our objective is to choose P11, P12, P22 such that V̇ is ND.
Let P22 = 1, P11 = bP12, P12 < bP22 ⇒ P12 < b, by P11P22 − P 2

12 > 0 ⇒ P12 < b.

Choose P12 = b
2 , P11 = b2

2 , we have V̇ = −ab2 x1 sinx1 − b
2x

2
2. For x ∈

(
−π2 ,

π
2

)
, V̇ is ND.

Taking D =
{
x ∈ Rn : |x1| < π

2

}
, we see that V is PD and V̇ is ND over D.

Thus, we conclude that the origin is asymptotically stable.

Remark 5 This example emphasizes an important feature of Lyapunov stability theory, namely,
the conditions are only sufficient.

Example 9 Let us study the following nonlinear system

ẋ1 = x1(x2
1 + x2

2 − 2)− 4x1x
2
2

ẋ1 = x2(x2
1 + x2

2 − 2) + 4x2
1x2

with the equilibrium point at the origin. Given the positive definite function

V =
1

2
(x2

1 + x2
2)
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Its derivative along the system trajectories is

V̇ = x1ẋ1 + x2ẋ2

= x1(x1(x2
1 + x2

2 − 2)− 4x1x
2
2) + x2(x2(x2

1 + x2
2 − 2) + 4x2

1x2)

= (x2
1 + x2

2)(x2
1 + x2

2 − 2)

In Br = {x : x2
1 + x2

2 < 2}, V̇ is ND.
Therefore, the origin is locally asymptotically stable.

Theorem 2 (Barbashin-Krasovskii)
Let x = 0 be an equilibrium point of (3). Let V : Rn → R be a continuously differentiable

function such that

1. V (0) = 0 and V (x) > 0,∀x 6= 0

2. V̇ (x) < 0,∀x 6= 0

3. ‖x‖ → ∞⇒ V (x)→∞

then x = 0 is globally asymptotically stable.

Remark 6 The reason for radial unboundedness condition is to assure that the contour curves
V (x) correspond to closed curves. If the curves are not closed, it is possible for state trajectories to
drift away from the equilibrium point, even though the state keeps going contours corresponding

to smaller and smaller V (x). For example, V (x) =
x2
1

1+x2
1

+ x2
2.

2.4 Invariance Principle

2.4.1 LaSalle’s Theorem

Asymptotically stability is always more desirable than stability. However, it is often the case that a
Lyapunov function candidate fails to identify an asymptotically stable equilibrium by having V̇ (x)
negative semidefinite. An extension of Lyapunov theorem due to LaSalle studies this problem in
detail.

Definition 9 A set M is said to be an invariant set with respect to (3) if

x(0) ∈M ⇒ x(t) ∈M, ∀t ≥ 0.

Example 10 Some common invariant sets:

1. Equilibrium point.

2. Limit cycle.

3. The whole space Rn.

4. Ωc = {x ∈ Rn : V (x) ≤ c} with V̇ (x) ≤ 0.

9



Theorem 3 (LaSalle’s theorem)
Let Ω ⊂ D be a compact set that is invariant with respect to (3). Let V : D → R be a continuously

differentiable function such that V̇ (x) ≤ 0 in Ω. Let E be the set of all points in Ω where V̇ (x) = 0.
Let M be the largest invariant set in E. Then every solution starting in Ω approaches M as t→∞.

Example 11 The pendulum model. Consider V (x) = 1
2x

2
2 + a(1− cosx1).

1. Without friction:

{
ẋ1 = x2

ẋ2 = −a sinx1; a > 0
, V̇ = 0, Ω = E = M .

2. With friction:

{
ẋ1 = x2

ẋ2 = −a sinx1 − bx2; a, b > 0
, V̇ = −bx2

2, E = {x ∈ D : x2 = 0},

M = {(0, 0)}.

Remark 7 Besides, often yielding conclusion on asymptotic stability when V̇ is only semidefinite,
the invariant set theorems also allow us to extend the concept of Lyapunov function so as to describe
convergence to dynamic behaviors more general that equilibrium, e.g. convergence to a limit cycle.

Corollary 1
Let x = 0 be an equilibrium point for ẋ = f(x).
Let V : D → R be a continuously differentiable positive definite function, such that V̇ ≤ 0 in D.
Let S = {x ∈ D : V̇ (x) = 0} and suppose that no solution can stay identically in S other than

the trivial solution x(t) ≡ 0. Then the origin is asymptotically stable. Furthermore, if D ∈ Rn
and V (x) is radially unbounded, the origin is globally asymptotically stable.

Remark 8 When V̇ (x) is negative definite, S = {0}, the above corollary conclusion coincides with
the Lyapunov theorem.

Example 12

For x1 ∈
(
−π2 ,

π
2

)
,

{
ẋ1 = x2

ẋ2 = −a sinx1 − bx2; a, b > 0
, V (x) = 1

2x
2
2 + a(1 − cosx1), we have

V̇ = −bx2
2.

Then S = {x ∈ D : V̇ (x) = 0} = {x ∈ D : x2 = 0}.
By V̇ (x) ≡ 0⇒ x2 ≡ 0⇒ ẋ2 ≡ 0⇒ x1 ≡ 0.

Example 13 Consider the first-order system

ẏ = ay + u

together with the adaptive control law

u = −ky, k̇ = γy2, γ > 0.

Taking x1 = y, x2 = k, we can obtain {
ẋ1 = ax1 − x1x2

ẋ2 = γx2
1

10



The line x1 = 0 is an equilibrium set. We want t show that the trajectories approach this equilibrium
set as t→∞, which means that the adaptive controller regulates y to zero.

Consider the following Lyapunov function candidate

V (x) =
1

2
x2

1 +
1

2γ
(x2 − k0)2

where k0 = 0 is a constant.
The time derivative of V along the trajectories is given by

V̇ = x1ẋ1 +
1

γ
(x2 − k0)ẋ2

= x1(ax1 − x1x2) + (x2 − k0)x2
1

= (a− k0)x2
1

Design k0 > a, then V̇ ≤ 0.
Define the set Ωc = {x ∈ Rn : V (x) ≤ c}, which is an invariant set. The set E is given by

E = {x ∈ Ωc : x1 = 0}. Therefore, in this example, M = E. From LaSalle’s Theorem, we can
conclude that limt→∞ x1(t) = 0. Moreover, since V (x) is radially unbounded, the conclusion is
global.

2.4.2 Limit Cycle

Definition 10 An isolated periodic/closed orbit is called a limit cycle.

Stable: all trajectories in the vicinity of the limit cycle converge to it as t→∞.

Unstable: all trajectories in the vicinity of the limit cycle diverge from it as t→∞.

Semi-Stable: some trajectories in the vicinity of the limit cycle converge to it while others diverge
from it as t→∞.

Remark 9 Consider the system defined by

ẋ1 = x2 + x1(β2 − x2
1 − x2

2)

ẋ2 = −x1 + x2(β2 − x2
1 − x2

2)

The origin x = (0, 0) is an equilibrium point.

For x2
1 + x2

2 = β2, the system is reduced to

{
ẋ1 = x2

ẋ2 = −x1
, its solution is x1(0) = x10, x1(t) =

x10 cos t, x2(0) = ẋ1(0) = 0, x2(t) = −x10 sin t.
Thus, the set of points defined by the circle x2

1 + x2
2 = β2 constitutes an invariant set (limit

cycle).
Assume r =

√
x2

1 + x2
2, θ = arctan x2

x1
, we have

ṙ = r(β2 − r2)

θ̇ = −1

11



By

{
r < β, ṙ > 0⇒ r → β
r > β, ṙ < 0⇒ r → β

⇒ stable limit cycle.

We now investigate the stability of this limit cycle using LaSalle’s theorem.
To end this, consider the following Lyapunov function

V (x) =
1

4
(x2

1 + x2
2 − β2)2

which represents a measure of the “distance” to the limit cycle.
Clearly, V (x) ≥ 0.

V̇ (x) =
1

2
(x2

1 + x2
2 − β2)(2x1ẋ1 + 2x2ẋ2)

= −(x2
1 + x2

2 − β2)2(x2
1 + x2

2)

≤ 0

Step 1: Given any real number c > 1
4β

4, define Ωc = {x ∈ R2 : V (x) ≤ c}. Since V̇ ≤ 0, Ωc is an
invariant set.

Step 2: Find E = {x ∈ Ωc : V̇ (x) = 0}. Clearly, E = {(0, 0)} ∪ {x : x2
1 + x2

2 = β2}.
Step3: Find M , the largest invariant set in E. Clearly, M = E.
Thus, choosing c such that 0 < c < 1

4β
4, Ωc = {x ∈ R2 : V (x) ≤ c} includes the limit cycle but

not the origin. The application of LaSalle’s theorem with c ∈
(
0, 1

4β
4
)

shows that every motion
starting in Ωc converges to the limit cycle, and therefore the limit cycle is stable.

Further, assume c = 1
4β

4 − ε ↓. The origin is unstable.

2.5 Linear System and Linearization

ẋ = Ax,A ∈ Rn×n

Remark 10 Some reasons for investigating the stability of LTI systems via Lyapunov method.

1. The Lyapunov analysis permits studying linear and nonlinear systems under the same frame-
work, where LTI is a special case.

2. We will introduce a very useful class of Lyapunov functions that appears frequently in the
literature.

3. We will study the stability of nonlinear systems via linearization of the state equation and
try to get some insight into the limitations associated with this process.

Consider a quadratic Lyapunov function candidate

V (x) = xTPx

where P ∈ Rn×n is PD.

V̇ (x) = xT (PA+ATP )x , −xTQx

12



where Q is a symmetric matrix defined by

PA+ATP = −Q (4)

If Q is PD, the origin is asymptotically stable.

Definition 11 Matrix M is Hurwitz iff Re[λi(M)] < 0.

Theorem 4 Matrix A is Hurwitz, if and only if for any given positive definite symmetric matrix
Q, there exists a unique positive definite symmetric matrix P satisfies the Lyapunov equation (4).

Theorem 5 For ẋ = f(x), the Jacobian matrix is

A =
∂f

∂x

∣∣∣∣
x=0

=

 ∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

. . . . . . . . . . . .
∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn

∣∣∣∣∣∣
x=0

If ∀i, Re[λi(M)] < 0, the origin of ẋ = f(x) is asymptotically stable.
If ∃i, Re[λi(M)] > 0, the origin of ẋ = f(x) is unstable.
If ∃i, Re[λi(M)] < 0,and ∃j, Re[λj(M)] = 0,no conclusion.

Example 14 Consider the pendulum equation

ẋ1 = x2

ẋ2 = −a sinx1 − bx2; a, b > 0

Check the stability for two equilibrium points (0, 0) and (π, 0).

A1 =
∂f

∂x

∣∣∣∣
x=(0,0)

=

[
0 1

−acosx1 −b

]∣∣∣∣
x=(0,0)

=

[
0 1
−a −b

]
The characteristic equation is λ2 + bλ+ a = 0 ⇒ stable.

A2 =
∂f

∂x

∣∣∣∣
x=(π,0)

=

[
0 1

−acosx1 −b

]∣∣∣∣
x=(π,0)

=

[
0 1
a −b

]
The characteristic equation is λ2 + bλ− a = 0 ⇒ unstable.

Note 1 For ax2 + bx+ c = 0, its solution is x1,2 = −b±
√
b2−4ac

2a , then we have

x1 + x2 =
−b
a
, x1 × x2 =

c

a

For a = 1, if c > 0, then Re(x1,2) have the same sign.
Further, if b > 0, then x1,2 both have negative real parts.
Otherwise, if a = 1, c < 0, then x1,2 are real numbers with different sign.

13



3 Stability for Non-autonomous Systems

3.1 Comparison Functions

Definition 12 A continuous function α : [0, a)→ [0,∞) is said to belong to class K if it is strictly
increasing and α(0) = 0. It is said to belong to class K∞ if a =∞ and α(r)→∞ as r →∞.

Definition 13 A continuous function β : [0, a)× [0,∞)→ [0,∞) is said to belong to class KL if,
for each fixed s, the mapping β(r, s) belongs to class K with respect to r and, for each fixed r, the
mapping β(r, s) is decreasing with respect to s and β(r, s)→ 0 as s→∞.

Example 15

1. α(r) = arctan(r), α′(r) = 1
r2+1 ≥ 0, α(0) = 0, limr→∞ α(r) = π

2 . So α(r) belongs to class K,
but not belong to class K∞.

2. α(r) = r2, α′(r) = 2r ≥ 0, α(0) = 0, limr→∞ α(r) =∞. So α(r) belongs to class K∞.

3. α(r) = min{r, r2} belongs to class K∞.

4. β(r, s) = r2e−s belongs to class KL.

Remark 11 Class K and KL functions enter into Lyapunov analysis through the next lemmas.

Lemma 1 V : D → R is positive definite iff there exist K functions such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖),∀x ∈ Br ⊂ D.

Moreover, if D = Rn and V (.) is radially unbounded, α1 and α2 should be chosen in the class K∞.

Example 16 V (x) = xTPx, P is positive definite, we have

λmin(P )‖x‖2 ≤ V (x) ≤ λmax(P )‖x‖2.

Lemma 2 The equilibrium point x = 0 of ẋ = f(x) is stable iff there exists a class K function
α(.) and a constant δ such that

‖x(0)‖ ≤ δ ⇒ ‖x(t)‖ ≤ α(‖x(0)‖),∀t ≥ 0.

Lemma 3 The equilibrium point x = 0 of ẋ = f(x) is asymptotically stable iff there exists a
class KL function β(., .) and a constant δ such that

‖x(0)‖ ≤ δ ⇒ ‖x(t)‖ ≤ β(‖x(0)‖, t),∀t ≥ 0.

14



3.2 Stability of Non-autonomous systems

Consider the non-autonomous system
ẋ = f(x, t) (5)

where f : [0,∞) × D → Rn is piecewise continuous in t and locally Lipschitz in x on [0,∞) × D
and D ⊂ Rn is a domain containing the origin. The origin is an equilibrium point for (5), i.e.,
f(0, t) ≡ 0,∀t ≥ 0.

Definition 14 The equilibrium point x = 0 of (5) is

1. stable, if for each ε > 0, there is δ = δ(ε, t0) such that

‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ε,∀t ≥ t0 ≥ 0. (6)

2. unstable, if it is not stable.

3. uniformly stable, if for each ε > 0, there is δ = δ(ε) > 0, independent of t0, such that (6) is
satisfied.

4. asymptotically stable, if it is stable and there is a positive constant c = c(t0) such that

∀‖x(t0)‖ < c, lim
t→∞

x(t)→ 0. (7)

5. uniformly asymptotically stable, if it is uniformly stable and there is positive constant c, inde-
pendent of t0, such that (7) is satisfied.

6. globally uniformly asymptotically stable, if it is uniformly asymptotically stable and c can be
chosen as ∞.

Remark 12 The new element here is that, while the solution of an autonomous system depends
only on (t− t0), the solution of a non-autonomous system may depend on both t and t0.

The next lemma gives equivalent, more transparent, definitions of uniform stability and uniform
asymptotic stability by using class K and class KL functions.

Lemma 4 The equilibrium point x = 0 of (5) is

1. uniformly stable, iff there exist a class K function α and a positive constant c, independent of
t0, such that

‖x(t)‖ ≤ α(‖x(t0)‖),∀t ≥ t0 ≥ 0,∀‖x(t0)‖ < c.

2. uniformly asymptotically stable, iff there exist a class KL function β and a positive constant c,
independent of t0, such that

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0),∀t ≥ t0 ≥ 0,∀‖x(t0)‖ < c. (8)

3. globally uniformly asymptotically stable, iff inequality (8) is satisfied for any initial state x(t0).

15



Example 17 Consider the following system

ẋ = (6t sin t− 2t)x

Its solution is

x(t) = x(t0) exp

{∫ t

t0

(6τ sin τ − 2τ)dτ

}
= x(t0) exp{6 sin t− 6t cos t− t2 − 6 sin t0 + 6t0 cos t0 + t20}

Note 6 sin t− 6t cos t− t2 ≤ 6 + 6t− t2 = −(t− 3)2 + 15 ≤ 15.
Choose c(t0) = exp(15− 6 sin t0 + 6t0 cos t0 + t20).
Clearly, we have ‖x(t)‖ ≤ ‖x(t0)‖ · c(t0),∀t ≥ t0 ≥ 0.
For any ε > 0, the choice δ = ε

c(t0) shows that

‖x(t0)‖ < δ =
ε

c(t0)
⇒ ‖x(t)‖ ≤ ‖x(t0)‖ · c(t0) <

ε

c(t0)
· c(t0) = ε

which implies that the origin is stable.
We study the sensitivity of the system solutions due to the changes in t0.
Let t0 = 2kπ. We can examine x(t) at t = t0 + π = (2k + 1)π.

x(t0 + π) = x(t0) exp{6 sin[(2k + 1)π]− 6(2k + 1)π cos[(2k + 1)π]− [(2k + 1)π]2

− 6 sin(2kπ)− 6(2kπ) cos(2kπ)− (2kπ)2}
= x(t0) exp{6(2k + 1)π − [(2k + 1)π]2 − 12kπ − (2kπ)2}
= x(t0)e(4k+1)(6−π)π

x(t0 + π)

x(t0)
= e(4k+1)(6−π)π →∞, ask →∞

Therefore, given any ε > 0, there is no δ(ε) independent of t0 that could satisfy the uniform stability
definition.

3.3 Time-Dependent Positive Definite Functions

Definition 15 Let V (x, t) = D × [0,∞)→ R is a continuously differential function.
V (x, t) is said to be positive semidefinite, if

1. V (0, t) ≡ 0,∀t ≥ 0

2. V (x, t) ≥ 0,∀t ≥ 0, x ∈ D

V (x, t) is said to be positive definite, if

1. V (0, t) ≡ 0,∀t ≥ 0

2. there exists a positive definite function ω1(x) such that

ω1(x) ≤ V (x, t),∀t ≥ 0, x ∈ D

16



V (x, t) is said to be decrescent in D if there exists a positive definite function ω2(x) such that

V (x, t) ≤ ω2(x)

V (x, t) is radially unbounded if V (x, t)→∞as‖x‖ → ∞.

Example 18 x =

[
x1

x2

]
1. V (x, t) = (1 + t2)(x2

1 + x2
2): ω1(x) = x2

1 + x2
2, PD, not decrescent.

2. V (x, t) = (1 + sin2 t)(x2
1 + x2

2): ω1(x) = x2
1 + x2

2, ω2 = 2(x2
1 + x2

2), PD and decrescent.

3. V (x, t) = 1+t2

2+t2 (x2
1 + x2

2): ω1(x) = 1
2 (x2

1 + x2
2), ω2 = x2

1 + x2
2, PD and decrescent.

Theorem 6 Let x = 0 be an equilibrium point for (5) and D ⊂ Rn be a domain containing the
origin. Let V : D × [0,∞)→ R be continuously differentiable function such that

1. V (x, t) is PD; (ω1(x) ≤ V (x, t), ω1isPD)

2. V̇ (x, t) = ∂V
∂x f(x, t) + ∂V

∂t ≤ 0,

then x = 0 is stable.
In addition, if V (x, t) is also decrescent, i.e.,

ω1(x) ≤ V (x, t) ≤ ω2(x) (ω1, ω2arePD)

then x = 0 is uniformly stable.
If the second condition is strengthened to

V̇ (x, t) =
∂V

∂x
f(x, t) +

∂V

∂t
≤ −ω3(x) (ω3isPD)

then x = 0 is uniformly asymptotically stable.
Finally, if D ⊂ Rn and ω1(x) is radially unbounded, then x = 0 is globally uniformly

asymptotically stable.
If k1‖x‖a ≤ V (x, t) ≤ k2‖x‖a, V̇ ≤ −k3‖x‖a; k1, k2, k3, a > 0, then x = 0 is exponentially

stable.

Lemma 5 V (t, x) ≤ ω2(x) is necessary to asymptotically stable.

Example 19 Consider the following system

ẋ1 = −x1 − e−2tx2

ẋ2 = x1 − x2

We consider the following Lyapunov function candidate

V (x, t) = x2
1 + (1 + e−2t)x2

2

17



It can be easily seen that

‖x‖2 = ω1(x) = x2
1 + x2

2 ≤ V (x, t) ≤ x2
1 + 2x2

2 = ω2(x) ≤ 2‖x‖2

Hence, V (x, t) is positive definite, decrescent, and radially unbounded.
The derivative of V along the trajectories of the system is given by

V̇ (x, t) = 2x1ẋ1 + (1 + e−2t)2x2ẋ2 − 2e−2tx2
2

= −(x2
1 + x2

2)− (x1 − x2)2 − 4e−2tx2
2

≤ −(x2
1 + x2

2)

= −ω3(x) = −‖x‖2

Hence, the origin is globally uniformly exponentially stable.

3.4 Linear Time-Varying Systems

Consider the system
ẋ = A(t)x (9)

The solution of (9) is given by
x(t) = Φ(t, t0)x(t0)

where Φ(t, t0) is the state transition matrix.

Theorem 7 x = 0 of (9) is uniformly exponentially stable iff the state transition matrix
satisfies the following inequality

‖Φ(t, t0)‖ ≤ ke−λ(t−t0),∀t ≥ t0 ≥ 0

for some positive constants k and λ.

Remark 13 For linear time-varying systems, its stability cannot be characterized by the location
of the eigenvalues of the matrix A(t).

Example 20 Consider a second-order linear system with

A(t) =

[
−1 + 1.5 cos2 t 1− 1.5 sin t · cos t

−1− 1.5 sin t · cos t −1 + 1.5 sin2 t

]
|λI −A| = λ2 + 0.5λ+ 0.5 = 0 has two eigenvalues with negative real parts.

Actually, Φ(t, 0) =

[
e0.5t cos t e−t sin t
e0.5t sin t e−t cos t

]
.

Corollary 2 The system (9) is uniformly asymptotically stable if ∃λ > 0 such that

λi(A(t) +AT (t)) ≤ −λ, ∀t ≥ 0, i = 1, . . . , n

18



Proof Let V = xTx, then

V̇ = xT (A(t) +AT (t))x

≤ −λxTx
= −λV

2

Corollary 3 Assume that there exists P (t) ∈ Rn×n which is continuously differentiable and sym-
metric, and there exist 0 < c1 < c2 <∞ such that

c1I ≤ P (t) ≤ c2I, ∀t ≥ 0

Further assume for some Q(t) ∈ Rn×n, continuous and symmetric such that

Q(t) ≥ c3I > 0

Ṗ (t) + P (t)A(t) +AT (t)P (t) = −Q(t)

Then (9) is globally uniformly asymptotically stable.
Proof Let V (x, t) = xTP (t)x ⇒ ω1(x) = c1x

Tx ≤ V (x, t) ≤ c2xTx = ω2(x). Its derivative is

V̇ = xTP (t)A(t)x+ xTAT (t)P (t)x+ xT Ṗ (t)x

= −xTQ(t)x

≤ −c3xTx = ω3(x)

2

Corollary 4 Assume that at any time t ≥ 0, all the eigenvalues of A(t) have negative real parts.
In addition, if A(t) is bounded and

∫∞
0
AT (t)A(t)dt < ∞, then x = 0 is globally asymptotically

stable.
Proof Hint: linearization. 2

3.5 Barbalat’s Lemma

How about the asymptotical stability when V̇ (x, t) is only negative semidefinite? For autonomous
system, LaSalle’s invariance theorem can be used. But it is not valid for non-autonomous system.

Barbalat’s Lemma is purely mathematical result concerning the asymptotical properties of func-
tions and their derivatives.

Example 21 Given a differentiable f at time t, f converges < ḟ → 0.

1. f = e−t sin(e2t)→ 0, ḟ = −e−t sin(e2t) + et cos(e2t) · 2e2t →∞

2. f = ln t→∞, ḟ = 1
t → 0.

19



Definition 16 A function f : R→ R is said to be uniformly continuous if ∀ε > 0,∃δ = δ(ε) >
0,∀|t2 − t1| ≤ δ ⇒ |f(t2)− f(t1)| ≤ ε.

Lemma 6 A continuous function is uniformly continuous on a closed set.

Lemma 7 A sufficient condition for a differentiable function to be uniformly continuous is that
its derivative is bounded.

Lemma 8 (Barbalat’s lemma) If the differentiable function f(t) has a finite limit as t→∞,
and ḟ(t) is uniformly continuous, then limt→∞ ḟ(t) = 0.

Lemma 9 If f is lower bounded and ḟ ≤ 0, it converges to a finite limit.

Note 2 limt→∞ ḟ(t) = 0 if

1. f has a finite limit;

2. ḟ is uniformly continuous. (f̈ bounded)

Lemma 10 (Lyapunov-Like lemma) For a scalar function V (x, t), limt→∞ V̇ (x, t) = 0 if the
following conditions are satisfied

1. V (x, t) has a finite limit :

{
V (x, t) is lower bounded

V̇ (x, t) is negative semidefinite (V̇ ≤ 0)

2. V̇ (x, t) is uniformly continuous (⇐ V̈ isbounded)

Example 22 In adaptive control, we will often encounter the following non-autonomous system

ė = −e+ θϕ(t)

θ̇ = −eϕ(t)

where ϕ(t) is a bounded continuous function, e and θ are two states of the closed-loop system,
representing the tracking error and parameter error.

Consider the quadratic scalar function V = 1
2e

2 + 1
2θ

2 ≥ 0.
Clearly, V is lower bounded.
Its derivative is

V̇ = −e2 ≤ 0

Check V̈ = −2eė = −2e(−e+ θϕ(t)).
Note that V̇ ≤ 0 which implies that V (t) ≤ V (0). Therefore, e, θ are bounded.
With ϕ(t) being bounded, we get that V̈ is also bounded.
Then from Barbalat’s lemma, we can conclude that limt→∞ V̇ (t) = 0, i.e., limt→∞ e(t) = 0.

Theorem 8 (LaSalle-Yoshizawa) Let x = 0 be an equilibrium point of (5) and suppose that f
is locally Lipschitz in x and uniformly in t. Let V be a continuously differentiable function such
that ∀t ≥ 0, x ∈ Rn,

γ1(‖x‖) ≤ V (x, t) ≤ γ2(‖x‖)
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V̇ =
∂V

∂t
+
∂V

∂x
f(x, t) ≤ −ω(x) ≤ 0

where γ1 and γ2 are class K∞ functions and ω is a continuous function.
Then all solutions of (5) satisfy limt→∞ ω(x(t)) = 0.
In addition, if ω(x) is positive definite, x = 0 is globally uniformly asymptotically stable.

Proof Note ω(x) ≥ 0 ⇒
∫ t

0
ω(x(τ))dτ ↑.

Since V̇ ≤ −ω(x), V (t)− V (0) ≤ −
∫ t

0
ω(x(τ))dτ ⇒

∫ t
0
ω(x(τ))dτ ≤ V (0)− V (t) ≤ V (0)

Thus
∫ t

0
ω(x(τ))dτ has a finite limit.

Since V̇ ≤ 0, γ1(‖x‖) ≤ V (x, t) ≤ γ2(‖x‖) ⇒ V is bounded and x is bounded, i.e., ‖x‖ ≤ Br.
Note that a continuous function is uniformly continuous on a closed set.
Thus ω(x) is uniformly continuous in x.
By f is locally Lipschitz, ∀t2 > t1 ≥ 0, , one has

|x(t2)− x(t1)| =
∣∣∣∣∫ t2

t1

f(x(τ), τ)dτ

∣∣∣∣
≤ L

∣∣∣∣∫ t2

t1

‖x(τ)‖dτ
∣∣∣∣

≤ Lr|t2 − t1|

Thus x(t) is uniformly continuous in t.
Thus ω(x) is uniformly continuous in t.
So limt→∞ ω(x(t)) = 0. 2

3.6 Boundedness and Ultimate Boundedness

The concept of stability in the sense of Lyapunov are formulated with respect to an equilibrium
point. Often, systems are designed to operate in the presence of disturbance and other uncertainties.
In this subsection, we show that Lyapunov analysis can be used to show the boundedness of the
solution, even when there is no equilibrium point at the origin.

Consider the scalar non-autos

ẋ = −x+ δ sin t, x(t0) = a, a > δ > 0

which has no equilibrium point and whose solution is given by

x(t) = e−(t−t0)x(t0) + δ

∫ t

t0

e−(t−τ) sin τdτ

The solution satisfies

‖x(t)‖ ≤ e−(t−t0)a+ δ

∫ t

t0

e−(t−τ)dτ

= (a− δ)e−(t−t0) + δ

≤ a
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which shows that the solution is uniformly bounded. Further, for any number b ∈ (δ, a), it can be
easily seen that

‖x(t)‖ ≤ b,∀t ≥ t0 + ln

(
a− δ
b− δ

)
The bound b, which again is independent of t0, gives a better estimate of the solution after a transient
period has passed. In this case, the solution is said to be uniformly ultimately bounded (UUB)
and b is called the ultimate bound.

This can be also done via Lyapunov analysis without using the explicit solution of the state
equation. Starting with V (x) = 1

2x
2, its derivative along the trajectories of the system is

V̇ = −x2 + δx sin t

≤ −x2 + δ|x|
= −|x|(|x| − δ)

V̇ is not negative definite near the origin. However, V̇ is negative definite outside the set {|x| < δ}.
With c > 1

2δ
2, (|x| > δ), solutions starting in the set {V (x) ≤ c} will remain therein for all future

time since V̇ is negative on the boundary V = c. Hence, the solutions are uniformly bounded.

Pick up any number ε such that δ2

2 < ε < c. Then V̇ < 0 in the set {ε ≤ V (x) ≤ c}, which
shows that, in the set, V will decrease monotonically until the solution enters the set {V (x) ≤ ε}.
From that time on, the solution cannot leave the set {V (x) ≤ ε} because V̇ < 0 on the boundary
V = ε. Then we can conclude that the solution is uniformly bounded with the ultimate bound
|x| ≤

√
2ε.

Definition 17 The solution of (5) is

uniformly bounded if there exits a positive constant c, independent of t0 ≥ 0, and for every
a ∈ (0, c), there is β = β(a) > 0, independent of t0, such that

‖x(t0)‖ ≤ a⇒ ‖x(t)‖ ≤ β,∀t ≥ t0 ≥ 0

uniformly ultimately bounded with ultimate bound b if there exist positive constants b, c, inde-
pendent of t0 ≥ 0, and for every a ∈ (0, c), there is T = T (a, b) > 0, independent of t0, such
that

‖x(t0)‖ ≤ a⇒ ‖x(t)‖ ≤ b,∀t ≥ t0 + T

globally uniformly bound if a is chosen arbitrarily large.

3.7 Input-to-State Stability

Consider the system
ẋ = f(t, x, u) (10)

where f : (0,∞)×Rn×Rn → Rn is piecewise continuous in t and locally Lipschitz in x and u. The
input is a bounded continuous function of t. Suppose that the unforced system

ẋ = f(t, x, 0) (11)

has a globally uniformly asymptotically stable equilibrium point at x = 0.
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Question 2 What can we say about the behavior of (10) in the presence of a bounded input?

Example 23 For the linear time-invariant system

ẋ = Ax+Bu

with a Hurwitz matrix A. Its solution is

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ

We can use ‖eA(t−t0)‖ ≤ ke−λ(t−t0) with k, λ ≥ 0, to estimate the solution

‖x(t)‖ ≤ ke−λ(t−t0)‖x(t0)‖+ k

∫ t

t0

e−λ(t−τ)‖B‖‖u(τ)‖dτ

≤ ke−λ(t−t0)‖x(t0)‖+ k‖B‖ sup
t0≤τ≤t

‖u(τ)‖
∫ t

t0

e−λ(t−τ)dτ

≤ ke−λ(t−t0)‖x(t0)‖+
k‖B‖
λ

sup
t0≤τ≤t

‖u(τ)‖

The zero-input response decays to zero exponentially fast, while the state is bounded for every
bounded input.

Definition 18 The system (10) is said to be input-to-state stable (ISS) if there exist a class
KL function β and a class K function γ such that for any initial state x(t0) and any bounded input
u(t), the solution x(t) exists for all t ≥ t0 and satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0) + γ( sup
t0≤τ≤t

‖u(τ)‖)

Note 3

1. For any bounded u(t), x(t) will be bounded.

2. as t increases, x(t) will be ultimately bounded by a class K function of supt0≤τ≤t ‖u(τ)‖.

3. If u(t) ≡ 0, then x = 0 is asymptotically stable.

4. If u(t)→ 0 as t→∞, so does x(t).

Lemma 11 If the unforced system ẋ = f(t, x, 0) has a globally exponentially stable equilibrium
point at x = 0, then the system ẋ = f(t, x, u) is ISS.

Example 24 An interesting application. The cascade system

ẋ1 = f1(t, x1, x2) (12)

ẋ2 = f2(t, x2) (13)

Suppose both (12) and (13) has globally asymptotically stable equilibrium points at their respective
origins.

Lemma 12 Under the stated assumptions, if the system (12) with x2 as input, is ISS and the
origin of (13) is globally uniformly asymptotically stable, then the origin of the cascade system (12)
and (13) is globally uniformly asymptotically stable.
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4 Adaptive control

4.1 Methods & Types

1. Characterize the desired behavior of the closed-loop systems.

2. Determine a suitable control law containing adjustable parameters.

3. Find a mechanism (an adaptation law) for adjusting those parameters.

4. Analyze the convergence properties and implement the control law.

Gain Scheduling

1. Controller parameters change in a predetermined fashion with the operating conditions.

2. AE: the parameters can be changed quickly in response to changes in the dynamics.

3. DE: it is an open-loop adaptation scheme, with no real “learning”.

Self-Tuning

1. Controller parameters change in a predetermined fashion with the operating conditions.

2. Performs simultaneous parameter identification and control.

3. Uses Certainty Equivalence Principle

Model Reference

1. Plant: containing unknown parameters and having a known structure.

2. RM: specifying the desired output of the control system.

3. Feedback control law: containing adjustable parameters.

4. Adaptation mechanism: updating the adjustable parameters.

Types

1. Indirected: estimate plant parameters ⇒ design controller parameters. The process
model and possibly the disturbance characteristics are first determined. The controller
parameters are designed on the basis of this information.

2. Directed: directly design controller parameter. The controller parameters are changed
directly without the characteristics of the process and its disturbance first being deter-
mined.

Example 25 Consider the following first-order system

ẋ = ax+ u

where a is an unknown parameter, x is the state and u is the control input.
Control objective: design u such that all signals in the closed-loop system are bounded, and x

tracks the state xref of the following reference model

ẋref = −arefxref + brefuc
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where aref > 0 and bref are known, uc(t) is the input command which is bounded and piecewise
continuous.

We propose the control law
u∗ = k∗1x+ k∗2uc

e = x− xref
ė = ẋ− ẋref = ax+ k∗1x+ k∗2uc + arefxref − brefuc

If k∗1 = −a− aref , k∗2 = bref , we have ė = −arefe.

u =

{
k̂1x+ brefuc directed
(−â(t)− aref )x+ brefuc indirected

4.2 Direct MRAC Design for Scalar Systems

Consider the following first-order system

ẋ = −ax+ bu (14)

where a, b are unknown parameters but the sign of b is known.
Control objective: design u such that all signals in the closed-loop system are bounded, and x

tracks the state xref of the following reference model

ẋref = −arefxref + brefuc (15)

where aref > 0 and bref are the desired known constants, uc(t) is the input command which is
bounded and piecewise continuous.

We propose the control law
u = k∗1x+ k∗2uc (16)

where k∗1 , k
∗
2 are the desired known constants. The closed-loop system of (14) and (16) is

ẋ = −ax+ b(k∗1x+ k∗2uc)

= −(a− bk∗1)x+ bk∗2uc

Then the perfect model condition is

k∗1 =
a− aref

b
, k∗2 =

bref
b

(17)

When a, b are unknown, (17) cannot be implemented. Therefore, instead of (16), we propose the
following control law with adjustable parameters.

u = k̂1(t)x+ k̂2(t)uc (18)

where k̂1(t), k̂2(t) are the estimates of k∗1 , k
∗
2 , respectively.

We substitute (18) into (14)

ẋ = −(a− bk̂1(t))x+ bk̂2(t)uc (19)
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Define the tracking error
e , x− xref (20)

We can get from (17) that

ė = ẋ− ẋref
= −(a− bk̂1(t))x+ bk̂2(t)uc + arefxref − brefuc
= −(a− aref − bk̂1(t))x+ (bk̂2(t)− bref )uc − arefe

= −arefe− b(k∗1 − k̂1(t))x+ b(k̂2(t)− k∗2)uc

= −arefe+ bk̃1x+ bk̃2uc (21)

where k̃1 = k̂1(t)− k∗1 and k̃2 = k̂2(t)− k∗2 .
Consider a Lyapunov function candidate

V =
1

2
e2 +

1

2
k̃2

1 +
1

2
k̃2

2 (22)

Taking the time derivative of V , along the trajectories of (21), gives

V̇ = eė+ k̃1
˙̂
k1 + k̃2

˙̂
k2

= −arefe2 + bk̃1xe+ bk̃2uce+ k̃1
˙̂
k1 + k̃2

˙̂
k2

= −arefe2 + k̃1(
˙̂
k1 + bxe) + k̃2(

˙̂
k2 + buce) (23)

If we choose
˙̂
k1 = −bxe, ˙̂

k1 = −buce (24)

We can get that V̇ ≤ 0. However, (24) cannot be implemented since b is unknown.
We consider the following Lyapunov function candidate

V =
1

2
e2 +

|b|
2γ1

k̃2
1 +

|b|
2γ2

k̃2
2 (25)

where γ1, γ2 > 0.
Taking the time derivative of V , along the trajectories of (21), gives

V̇ = −arefe2 +
|b|
γ1
k̃1(

˙̂
k1 + γ1sgn(b)xe) +

|b|
γ2
k̃2(

˙̂
k2 + γ2sgn(b)uce)

If we choose
˙̂
k1 = −γ1sgn(b)xe,

˙̂
k2 = −γ2sgn(b)uce (26)

which leads to
V̇ = −arefe2 ≤ 0 (27)

Thus, V (t) ≤ V (0). From (25), e, k̃1, k̃2 are bounded and x is bounded.
From (21), V̈ = −2arefeė is also bounded.

We can conclude from Barbalat’s lemma that limt→∞ V̇ (t) = 0, i.e. limt→∞ e(t) = 0.
Design steps:
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Open-loop plant ẋ = −ax+ bu; {a, b} are unknown, sgn(b) is known
Reference model ẋref = −arefxref + brefuc
Tracking error e , x− xref
Control input u = k̂1(t)x+ k̂2(t)uc

Direct MRAC laws
˙̂
k1 = −γ1sgn(b)xe,

˙̂
k1 = −γ2sgn(b)uce; γ1, γ2 > 0

Table 1: Direct MRAC design summary for a scalar system

1. Find a controller structure (based on known parameters)

2. Derive the error dynamics

3. Find a Lyapunov function

4. Design parameter updating laws such that V̇ ≤ 0.

4.3 Direct MRAC Design With A Nonlinear Term

We consider the following scalar system

ẋ = −ax+ b(u+ f(x)) (28)

where f(x) = ϕ(x)θ with ϕ being a bounded and continuous known function, and a, b, θ are unknown
constant parameters.

The reference model is given by

ẋref = −arefxref + brefuc (29)

We propose the control law
u = k̂1(t)x+ k̂2(t)uc − ϕ(x)θ̂(t) (30)

Then (28) can be written as

ẋ = −ax+ bk̂1(t)x+ bk̂2(t)uc − bϕ(x)(θ̂(t)− θ)

By k∗1 =
a−aref

b , k∗2 =
bref
b , the error dynamics is

ė = −ax+ bk̂1(t)x+ bk̂2(t)uc − bϕ(x)(θ̂(t)− θ) + arefxref − brefuc
= (aref − a)x+ bk̂1(t)x+ (bk̂2(t)− bref )uc − bϕ(x)(θ̂(t)− θ)− arefe

= b(k̂1(t)− k∗1)x+ b(k̂2(t)− k∗2)uc − bϕ(x)(θ̂(t)− θ)− arefe
= −arefe+ bk̃1x+ bk̃2uc − bϕθ̃ (31)

where k̃1 = k̂1(t)− k∗1 and k̃2 = k̂2(t)− k∗2 and θ̃ = θ̂(t)− θ.
Consider the following Lyapunov function candidate

V =
1

2
e2 +

|b|
2γ1

k̃2
1 +

|b|
2γ2

k̃2
2 +

|b|
2γ3

θ̃2 (32)
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where γ1, γ2, γ3 > 0.
Taking the time derivative of V , along the trajectories of (31), gives

V̇ = eė+
|b|
γ1
k̃1

˙̂
k1 +

|b|
γ2
k̃2

˙̂
k2 +

|b|
γ3
θ̃

˙̂
θ

= −arefe2 +
|b|
γ1
k̃1(

˙̂
k1 + γ1sgn(b)xe) +

|b|
γ2
k̃2(

˙̂
k2 + γ2sgn(b)uce) +

|b|
γ3
θ̃(

˙̂
θ − γ3sgn(b)ϕe)

If we choose
˙̂
k1 = −γ1sgn(b)xe,

˙̂
k2 = −γ2sgn(b)uce,

˙̂
θ = γ3sgn(b)ϕe (33)

which leads to
V̇ = −arefe2 ≤ 0 (34)

Thus, V (t) ≤ V (0). From (32), e, k̃1, k̃2,
˙̂
θ are bounded and x is bounded.

V̈ = −2arefeė

From (31), V̈ is bounded.
We can conclude from Barbalat’s lemma that limt→∞ V̇ (t) = 0, i.e. limt→∞ e(t) = 0.

Question 3
Consider the following scalar system

ẋ = −ax+ bu+ ϕθ

Answer 2
We propose the following control law

u = k̂1(t)x+ k̂2(t)uc − ϕ(x)
θ̂(t)

b̂(t)
, k̂1(t)x+ k̂2(t)uc − ϕ(x)θ̂1(t)

4.4 Indirect MRAC Design for Scalar Systems

Consider the following first-order scalar system

ẋ = −ax+ bu (35)

where a, b are unknown parameters.
With the following reference model

ẋref = −arefxref + brefuc (36)

The modeling condition is

k∗1 =
a− aref

b
, k∗2 =

bref
b

(37)

We propose the control law
u = k̂1(t)x+ k̂2(t)uc (38)
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In direct adaptive control, k̂1(t), k̂2(t) are generated directly by adaptation laws. In indirect adaptive

control, we follow a different approach. We calculate k̂1(t), k̂2(t) by busing the relationship (35)
and the estimates and of the unknot parameters a, b as

k̂1(t) =
â− aref

b̂
, k̂2(t) =

bref

b̂

which implies

u =
1

b̂
[(â− aref )x+ brefuc] (39)

Using (39), (35) can be written as

ẋ = −(a− â+ â)x+ (b− b̂+ b̂)u

= ãx− b̃u− âx+ b̂u

= ãx− b̃u− arefx+ brefu (40)

where ã , â− a and b̃ , b̂− b.
Then the error dynamics can be written as

ė = −arefe+ ãx− b̃u (41)

Consider a Lyapunov function candidate

V =
1

2
e2 +

1

2γ1
ã2 +

1

2γ2
b̃2 (42)

Taking the time derivative of V , gives

V̇ = −arefe2 +
1

γ1
ã( ˙̂a+ γ1ex) +

1

γ2
b̃(

˙̂
b− γeu)

If we choose
˙̂a = −γ1ex,

˙̂
b = γ2eu (43)

We can get that V̇ = −arefe2 ≤ 0.

And consequently, e, ã, b̃ ∈ L∞. Since xref ∈ L∞ and a, b are constants, we have x, â, b̂ ∈ L∞.

V̈ = −2arefeė

In order to claim the boundedness of u, we need to modify the adaptation law and prevent b̃(t) from
going through zero. Such a modification can be achieved using the following a prior knowledge.

Assumption: The sgn(b) and a lower bound bmin > 0 for |b| are known.
Let us the following modification of the second equation in (43)

˙̂
b =

{
γ2eu, if |b̂| > bminorif |b̂| = bminanduesgn(b) ≥ 0

0, otherwise(if |b̂| = bminanduesgn(b) < 0)
(44)

The main motivation here is to stop adaptation of b̂ if the parameter reaches its lower absolute
limit value bmin with a nonzero time derivative.
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We need to argue that the modification (44) does indeed preserve b̂ from crossing its allowable
bound and at the same time, it preserves the closed-loop system ability. For this to be true, it is
sufficient to show that

b̃(
˙̂
b− γeu) ≤ 0

We only need to check if |b̂| = bminanduesgn(b) < 0, then
˙̂
b = 0,−b̃eu = −(b̂− b)sgn(b) · uesgn(b)

−b̃eu
{
≤ 0, sgn(b) > 0, b̂ = bmin ≤ b⇒ b̂− b ≤ 0

≤ 0, sgn(b) < 0, b̂ = −bmin ≥ b⇒ b̂− b ≥ 0

Overall, we can get under the modification (44)

b̃(
˙̂
b− γeu) ≤ 0

which implies
V̇ ≤ −arefe2 ≤ 0 (45)

We can get x, â, b̂, u, ė ∈ L∞. Integrating both sides of (45)

V (t)− V (0) ≤ aref
∫ t

0

e2(τ)dτ ≤ 0

⇒
∫ t

0

e2(τ)dτ ≤ 1

aref
(V (0)− V (t)) ≤ 1

aref
V (0)

(e(t) ∈ L2)

Let f(t) ,
∫ t

0
e2(τ)dτ , f(t) has a finite limit.

ḟ = e2; f̈ = 2eė ∈ L∞

From Barbalat’s Lemma,
lim
t→∞

ḟ(t) = 0, i.e. lim
t→∞

e(t) = 0.

Lemma 13 If e ∈ L2 ∩ L∞, ė ∈ L∞, we have e→ 0 as t→∞.

Lemma 14 If e ∈ L1 ∩ L∞, ė ∈ L∞, we have e→ 0 as t→∞.

4.5 Direct MRAC Design for General Linear System

We consider a linear system described by

ẋ = Ax+BΛu (46)

where x ∈ Rn is the system state, u ∈ Rm is the control input, and B ∈ Rn×m is the known control
matrix, while A ∈ Rn×n,Λ ∈ Rm×m are unknown constant matrix. In addition, assume that Λ
is diagonal with positive diagonal elements, and (A,BΛ) is controllable. The uncertainty in Λ is
introduced to model the control failure.
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Open-loop plant ẋ = −ax+ bu
Reference model ẋref = −arefx+ brefuc
Tracking error e = x− xref
Control input u = 1

b̂
[(â− aref )x+ brefuc]

Indirect MRAC laws ˙̂a = −γ1ex
˙̂
b =

{
γ2eu, if |b̂| > bminorif |b̂| = bminanduesgn(b) ≥ 0

0, otherwise(if |b̂| = bminanduesgn(b) < 0)

Table 2: Indirect MRAC design summary for a scalar system

Control objective: design u, such that all signals in the closed-loop system are bounded and x
tracks the state xref of the following reference model.

ẋref = Arefxref +Brefuc (47)

where Aref ∈ Rn×n is Hurwitz, Bref ∈ Rn×m, uc ∈ Rm is the bounded command vector.

If matrices A ∈ Rn×n and Λ ∈ Rm×m were known, we can apply the control law

u = K∗1x+K∗2uc

where K∗1 ∈ Rm×n,K∗2 ∈ Rm×m and we can obtain

ẋ = (A+BΛK∗1 )x+BΛK∗2uc

Then the matching condition is {
A+BΛK∗1 = Aref
BΛK∗2 = Bref

(48)

We should note that in general, there is no guarantee that the idea gains K∗1 ,K
∗
2 exist such that

(48) is satisfied. However, in practice, if the structure of A,B is known. Aref , Bref may be designed
so that (48) has a solution.

Let us assume that K∗1 ,K
∗
2 in (48) exist, i.e., there is sufficient structure flexibility to meet the

control objective. We propose the control law

u = K̂1(t)x+ K̂1(t)uc

By adding and subtracting the desired term, we obtain

ẋ = Arefx+Brefuc +BΛK̃1x+BΛK̃2uc

where K̃1 , K̂1 −K∗1 , K̃2 , K̂2 −K∗2 .
Define the tracking error e , x− xref . Its dynamic is

ė = Arefe+BΛK̃1x+BΛK̃2uc (49)

Since Aref is Hurwitz, we can get from Lyapunov theorem that for any positive definite Q ∈ Rn×n,
there exists a unique positive definite P ∈ Rn×n such that

ATrefP + PAref = −Q < 0
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Remark 14 Property of trace: For A ∈ Rm×n, B ∈ Rn×m, we have tr(AB) = tr(BA).

we then consider the following Lyapunov function candidate

V = eTPe+ tr{K̃T
1 ΛK̃1}+ tr{K̃T

2 ΛK̃2}

Since

eTPBΛK̃1x = tr{eTPBΛK̃1x}
= tr{xeTPBΛK̃1}
= tr{K̃1ΛBTPexT }

Its derivative is

V̇ = 2eTP ė+ 2tr{K̃T
1 Λ

˙̂
K1}+ 2tr{K̃T

2 Λ
˙̂
K2}

= 2eTP (Arefe+BΛK̃1x+BΛK̃2uc) + 2tr{K̃T
1 Λ

˙̂
K1}+ 2tr{K̃T

2 Λ
˙̂
K2}

= 2eTPArefe+ 2eTPBΛK̃1x+ 2eTPBΛK̃2uc + 2tr{K̃T
1 Λ

˙̂
K1}+ 2tr{K̃T

2 Λ
˙̂
K2}

= 2eTPArefe+ 2tr{K̃1ΛBTPexT }+ 2tr{K̃2ΛBTPeuTc }+ 2tr{K̃T
1 Λ

˙̂
K1}+ 2tr{K̃T

2 Λ
˙̂
K2}

we can choose
˙̂
K1 = −BTPexT , ˙̂

K2 = −BTPeuTc
Then we have

V̇ = −eTQe ≤ 0

Thus, V (t) ≤ V (0), which implies that e, K̃1, K̃2 ∈ L∞. Since uc is bounded and Aref is Hurwitz,
xref ∈ L∞. Since x = e+ xref , x ∈ L∞. From (49), ė ∈ L∞. Then

V̈ = −2eTQė ∈ L∞

Using Barbalat’s Lemma, we can get limt→∞ V̇ = 0, i.e., limt→∞ e(t) = 0.

Question 4 ? ? ?

1. Λ with all negative elements?

Solution: choose tr{K̃T
1 (−Λ)K̃1}

2. Λ with some negative elements and some positive elements?

Solution: choose
V = eTPe+ tr{K̃T

1 |Λ|K̃1}+ tr{K̃T
2 |Λ|K̃2}

and
˙̂
K1 = −sgn(Λ)BTPexT ,

˙̂
K2 = −sgn(Λ)BTPeuTc

where |Λ| , Λsgn(Λ), sgn(Λ) , diag{sgn(λi)}.

Question 5
ẋ = Ax+BΛ(u+ Φ(t) ·Θ)

where Θ ∈ Rp×1,Φ(t) ∈ Rm×p with Φ being bounded and Θ unknown.
Solution:

u = K̂1(t)x+ K̂2(t)uc − Φ(t) · Θ̂
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4.6 Adaptive Control Design Without RM

Consider a first-order scalar system
ẋ = ax+ bu (50)

where both a and b are unknown constants and b 6= 0.
The objective is to design u such that limt→∞ x(t) = 0.
If a and b are known, the following control input

u = k∗x

with a + bk∗ = a0 < 0 can stabilize the system with limt→∞ x(t) = 0. Since k∗ is unknown, we
design the following control input with a time-varying gain

u = k̂(t)x

The closed-loop system is

ẋ = ax+ bk̂(t)x+ a0x− (a+ bk∗)x

= a0x+ b(k̂(t)− k∗)x
= a0x+ bk̃(t)x

Consider a Lyapunov function candidate

V =
1

2
x2 +

|b|
2γ
k̃2

V̇ = xẋ+
|b|
γ
k̃

˙̂
k

= a0x
2 + bk̃(t)x2 +

|b|
γ
k̃

˙̂
k

= a0x
2 +
|b|
γ
k̃(

˙̂
k + γsgn(b)x2)

Choose
˙̂
k = γsgn(b)x2.

When the sign of b is unknown, the following controller structure was suggested by Nussbaum.

u = N (k)x

N (k) = k2 cos k

k̇ = x2

lim
s→∞

sup
1

s

∫ s

0

N (τ)dτ = +∞

lim
s→∞

inf
1

s

∫ s

0

N (τ)dτ = −∞

N (k) changes its sign, an infinite number of time as k →∞.
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Note that the closed-loop system is

ẋ = (a+ bN (k))x

= (a+ bk2 cos k)x

We derive the following express

d(x2)

dk
=
d(x2)

dt

dt

dk

= 2xẋ · 1

k̇

= 2x(a+ bk2 cos k)x
1

x2

= 2(a+ bk2 cos k) (51)

Integrating both sides of (51) from k(t0) to k(t)

x2(k(t))− x2(k(t0)) = 2

∫ k(t)

k(t0)

(a+ bτ2 cos τ)dτ

⇒
x2(k(t)) = x2(k(t0)) + 2ϕ(k(t))− 2ϕ(k(t0))

with
ϕ(k(t)) = ak(t) + b(k2(t) sin k(t) + 2k(t) cos(k(t))− 2 sin k(t)) (52)

Note that k(t) is monotone nondecreasing. k(t) must either approach a finite or grow without
bound. Assume that k(t) grows without bound. Then the sign of ϕ(k(t)) will be dominated by
the term bk2(t) sin k(t), which can assume a large negative value independent of the sign of b.
As a result, the right side of (52) is negative. Clearly, k(t) must be bounded. Then we can get

x ∈ L∞, ẋ ∈ L∞. Note that k̇ = x2. We have
∫ t

0
x2(τ)dτ = k(t) − k(0). Therefore, x ∈ L2. By

Barbalat’s Lemma, limt→∞ x(t) = 0.

5 Nonlinear Control System Design

5.1 Feedback Control

In a typical control problem, our interest is usually in the analysis and design of feedback control
systems. Consider the following system

ẋ = f(t, x, u)

y = h(t, x, u)

1. State feedback stabilization

Design a feedback control law
u = γ(t, x)
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such that x = 0 is uniformly asymptotical stable equilibrium point of the closed-loop system

ẋ = f(t, x, γ(t, x))

Static state feedback: u = γ(t, x).

Dynamic state feedback: u = γ(t, x, z), ż = g(t, x, z). (such as adaptive control)

2. Output feedback stabilization

Static output feedback: u = γ(t, y).

Dynamic output feedback: u = γ(t, y, z), ż = g(t, y, z).

3. For linear system

ẋ = Ax+Bu

y = Cx+Du

State feedback: u = −Kx, ẋ = (A−BK)x, A−BK being Hurwitz.

Output feedback: u = −Kx̂, ŷ = Cx̂+Du, ˙̂x = Ax̂+Bu+H(y − ŷ).

Define e = x− x̂. Then the error dynamic is ė = (A−HC)e, A−HC being Hurwitz.

ẋ = (A−BK)x+BKe, A−BK being Hurwitz. (ISS)

4. Tracking

Consider a nonlinear dynamics
ẋ = f(t, x, u)

y = h(t, x, u) , h(x)

and a desired output trajectory yd, find u such that the tracking error y − yd goes to zero.

5.2 Feedback Linearization

Central idea Can we transform the nonlinear dynamics into a linear one? So that linear control
technique can be used. This differs entirely from approximate linearization through a Jacobian
matrix, in that feedback linearization is achieved by exact state transformation and feedback,
rather by linear approximates of the dynamics.

Problem statement Given ẋ = f(x, u), x ∈ Rn, u∈ Rm , find function g, h and new variables
z ∈ Rn, v ∈ Rm, such that u = g(x, v), z = h(x), ż = Az +Bv,A ∈ Rn×n, B ∈ Rn×m.

5.2.1 Controllability Canonical Form

ẋ1 = x2

ẋ2 = x3

. . .

ẋn−1 = xn

ẋn = f(x) + b(x)u
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Assume that b 6= 0, use the control input

u =
1

b(x)
(v − f(x))

We can cancel the nonlinearities and obtain

ẋn = v

Thus the control law
v = −k0x1 − k1x2 − · · · − kn−1xn

with ki chosen such that the polynomial

pn + kn−1p
n−1 + · · ·+ k0 = 0

has all the roots in the LHP, which leads to x(t)→ 0.

5.2.2 An Input-State Linearization

The technique of input-state linearization solves the problem in two steps.

1. Find a state transformation z = z(x) and an input transformation u= u(x, v) so that the
nonlinear system is transformed into a linear one, in the familiar form ż = Az + bv.

2. Use standard linear techniques to design u.

Example 26 Consider the system

ẋ1 = −2x1 + ax2 + sinx1

ẋ2 = −x2 cosx1 + u cos(2x1)

A specific difficulty is the nonlinearity in the first equation, which cannot directly canceled by u.
Pick z1 = x1, z2 = ax2 + sinx1 ⇒ ax2 = z2 − sin z1

ż1 = −2z1 + z2

ż2 = aẋ2 + cosx1 · ẋ1

= a(−x2 cosx1 + u cos(2x1)) + cosx1(−2x1 + ax2 + sinx1)

= −(z2 − sin z1) cos z1 + ua cos(2z1) + (−2z1 + z2) cos z1

= (sin z1 − 2z1) cos z1 + ua cos(2z1)

Design u = 1
a cos(2z1) (v − (sin z1 − 2z1) cos z1), we obtain{

ż1 = −2z1 + z2

ż2 = v

For stabilization, use v = −k1z1 − k2z2, we can place the poles anywhere with proper choice of
feedback control gains k1 and k2.

Remark 15

1. The result is not global since u is not well defined if cos(2z1) = 0.

2. In order to implement the control law, the new state components (z1, z2) must be available.
That is, the full state (x1, x2) must be measured to compute u.
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5.2.3 Input-Output Linearization

We now add an output y to the original system{
ẋ = f(x, u)
y = h(x)

Design u such that y → 0. We want to find a direct and simple relation between y and u.
Consider the third-order system

ẋ1 = sinx2 + (x2 + 1)x3

ẋ2 = x5
1 + x3

ẋ3 = x2
1 + u

y = x1

Differentiate the output
ẏ = ẋ1 = sinx2 + (x2 + 1)x3

Since ẏ is still not directly related to u, let us differentiate again, we obtain

ÿ = ẋ2 cosx2 + ẋ2x3 + (x2 + 1)ẋ3

= (x5
1 + x3) cosx2 + x3(x5

1 + x3) + (x2 + 1)(x2
1 + u)

= (x5
1 + x3)(cosx2 + x3) + (x2 + 1)x2

1 + u(x2 + 1)

, f1(x) + u(x2 + 1)

Design u = 1
1+x2

(v − f1(x)), we have ÿ = v.
Design v = −k1y − k2ẏ.

Remark 16

1. Full state (x1, x2, x3) is still necessary to compute u.

2. Singular at x2 = −1

3. Pick v = −k1y − k2ẏ, k1, k2 > 0 to stabilize y, but will x2, x3 be stable?

Remark 17 Limitation:

1. It cannot be used fo all nonlinear systems.

2. The full state must be measured.

3. Existence of singular points.

Remark 18 The basic philosophy of feedback linearization is to cancel the nonlinear terms of the
system. However, we should examine the philosophy itself: Is it a good idea to cancel nonlinear
term?

Example 27 ẋ = ax− x3 + u
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5.3 Sliding Mode Control

5.3.1 Motivating Example

Consider a simple second-order system

ẋ1 = x2

ẋ2 = f(x) + g(x)u

where f(x) and g(x) are nonlinear functions, g(x) ≥ g0 > 0 for all x.

Objective: Design u to stabilize the origin, i.e., x1, x2→∞, as t→∞.

Idea:

Define a sliding surface
s = x2 + λx1 = 0 withλ > 0

On the surface

s = 0⇒
{
ẋ1 = −λx1 ⇒ x1(t) = x1(0)e−λt

x2 = −λx1 = −λx1(0)e−λt

x1(t) and x2(t) tend to zero as t → ∞ and the rate of convergence can be controlled by the
choice of λ. And the motion on s = 0 is independent of f and g.

1. Reaching phase: design u to force the state (x1, x2) to be on s = 0 in finite time;

2. Sliding phase: (x1, x2) slides to the origin.

The dynamics of s is ṡ = ẋ2 + λẋ1 = f(x) + g(x)u+ λx2.
Design a Lyapunov function candidate V = 1

2s
2.

Its derivative is V̇ = s · ṡ = s(f(x) + g(x)u+ λx2).

Design u = 1
g(x) (−f(x)− λx2 − ksgn(s)), k > 0, sgn(s) =

 1 s > 0
0 s = 0
−1 s < 0

.

We obtain V̇ = −ks · sgn(s) = −k|s| = −k
√

2V ⇒ V̇√
V

= −
√

2k ⇒∫ t

0

V̇√
V
dt = 2

√
V
∣∣∣t
0

= 2
√
V (t)− 2

√
V (0) = −

√
2kt

⇒

V (t) ≡ 0, s(t) ≡ 0,∀t ≥
√

2V (0)

k

Remark 19 By s = x2 + λx1 = ẋ1 + λx1, we have

ẋ1 = −λx1 + s

where x1 can be viewed as the state and s can be viewed as input.
Then by ISS, we have s→ 0⇒ x1 → 0, x2 → 0.
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5.3.2 Tracking Problem {
ẋ1 = x2

ẋ2 = f(x) + g(x)u

Objective: state

[
x1

x2

]
to track

[
xd
ẋd

]
.

Define the tracking error x̃1 = x1(t)− xd(t), x̃2 = x2(t)− ẋd(t) and the sliding surface

s = x̃2 + λx̃1 = 0.

⇔ x̃2 = ˙̃x1 = −λx̃1 on the surface.
The dynamics of s is given by

ṡ = ˙̃x2 + λ ˙̃x1

= ẋ2 − ẍd(t) + λx̃2

= f(x) + g(x)u− ẍd(t) + λx̃2

Design a Lyapunov function candidate V = 1
2s

2.

Its derivative is V̇ = s · ṡ = s(f(x) + g(x)u− ẍd(t) + λx̃2).
Design u = 1

g(x) (−f(x) + ẍd(t)− λx̃2 − ksgn(s)), k > 0, yields V̇ ≤ −k|s|.

5.3.3 Tracking With Uncertainties

Function f(x) is not exactly known but can be characterized by an estimate f̂(x) and an error
bound F (x):

|f̂(x)− f(x)| ≤ F (x)

Function g(x) is uncertain with 0 < gmin(x) ≤ g(x) ≤ gmax(x).
Define ĝ(x) =

√
gmin(x)gmax(x), we have

1

β
,

√
gmin(x)gmax(x)

gmax(x)
≤ ĝ(x)

g(x)
≤
√
gmin(x)gmax(x)

gmin(x)
=

√
gmax(x)

gmin(x)
, β ≥ 1

Design u = 1
ĝ(x) (−f̂(x) + ẍd(t)− λx̃2 − ksgn(s)), k > 0, yields

V̇ = s

{
f(x)− ẍd(t) + λx̃2 +

g(x)

ĝ(x)
[−f̂(x) + ẍd(t)− λx̃2 − ksgn(s)]

}
= s

{
[f(x)− f̂(x)] +

(
g(x)

ĝ(x)
− 1

)
(−f̂(x) + ẍd(t)− λx̃2)− k g(x)

ĝ(x)
sgn(s)

}
≤ |s|

{
F (x) +

∣∣∣∣g(x)

ĝ(x)
− 1

∣∣∣∣ · | − f̂(x) + ẍd(t)− λx̃2| − k
g(x)

ĝ(x)

}
= −|s|

{
k
g(x)

ĝ(x)
− F (x)−

∣∣∣∣g(x)

ĝ(x)
− 1

∣∣∣∣ · | − f̂(x) + ẍd(t)− λx̃2|
}
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Design k such that

k
g(x)

ĝ(x)
≥ F (x) +

∣∣∣∣g(x)

ĝ(x)
− 1

∣∣∣∣ · | − f̂(x) + ẍd(t)− λx̃2|+ η, η > 0

⇔

k ≥ ĝ(x)

g(x)
[F (x) + η] +

∣∣∣∣1− ĝ(x)

g(x)

∣∣∣∣ · | − f̂(x) + ẍd(t)− λx̃2|

Note that 1
β ≤

ĝ(x)
g(x) ≤ β, β > 1.

Choose k = β[F (x) + η] + (β − 1) · | − f̂(x) + ẍd(t)− λx̃2|, then we have V̇ ≤ −η|s|.

Example 28

ẋ1 = x2

ẋ2 = u+ d(t)

where d(t) is a external disturbance with |d(t)| ≤ dmax.
Design a sliding surface: s = x2 + λx1, λ > 0.
The dynamics of s is ṡ = ẋ2 + λẋ1 = u+ d(t) + λx2.
Design a Lyapunov function candidate V = 1

2s
2.

Its derivative is V̇ = s · ṡ = s(u+ d(t) + λx2).
Design u = −λx2 − ksgn(s), k > 0, yields

V̇ = s(d(t)− ksgn(s))

= −k|s|+ sd(t)

≤ −(k − dmax)|s|

Choose k = dmax + η, η > 0, then we have V̇ ≤ −η|s|.

Example 29 If dmax is unknown, we can design

u = −λx2 − k̂sgn(s)

Denote k̃ = k̂ − dmax − η.
Consider the following Lyapunov function candidate

V =
1

2
s2 +

1

2γ
k̃2, γ > 0,

Its derivative is

V̇ = sṡ+
1

γ
k̃

˙̂
k

≤ −(k̂ − dmax)|s|+ 1

γ
k̃

˙̂
k

= −(k̂ − dmax − η)|s| − η|s|+ 1

γ
k̃

˙̂
k

=
1

γ
k̃(

˙̂
k − γ|s|)− η|s|
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Design
˙̂
k = γ|s|, we obtain V̇ ≤ −η|s|. Integrating both sides yields

V (t)− V (0) ≤ −η
∫ t

0

|s|dτ

⇒ s ∈ L1.
By s ∈ L1 ∩ L∞, ṡ ∈ L∞, we have limt→∞ s = 0.

Question 6 ? ? ? ? ?
‖d(t)‖ ≤ dmax

‖d(t)‖ ≤ dmax(1 + ‖x1‖+ ‖x2‖2)

dmax is unknown.

5.4 Backstepping

5.4.1 Basic Backstepping

Consider the system

ż = f(z) + g(z)ξ

ξ̇ = u

where [zT , ξT ]T ∈ Rn+1 is the state and u ∈ R is the control input. The functions of f, g are smooth
in a domain D containing z = 0 and f(0) = 0.

We want to design a state feedback control law to stabilize the origin. We view this as a cascade
connection of two components.

Suppose that we can asymptotically stabilize the first system

ż = f(z) + g(z)ξ

by a state feedback control law ξ = Φ(z), with Φ(0) = 0. This implies that the origin of

ż = f(z) + g(z)Φ(z)

is asymptotically stable.
Suppose that we know a Lyapunov function V (z) that satisfies

V̇ =
∂V

∂z
[f(z) + g(z)Φ(z)] ≤ −ω(z)

where ω(z) is positive definite.
Add and subtract g(z)Φ(z) to the original system

ż = f(z) + g(z)Φ(z) + g(z)(ξ − Φ(z))

ξ̇ = u

We now introduce the change of variable

y = ξ − Φ(z)

41



We can get the following system

ż = f(z) + g(z)Φ(z) + g(z)y

ẏ = u− Φ̇(z)

This change of variable is often called backstepping since it “back-steps” the control −Φ(z) though
the integrator.

Since f, g and Φ are known

Φ̇(z) =
∂Φ

∂z
ż =

∂Φ

∂z
(f(z) + g(z)ξ)

Letting v = u− Φ̇(z) reduces our system to

ż = f(z) + g(z)Φ(z) + g(z)y

ẏ = v

which has the same “form” as the system we started with the exception that we know the first
component is asymptotically stable at the origin when y is zero.

Consider a Lyapunov function candidate

Vc(z, y) = V (z) +
1

2
y2

Its derivative is given by

V̇c(z, y) = V (z) + y · ẏ

=
∂V

∂z
[f(z) + g(z)Φ(z) + g(z)y] + yv

≤ −ω(z) +
∂V

∂z
g(z)y + yv

Design v = −∂V∂z g(z)− ky, k > 0. We obtain V̇ (z, y) ≤ −ω(z)− ky2, (ND)
which implies that the origin (z = 0, y = 0) is asymptotically stable. Since Φ(0) = 0, we

conclude that the origin (z = 0, ξ = 0) is asymptotically stable. And the state feedback control law
is

u = v + Φ̇

= −∂V
∂z

g(z)− ky +
∂Φ

∂z
(f(z) + g(z)ξ)

= −∂V
∂z

g(z)− k(ξ − Φ(z)) +
∂Φ

∂z
(f(z) + g(z)ξ)

Example 30 Consider the system

ẋ1 = x2
1 − x3

1 + x2

ẋ2 = u
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we start with the system
ẋ1 = x2

1 − x3
1 + x2

with x2 viewed as the input and proceed to design a feedback control x2 = Φ(x1) to stabilize the
origin x1 = 0.

Design x2 = Φ(x1) = −x2
1, we have ẋ1 = −x3

1. Consider V (x1) = 1
2x

2
1, whose derivative is

V̇ (x1) = x1ẋ1 = −x4
1 ND

To backstep, we use the change of variable

y = x2 − Φ(x1) = x2 + x2
1

Then the original system can be transformed into the form

ẋ1 = −x3
1 + y

ẏ = v

where v = u+ 2x1(x2
1 − x3

1 + x2).
We then consider the following combined Lyapunov function candidate

Vc =
1

2
x2

1 +
1

2
y2

Its derivative is

V̇c = x1ẋ1 + yẏ

= −x4
1 + x1y + yv

Design v = −x1 − ky, k > 0. Then V̇c = −x4
1 − ky2 is ND. ⇒ x1, y → 0.

The control input is designed as follows

u = v − 2x1(x2
1 − x3

1 + x2) = −x1 − ky − 2x1(x2
1 − x3

1 + x2)

Remark 20

ẋ1 = x2
1 − x3

1 + x2

x2 = −x2
1 + x1x2 + · · ·+

ẋ3 = u+ x3x1 + · · ·+

5.4.2 Adaptive Backstepping

Consider the following system

ẋ1 = x2 + ϕ(x1)θ

ẋ2 = u

where θ is an unknown constant, and ϕ(x1) is a bounded function with ϕ(0) = 0.
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Assume that θ is known. If x2 were the control input, it should be designed as

x2 = −k1x1 − ϕ(x1)θ , α1(x1), k1 > 0

Since θ is unknown, we can still use the idea of backstepping.
Step 1:
Define z1 = x1. Under the condition that θ is unknown, if x2 were the control input, an adaptive

controller would be given

α1(x1, v1) = −k1z1 − ϕ(z1)v1

v̇1 = γ1z1ϕ(z1)

In the above equation, we have replaced the parameter estimate θ̂ with v1, which denotes the
estimate generated in the first design step. There will be another estimate generated in the next
step.

Define the change of variable
z2 , x2 − α1(x1, v1)

we then have the following dynamics

ż1 = ẋ1

= x2 + ϕ(z1)θ

= x2 − α1(x1, v1) + α1(x1, v1) + ϕ(z1)θ

= z2 − k1z1 − ϕ(z1)(v1 − θ)

Consider the following Lyapunov function candidate

V1(z1, v1) =
1

2
z2

1 +
1

2γ1
(v1 − θ)2

Its derivative is

V̇1 = z1ż1 +
1

γ1
(v1 − θ)v̇1

= z1(z2 − k1z1 − ϕ(z1)(v1 − θ)) +
1

γ1
(v1 − θ)γ1z1ϕ(z1)

= −k1z
2
1 + z1z2

Step 2:
The dynamics of z2 is now expressed as

ż2 = ẋ2 − α̇1(z1, v1)

= u− ∂α1

∂z1
ż1 −

∂α1

∂v1
v̇1

= u− ∂α1

∂z1
(x2 + ϕ(z1)θ)− ∂α1

∂v1
γ1z1ϕ(z1)

= u− ∂α1

∂z1
x2 −

∂α1

∂v1
γ1z1ϕ(z1)− θ∂α1

∂z1
ϕ(z1)
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At this point, we need to design u and a Lyapunov function candidate such that the closed-loop
system is asymptotically stable. One first attempt is the combined Lyapunov function candidate

Vc(z1, z2, v1) = V1(z1, v1) +
1

2
z2

2

whose derivative is

V̇c = V̇1 + z2ż2

= −k1z
2
1 + z1z2 + z2

(
u− ∂α1

∂z1
x2 −

∂α1

∂v1
γ1z1ϕ(z1)− θ∂α1

∂z1
ϕ(z1)

)
To deal with the term containing θ, we will try to employ the existing estimate v1.

u = −z1 − k2 + z2
∂α1

∂z1
x2 +

∂α1

∂v1
γ1z1ϕ(z1) + v1

∂α1

∂z1
ϕ(z1), k2 > 0

we then can get

V̇c = −k1z
2
1 − k2z

2
2 + z2(v1 − θ)

∂α1

∂z1
ϕ(z1)

There is no design freedom left to cancel the (v1 − θ) term. To overcome this difficulty, we replace
v1 with a new estimate v2.

u = −z1 − k2 + z2
∂α1

∂z1
x2 +

∂α1

∂v1
γ1z1ϕ(z1) + v2

∂α1

∂z1
ϕ(z1), k2 > 0

The presence of the new estimate v2 suggests the following Lyapunov function candidate

Vc = V1(z1, v1) +
1

2
z2

2 +
1

2γ2
(v2 − θ)2

Its derivative is

V̇c = −k1z
2
1 − k2z

2
2 + z2(v2 − θ)

∂α1

∂z1
ϕ(z1) +

1

γ2
(v2 − θ)v̇2

Choose v̇2 = −γ2z2
∂α1

∂z1
ϕ(z1) which yields V̇c = −k1z

2
1 − k2z

2
2 , NSD.

Integrating both sides yields

k1

∫ t

0

z2
1dτ + k2

∫ t

0

z2
2dτ = Vc(0)− Vc(t) ≤ Vc(0)

Note that the closed-loop adaptive system is

ż1 = −k1z1 + z2 − (v1 − θ)ϕ(z1)

ż2 = −z1 − k2z2 + (v2 − θ)
∂α1

∂z1
ϕ(z1)

v̇1 = γ1z1ϕ(z1)

v̇2 = −γ2z2
∂α1

∂z1
ϕ(z1)
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The matrix form is[
ż1

ż2

]
=

[
−k1 1
−1 −k2

] [
z1

z2

]
+

[
−ϕ 0

0 ∂α1

∂z1
ϕ

] [
v1 − θ
v2 − θ

]
[
v̇1

v̇2

]
= −

[
γ1 0
0 γ2

] [
−ϕ 0

0 ∂α1

∂z1
ϕ

] [
z1

z2

]
We can get z1, z2 ∈ L2 ∩ L∞, ż1, ż2 ∈ L∞.

From Barbalat’s Lemma, limt→∞ z1 = limt→∞ z2 = 0.
Note that z1 = x1, x2 = z2 − α1(x1, v1) and ϕ(0) = 0.
We can conclude that limt→∞ x1 = limt→∞ x2 = 0.

Question 7 {
ẋ1 = x2 + θ1ϕ1(x1)
ẋ2 = u+ θ2ϕ2(x2)

Design u (cancel known extra term or use adaptive for unknown extra term)

Reducing the overparametrization
Step 1:
Define z1 = x1 and view x2 as the virtual control input

x2 = −k1x1 − ϕ(x1)θ̂ , α1(x1, θ̂)

Define z2 = x2 − α1(x1, θ̂). And we have

ż1 = x2 + ϕθ

= x2 − α1(x1, θ̂) + α1(x1, θ̂) + ϕθ

= z2 − k1z1 − ϕθ̃

where θ̃ , θ̂ − θ.
Step 2:
The dynamic of z2 is now expressed as

ż2 = ẋ2 − α̇1(x1, θ̂)

= u− ∂α1

∂z1
ż1 −

∂α1

∂θ̂

˙̂
θ

= u− ∂α1

∂z1
(z2 − k1z1 − ϕθ̃) + ϕ(z1)

˙̂
θ

We consider the combined Lyapunov function candidate

Vc =
1

2
z2

1 +
1

2
z2

2 +
1

2γ
θ̃2
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Its derivative is given as

V̇c = z1ż1 + z2ż2 +
1

γ
θ̃

˙̂
θ

= z1(z2 − k1z1 − ϕθ̃) + z2

(
u− ∂α1

∂z1
(z2 − k1z1 − ϕθ̃) + ϕ

˙̂
θ

)
+

1

γ
θ̃

˙̂
θ

= −k1z
2
1 +

θ̃

γ

(
˙̂
θ − γϕz1 + γz2ϕ

∂α1

∂z1

)
+ z2

(
u− ∂α1

∂z1
z2 +

∂α1

∂z1
k1z1 + z1 + ϕ

˙̂
θ

)
Then we choose

˙̂
θ = γϕz1 − γz2ϕ

∂α1

∂z1

u =
∂α1

∂z1
z2 −

∂α1

∂z1
k1z1 − z1 − ϕ ˙̂

θ − k2z2, k2 > 0

Then we obtain
V̇c = −k1z

2
1 − k2z

2
2

Note that the closed-loop adaptive system is

ż1 = −k1z1 + z2 − θ̃ϕ(z1)

ż2 = −z1 − k2z2 + θ̃
∂α1

∂z1
ϕ(z1)

˙̂
θ = γϕz1 − γz2ϕ

∂α1

∂z1

The matrix form is [
ż1

ż2

]
=

[
−k1 1
−1 −k2

] [
z1

z2

]
+

[
−ϕ
∂α1

∂z1
ϕ

]
θ̃

˙̂
θ = −γ

[
−ϕ ∂α1

∂z1
ϕ
] [ z1

z2

]

6 Application of Robotic Manipulators

Lemma 15 If A = −AT , then xTAx = 0.

6.1 Euler-Lagrange Equation

A dynamical system with p degrees of freedom can be described by the EL equations as

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ

where q ∈ Rp is the vector of generalized coordinates, M(q) ∈ Rp×p is the symmetric positive
definite inertia matrix, C(q, q̇) ∈ Rp is the vector of Coriolis and centrifugal forces, g(q) is the
vector of gravitational force, and τ ∈ Rp is the vector of control force.

Properties
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1. M(q) is positive definite and kmx
Tx ≤ xTMx ≤ km̄xTx, ‖C(x, y)z‖ ≤ kc‖y‖‖z‖.

2. Ṁ(q)− 2C(q, q̇) is skew symmetric.

3. M(q)y+C(q, q̇)x+ g(q) = Y (q, q̇, y, x)Θ, where Y (q, q̇, y, x) is the regressor and Θ is an
unknown but constant vector.

6.2 Position Control

Consider the following system for a robotic manipulator

M(q)q̈ + C(q, q̇)q̇ = u (53)

Control objective: q → qd, q̇d = 0.

Define the position error: q̃ = q − qd, ˙̃q = q̇, ¨̃q = q̈.
The error dynamics is

M(q)¨̃q + C(q, q̇) ˙̃q = u

m

M(q̃ + qd)¨̃q + C(q̃ + qd, ˙̃q) ˙̃q = u

Note 4 Define x1 = q̃, x2 = ˙̃q, it has

ẋ1 = x2

ẋ2 = [M(x1 + qd)]
−1[u− C(x1 + qd, x2)x2]

Design the following control input

u = −Kpq̃ −Kd
˙̃q = −Kp(q − qd)−Kdq̇

where Kp and Kd are positive definite matrices.
Then the closed-loop system is

M(q̃ + qd)¨̃q + C(q̃ + qd, ˙̃q) ˙̃q = −Kpq̃ −Kd
˙̃q

Consider the following Lyapunov function candidate

V1 =
1

2
˙̃qTM ˙̃q

The derivative of V1 is

V̇1 = ˙̃qTM ¨̃q +
1

2
˙̃qT Ṁ ˙̃q

= ˙̃qT (−Kpq̃ −Kd
˙̃q − C ˙̃q) +

1

2
˙̃qT Ṁ ˙̃q

= − ˙̃qTKpq̃ − ˙̃qTKd
˙̃q +

1

2
˙̃qT (Ṁ − 2C) ˙̃q
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Since (Ṁ − 2C) is skew symmetric, we have

V̇1 = − ˙̃qTKpq̃ − ˙̃qTKd
˙̃q

We consider a combined Lyapunov function candidate

V = V1 +
1

2
q̃TKpq̃

Then we have

V̇ = V̇1 + ˙̃qTKpq̃

= − ˙̃qTKd
˙̃q − ˙̃qTKpq̃ + q̃TKp

˙̃q

= − ˙̃qTKd
˙̃q

NSD ⇒ stable.
Note that the closed-loop system is autonomous, we have

E , {x|V̇ = 0} = {x|x2 ≡ 0}

Let x(t) be a solution that belongs identically to E.

x2(t) ≡ 0⇒ ẋ2(t) ≡ 0⇒ x1(t) ≡ 0

Therefore, the only solution that can stay identically to E is the origin. Thus, from LaSalle’s
Theorem, the origin is asymptotically stable, i.e., limt→∞ q(t) = qd, limt→∞ q̇(t) = 0.

Question 8 If the system is M(q)q̈ + C(q, q̇)q̇ + g(q) = u, then choose

u = g(q)−Kpq̃ −Kd
˙̃q

If the system is M(q)q̈ + C(q, q̇)q̇ + g(q) +Dq̇ = u, D is PSD (It is useful, don’t cancel).

6.3 Tracking Control

Objective: q(t)→ qd(t), q̇(t)→q̇d(t). qd(t), q̇d(t), q̈d(t) are bounded.

Define the tracking error: q̃(t) = q(t)− qd(t), ˙̃q(t) = q̇(t)− q̇d(t).
The error dynamics:

M ¨̃q + C ˙̃q = u−Mq̈d − Cq̇d
Design the following controller

u = Mq̈d − Cq̇d −Kpq̃ −Kd
˙̃q

Then the closed-loop system is

M(q̃ + qd(t))¨̃q + C(q̃ + qd(t), ˙̃q + q̇d(t)) ˙̃q = −Kpq̃ −Kd
˙̃q (54)

Actually, (54) is non-autonomous due to the presence of qd(t) and q̇d(t).
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Consider the following Lyapunov function candidate

V =
1

2
˙̃qTM ˙̃q +

1

2
q̃TKpq̃

Its derivative along (54) is also V̇ = − ˙̃qTKd
˙̃q ≤ 0.

Then we have V (t) ≤ V (0), which implies that ˙̃q, q̃ ∈ L∞.
Note that V̈ = −2 ˙̃qT kd ¨̃q ∈ L∞.
From Barbalat’s Lemma, limt→∞ V̇ (t) = 0, i.e., limt→∞ ˙̃q = 0.
Unfortunately, from the study sketched above, it is not possible to derive any immediate con-

clusion about the asymptotic behavior of the position error q̃.

6.4 Sliding Mode Control for Tracking Problem

Define a sliding surface
s = ˙̃q + λq̃ = q̇ − (q̇d − λq̃) = q̇ − q̇r, λ > 0

where q̇r is an auxiliary variable.
Then we have

M(ṡ+ q̈r) + C(s+ q̇r) = u

or
Mṡ+ Cs = u−Mq̈r − Cq̇r (55)

Define the following control input

u = −Ks+Mq̈r + Cq̇r (56)

where K is positive definite. Then the closed-loop system is

Mṡ+ Cs = −Ks
Consider the following Lyapunov function candidate

V =
1

2
sTMs

Its derivative is

V̇ = sTMṡ+
1

2
sT Ṁs

= −sT (Cs+Ks) +
1

2
sT Ṁs

= −sTKs+
1

2
sT (Ṁ − 2C)s

= −sTKs
Therefore, the origin s = 0 is globally uniformly exponentially stable, i,e, limt→∞ s(t) = 0.

Note that s = ˙̃q + λq̃ is ISS with respect to the input s and the state q̃. It follows the fact
limt→∞ s(t) = 0 that limt→∞ q̃(t) = limt→∞ ˙̃q(t) = 0.

Question 9 ? ? ? ? ??
If there exist external disturbance in the system, for example

M(q)q̈ + C(q, q̇)q̇ = u+ d(t)

where ‖d(t)‖ ≤ dmax. We may use u = −ksgn(s) +Mq̈r + Cq̇r.
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6.5 Adaptive Sliding Mode Control for Tracking Problem

When there exist parametric uncertainties, (56) cannot be implemented.
Note that M(q)q̈r + C(q, q̇)q̇r = Y (q, q̇, q̈r, q̇r)Θ.
Since Θ is unknown, we propose the following controller

u = −Ks+ Y (q, q̇, q̈r, q̇r)Θ̂ (57)

Using (57) for (55), we have the following closed-loop system

Mṡ+ Cs = −Ks+ Y Θ̃ (58)

where Θ̃ = Θ̂−Θ.
Consider the following Lyapunov function candidate

V =
1

2
sTMs+

1

2
Θ̃TΓ−1Θ̃

where Γ is PD.
Its derivative along (58) is

V̇ = −sTKs+ sTY Θ̃ + Θ̃TΓ−1 ˙̂
Θ

= −sTKs+ Θ̃TΓ−1ΓY T s+ Θ̃TΓ−1 ˙̂
Θ

= −sTKs+ Θ̃TΓ−1(ΓY T s+
˙̂
Θ)

Then design
˙̂
Θ = −ΓY T s.

We have
V̇ = −sTKs ≤ 0 (59)

which implies that V (t) ≤ V (0), s, Θ̃ ∈ L∞.
Integrating both sides of (59),

V (t)− V (0) = −
∫ t

0

sTKsd

⇒∫ t

0

sTKsd = V (0)− V (t) ≤ V (0) ∈ L∞

⇒

s ∈ L2

From ˙̃q = −λq̃ + s and the ISS stability, q̃, ˙̃q ∈ L∞.
Since qd, q̇d and q̈d are all bounded, q, q̇ ∈ L∞.
We can get from the properties of EL equation that ṡ ∈ L∞.
So far, we have s ∈ L2 ∩ L∞ and ṡ ∈ L∞.
From Barbalat’s Lemma, limt→∞ s(t) = 0.
From the ISS stability, limt→∞ q̃(t) = limt→∞ ˙̃q(t) = 0.
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6.6 Backstepping Sliding Mode Control for Tracking Problem

Consider the following dynamics of a robotic manipulator

Mq̈ + Cq̇ = K(θ − q)
Jθ̈ = −K(θ − q) + u

where q ∈ Rp and θ ∈ Rp represent respectively, the vector of link positions and motor angles, K is
the positive diagonal matrix representing the point stiffness, and J is the positive diagonal matrix
representing the actuator inertia.

Define x1 = θ, x2 = θ̇. The dynamics can be described as

Mq̈ + Cq̇ +Kq = Kx1 (60)

ẋ1 = x2

ẋ2 = −J−1K(x1 − q) + J−1u

Objective: q(t)→ qd(t), q̇(t)→q̇d(t). qd(t), q̇d(t), q̈d(t) are bounded.

Define
q̃(t) = q(t)− qd(t), ˙̃q(t) = q̇(t)− q̇d(t)

q̇r = q̇d − λq̃, s = q̇ − q̇r = ˙̃q + λq̃

then (60) can be written as

Mṡ+ Cs = Kx1 −Kq −Mq̈r − Cq̇r

Step 1:
Design a feedback control x1 = Φ1 to stabilize the origin s = 0.

Φ1 = K−1[Mq̈r + Cq̇r −K1s] + q

where K1 is positive definite.
We have

Mṡ+ Cs = −K1s

Take V1 = 1
2s
TMs ⇒

V̇1 = −sTK1s.

Step 2:
To backstep, define y1 = x1 − Φ1, we have

Mṡ+ Cs = −K1s+Ky1 (61)

Note that the dynamic of y1 is
ẏ1 = ẋ1 − Φ̇1 = x2 − Φ̇1

Consider a combined Lyapunov function candidate

V2 = V1 +
1

2
yT1 Ky1
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Its derivative along (61) is

V̇2 = −sTK1s+ sTKy1 + yT1 Kẏ1

= −sTK1s+ yT1 K(ẏ1 + s)

= −sTK1s+ yT1 K(x2 − Φ̇1 + s)

Design a feedback control x2 = Φ2 to stabilize the origin (s, y1) = (0, 0)

Φ2 = −y1 + Φ̇1 − s

Then we have
V̇2 = −sTK1s− yT1 Ky1

Step 3:
To backstep, define y2 = x2 − Φ2, we have

ẏ2 = ẋ2 − Φ̇2 = −J−1K(x1 − q) + J−1u− Φ̇2

Consider a combined Lyapunov function candidate

V3 = V2 +
1

2
yT2 Ky2

The derivative of V3 is

V̇2 = −sTK1s− yT1 Ky1 + yT1 Ky2 + yT2 Kẏ2

= −sTK1s− yT1 Ky1 + yT1 Ky2 + yT2 K(−J−1K(x1 − q) + J−1u− Φ̇2 + y1)

Design the control input as
u = J(Φ̇2 − y1 − y2) +K(x1 − q)

Then we have
V̇3 = −sTK1s− yT1 Ky1 − yT2 Ky2, ND

Then from Lyapunov Theorem, limt→∞ s(t) = limt→∞ y1(t) = limt→∞ y2(t) = 0.
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