The Answer to Homework

1. Convex set

(1) Show that a polyhedron $\{x \in \mathbb{R}^n : Ax \le b\}$ for some $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, is convex.

Proof: Suppose $x_1, x_2 \in \{x \in \mathbb{R}^n : Ax \le b\}$ and $\theta \in [0,1]$.

Since $A(\theta x_1 + (1-\theta)x_2) = \theta Ax_1 + (1-\theta)Ax_2 \le \theta b + (1-\theta)b = b$,

$$\theta x_1 + (1 - \theta)x_2 \in \{x \in \mathbb{R}^n : Ax \le b\}$$

Thus a polyhedron $\{x \in \mathbb{R}^n : Ax \le b\}$ for some $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, is convex.

(2) Consider a convex function $f: \mathbb{R}^n \to \mathbb{R}$. Prove that the set

$$\{(x,t) \mid f(x) \le t, x \in \mathbb{R}^n, t \in \mathbb{R}\}$$

is convex.

Proof: Suppose $(x_1, t_1), (x_2, t_2) \in \{(x, t) | f(x) \le t, x \in \mathbb{R}^n, t \in \mathbb{R}\}$ and $\theta \in [0, 1]$.

Since
$$f(\theta x_1 + (1-\theta)x_2) \le \theta f(x_1) + (1-\theta)f(x_2) \le \theta t_1 + (1-\theta)t_2$$
,

$$[\theta x_1 + (1-\theta)x_2, \theta t_1 + (1-\theta)t_2] \in \{(x,t) \mid f(x) \le t, x \in \mathbb{R}^n, t \in \mathbb{R}\}$$

Thus $\{(x,t) | f(x) \le t, x \in \mathbb{R}^n, t \in \mathbb{R}\}$ is convex.

(3) Show that $\{x \in R_+^n \mid \prod_{i=1}^n x_i \ge 1\}$ is convex. (Hint: If $a,b \ge 0$ and $0 \le \theta \le 1$, than $a^\theta b^{(1-\theta)} \le \theta a + (1-\theta)b$)

Proof: Suppose $p, q \in \{x \in \mathbb{R}^n_+ \mid \prod_{i=1}^n x_i \ge 1\}$ and $\theta \in [0,1]$.

Since
$$\prod_{i=1}^{n} [\theta p_i + (1-\theta)q_i] \ge \prod_{i=1}^{n} p_i^{\theta} q_i^{1-\theta} = (\prod_{i=1}^{n} p_i)^{\theta} (\prod_{i=1}^{n} q_i)^{1-\theta} \ge 1$$
.

$$\theta p + (1 - \theta)q \in \{x \in R_+^n \mid \prod_{i=1}^n x_i \ge 1\}$$
.

Thus $\{x \in \mathbb{R}^n_+ \mid \prod_{i=1}^n x_i \ge 1\}$ is convex.

(4) Show that the set $\{x \mid \|x-a\|_2 \le \theta \|x-b\|_2\}$, where $a \ne b$ and $0 \le \theta \le 1$, is convex.

Proof:
$$\{x \mid \|x - a\|_2 \le \theta \|x - b\|_2\} = \{x \mid \|x - a\|_2^2 \le \theta \|x - b\|_2^2\}$$

 $= \{x \mid (x - a)^T (x - a) \le \theta (x - b)^T (x - b)\}$
 $= \{x \mid (1 - \theta) x^T x + (2\theta b^T - 2a^T) x + a^T a - \theta b^T b \le 0\}$

Since $0 \le \theta \le 1$, the Hessian matrix of function

$$f(x) = (1 - \theta) x^{T}x + (2\theta b^{T} - 2a^{T})x + a^{T}a - \theta b^{T}b$$

is $(1-\theta)$ I is a positive semidefinite matrix. Thus, the function f(x) is a convex function, the 0-sublevel set is convex.

- 2. Convex function
- (1) Prove that that the entropy function, defined as

$$f(x) = -\sum_{i=1}^{n} x_i \log(x_i)$$

with $dom(f) = \{x \in \mathbb{R}^n_{++} : \sum_{i=1}^n x_i = 1\}$, is strictly concave.

Proof:

$$\nabla f = \begin{bmatrix} -(\log x_1 + 1) & -(\log x_2 + 1) & \cdots & -(\log x_n + 1) \end{bmatrix}$$

$$\nabla^2 f = \begin{bmatrix} -\frac{1}{x_1} & 0 & \cdots & 0 \\ 0 & -\frac{1}{x_2} & \cdots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \cdots & -\frac{1}{x_n} \end{bmatrix}$$

Which is a negative matrix since $x \in \mathbb{R}^n_{++}$.

Moreover, the set $dom(f) = \{x \in \mathbb{R}^n_{++} : \sum_{i=1}^n x_i = 1\}$ is a convex set. Thus, the entropy function, defined as

$$f(x) = -\sum_{i=1}^{n} x_i \log(x_i)$$

with $dom(f) = \{x \in \mathbb{R}^n_+ : \sum_{i=1}^n x_i = 1\}$, is strictly concave.

(2) Show that $f(x_1, x_2) = \frac{1}{x_1 x_2}$ on R_{++}^2 is convex.

Proof:
$$\nabla f = \left[-\frac{1}{x_1^2 x_2} - \frac{1}{x_1 x_2^2} \right]$$

$$\nabla^2 f = \begin{bmatrix} \frac{2}{x_1^3 x_2} & \frac{1}{x_1^2 x_2^2} \\ \frac{1}{x_1^2 x_2^2} & \frac{2}{x_1 x_2^3} \end{bmatrix}, \text{ since } x \in \mathbb{R}_{++}^2, \text{ matrix } \nabla^2 f \text{ is a positive semidefinite matrix.}$$

The domain R_{++}^2 is a convex set. Therefore, the function $f(x_1, x_2) = \frac{1}{x_1 x_2}$ on R_{++}^2 is convex.

(3) Show that $f(X) = tr(X^{-1})$ is convex on $\operatorname{dom} f = S_{++}^n$

Proof:

Define
$$g(t) = f(Z+tV)$$
 where $Z \in S_{++}^n, V \in S_{-+}^n$

$$g(t) = tr[(Z+tV)^{-1}] = tr[Z^{-1}(I+tZ^{-\frac{1}{2}}VZ^{-\frac{1}{2}})^{-1}]$$

= tr[Z^{-1}Q(I+t\Lambda)^{-1}Q^{T}]

where
$$Z^{-\frac{1}{2}}VZ^{-\frac{1}{2}}=Q^T\Lambda Q$$
, $\Lambda=\mathrm{diag}(\lambda_1,\lambda_2,\cdots\lambda_n)$

Thus
$$g(t) = \text{tr}[Z^{-1}Q(I + t\Lambda)^{-1}Q^T] = \text{tr}[Q^TZ^{-1}Q(I + t\Lambda)^{-1}] = \sum_{i=1}^n (Q^TZ^{-1}Q)_{ii}(1 + t\lambda_i)^{-1}$$

Function g(t) is a positive weighted sum of convex function $\frac{1}{1+t\lambda_i}$. Therefor g(t) is

convex. The set $\operatorname{dom} f = S_{++}^n$ is a convex set. Thus function $f(X) = tr(X^{-1})$ is convex on $\operatorname{dom} f = S_{++}^n$.

- 3. Dual problem
- (1) Formulate the dual problems of the following problems with one inequality constraint

$$\min c^T x$$

$$s.t. \quad f(x) \le 0$$

Answer: For
$$\lambda = 0$$
, $g(\lambda) = \inf_{x} c^{T} x = -\infty$

For
$$\lambda > 0$$
, $g(\lambda) = \inf_{x} [c^{T}x + \lambda f(x)] = \lambda \inf_{x} [(\frac{c}{\lambda})^{T}x + f(x)]$

$$= -\lambda \sup_{x} \left[-\left(\frac{c}{\lambda}\right)^{T} x - f(x) \right] = -\lambda f^{*}\left(\frac{c}{\lambda}\right)$$

Thus, the dual problem is

$$\max -\lambda f^*(\frac{c}{\lambda})$$

s.t.
$$\lambda > 0$$

(2) Find the dual problem of the following general Linear programming

$$min c^T x
s.t. Gx \le h
 Ax = b$$

Answer:

The Lagrangian function is

$$l(x, \lambda, v) = c^T x + \lambda^T (Gx - h) + v^T (Ax - b)$$
$$= (c + G^T \lambda + A^T v)^T x - \lambda^T h + v^T b$$

The dual function is

$$g(\lambda, v) = \inf_{x} L(x, \lambda, v) = \begin{cases} -\lambda^{T} h - v^{T} b, & c + G^{T} \lambda + A^{T} v = 0 \\ -\infty, & \text{otherwise} \end{cases}$$

Thus the dual problem is

$$\max_{\lambda, v} -h^{T} \lambda - b^{T} v$$
s.t. $\lambda \ge 0$

$$c + G^{T} \lambda + A^{T} v = 0$$

- 4. KKT condition
 - (1) Give the KKT conditions of the following optimization problem

min
$$x_1^2 + x_2^2$$

s.t. $(x_1 - 1)^2 + (x_2 - 1)^2 \le 1$
 $(x_1 - 1)^2 + (x_2 + 1)^2 \le 1$

Answer:

The KKT conditions are

$$(x_1 - 1)^2 + (x_2 - 1)^2 \le 1$$

$$(x_1 - 1)^2 + (x_2 + 1)^2 \le 1$$

$$\lambda_1 \ge 0, \quad \lambda_2 \ge 0$$

$$\lambda_1[(x_1 - 1)^2 + (x_2 - 1)^2 - 1] = 0$$

$$\lambda_2[(x_1 - 1)^2 + (x_2 + 1)^2 - 1] = 0$$

$$x_1 + \lambda_1(x_1 - 1) + \lambda_2(x_1 - 1) = 0$$

$$x_2 + \lambda_2(x_2 - 1) + \lambda_2(x_2 + 1) = 0$$

(2) Consider the equality constrained least square problem

$$\min \quad ||Ax - b||_2^2$$
s.t. $Gx = h$

Where $A \in R^{m \times n}$ with $\operatorname{rank} A = n$ and $G \in R^{p \times n}$ with $\operatorname{rank} G = p$

Give the KKT conditions and derive expressions for the primal solution x^* and the dual solution v^* .

Answer:

The KKT conditions is

$$Gx = h$$
$$2A^{T}Ax = 2A^{T}b - G^{T}v$$

We can solve the linear equation to obtain the optimal solution

First, since rankA = n, $A^{T}A$ is inversible, we may obtain

$$x = \frac{1}{2} (A^{T} A)^{-1} (2A^{T} b - G^{T} v) \qquad (*)$$

Putting it into the first equation, we have

$$G[\frac{1}{2}(A^{T}A)^{-1}(2A^{T}b - G^{T}v)] = h$$

$$\frac{1}{2}G(A^{T}A)^{-1}G^{T}v = G(A^{T}A)^{-1}A^{T}b - h$$

Thus the optimal solution of dual problem $v^* = 2[G(A^TA)^{-1}G^T]^{-1}[G(A^TA)^{-1}A^Tb - h]$

Putting it into (*), we obtain the optimal solution for the primal solution

$$x^* = (A^T A)^{-1} \{ A^T b - G^T [G(A^T A)^{-1} G^T]^{-1} [G(A^T A)^{-1} A^T b - h] \}$$

5. Gradient and Newton Descent

Consider the optimization

$$\min_{x_1, x_2} e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$$

Write a code to solve this optimization using the gradient method and Newton method with the backtracking parameters α =0.1 and β =0.6, draw $f(x_k)$ verses k for k =0, 1, 2.....,50.

```
Alpha = 0.1;
          Beta = 0.6;
 2
 3
          nK = 50;
          x0 = [0.1; 0.1];
 4
 5
 6
          points = zeros(3,nK);
 7
          x = x0;
 8
     巨
          for iter = 1:nK
 9
              val = exp(x(1)+3*x(2)-0.1)+exp(x(1)-3*x(2)-0.1)+exp(-x(1)-0.1);
10
              grad = [exp(x(1)+3*x(2)-0.1)+exp(x(1)-3*x(2)-0.1)-exp(-x(1)-0.1);
                      3*exp(x(1)+3*x(2)-0.1)-3*exp(x(1)-3*x(2)-0.1)];
11
12
              points(1,iter)=x(1);
13
              points(2,iter)=x(2);
14
              points(3,iter)=val;
              v = -grad;
15
16
              x = x+Alpha*v;
17
          end
18
          plot3(points(1,:),points(2,:),points(3,:),'-o','Color','b','MarkerSize',10,...
              'MarkerFaceColor', '#D9FFFF')
19
```



```
Alpha = 0.1;
Beta = 0.6;
nK = 50;
xθ = [0.1;0.1];

points = zeros(3,nK);
x = xθ;
for iter = 1:nK
val = exp(x(1)+3*x(2)-0.1)+exp(x(1)-3*x(2)-0.1)+exp(-x(1)-0.1);
grad = [exp(x(1)+3*x(2)-0.1)-exp(x(1)-3*x(2)-0.1)];
hess = [exp(x(1)+3*x(2)-0.1)-exp(x(1)-3*x(2)-0.1)];
hess = [exp(x(1)+3*x(2)-0.1)-exp(x(1)-3*x(2)-0.1)];
points(1,iter)=x(1);
points(2,iter)=x(2);
points(3,iter)=x(2);
points(3,iter)=val;
v = -hess\grad;
x = x+Alpha*v;
end
plot3(points(1,:),points(2,:),points(3,:),'-o','Color','b','MarkerSize',10,...
'MarkerFaceColor','#D9FFFF')
```

