The Answer to Homework

1. Convex set
(1) Show that a polyhedron $\left\{x \in R^{n}: A x \leq b\right\}$ for some $A \in R^{m \times n}, b \in R^{m}$, is convex.

Proof: Suppose $x_{1}, x_{2} \in\left\{x \in R^{n}: A x \leq b\right\}$ and $\theta \in[0,1]$.

Since $A\left(\theta x_{1}+(1-\theta) x_{2}\right)=\theta A x_{1}+(1-\theta) A x_{2} \leq \theta b+(1-\theta) b=b$,
$\theta x_{1}+(1-\theta) x_{2} \in\left\{x \in R^{n}: A x \leq b\right\}$

Thus a polyhedron $\left\{x \in R^{n}: A x \leq b\right\}$ for some $A \in R^{m \times n}, b \in R^{m}$, is convex.
(2) Consider a convex function $f: R^{n} \rightarrow R$. Prove that the set

$$
\left\{(x, t) \mid f(x) \leq t, x \in R^{n}, t \in R\right\}
$$

is convex.
Proof: Suppose $\left(x_{1}, t_{1}\right),\left(x_{2}, t_{2}\right) \in\left\{(x, t) \mid f(x) \leq t, x \in R^{n}, t \in R\right\}$ and $\theta \in[0,1]$.

Since $f\left(\theta x_{1}+(1-\theta) x_{2}\right) \leq \theta f\left(x_{1}\right)+(1-\theta) f\left(x_{2}\right) \leq \theta t_{1}+(1-\theta) t_{2}$,
$\left[\theta x_{1}+(1-\theta) x_{2}, \theta t_{1}+(1-\theta) t_{2}\right] \in\left\{(x, t) \mid f(x) \leq t, x \in R^{n}, t \in R\right\}$.

Thus $\left\{(x, t) \mid f(x) \leq t, x \in R^{n}, t \in R\right\}$ is convex.
(3) Show that $\left\{x \in R_{+}^{n} \mid \prod_{i=1}^{n} x_{i} \geq 1\right\}$ is convex. (Hint: If $a, b \geq 0$ and $0 \leq \theta \leq 1$, than $\left.a^{\theta} b^{(1-\theta)} \leq \theta a+(1-\theta) b\right)$

Proof: Suppose $p, q \in\left\{x \in R_{+}^{n} \mid \prod_{i=1}^{n} x_{i} \geq 1\right\}$ and $\theta \in[0,1]$.
Since $\prod_{i=1}^{n}\left[\theta p_{i}+(1-\theta) q_{i}\right] \geq \prod_{i=1}^{n} p_{i}^{\theta} q_{i}^{1-\theta}=\left(\prod_{i=1}^{n} p_{i}\right)^{\theta}\left(\prod_{i=1}^{n} q_{i}\right)^{1-\theta} \geq 1$.
$\theta p+(1-\theta) q \in\left\{x \in R_{+}^{n} \mid \prod_{i=1}^{n} x_{i} \geq 1\right\}$.
Thus $\left\{x \in R_{+}^{n} \mid \prod_{i=1}^{n} x_{i} \geq 1\right\}$ is convex.
(4) Show that the set $\left\{x \mid\|x-a\|_{2} \leq \theta\|x-b\|_{2}\right\}$, where $a \neq b$ and $0 \leq \theta \leq 1$, is convex.

$$
\begin{aligned}
& \text { Proof: } \quad\left\{x \mid\|x-a\|_{2} \leq \theta\|x-b\|_{2}\right\}=\left\{x \mid\|x-a\|_{2}^{2} \leq \theta\|x-b\|_{2}^{2}\right\} \\
& =\left\{x \mid(x-a)^{T}(x-a) \leq \theta(x-b)^{T}(x-b)\right\} \\
& =\left\{x \mid(1-\theta) \mathrm{x}^{T} \mathrm{x}+\left(2 \theta \mathrm{~b}^{T}-2 \mathrm{a}^{T}\right) \mathrm{x}+\mathrm{a}^{T} \mathrm{a}-\theta \mathrm{b}^{T} \mathrm{~b} \leq 0\right\}
\end{aligned}
$$

Since $0 \leq \theta \leq 1$, the Hessian matrix of function

$$
f(x)=(1-\theta) x^{T} x+\left(2 \theta b^{T}-2 a^{T}\right) x+a^{T} a-\theta b^{T} b
$$

is $(1-\theta) I$ is a positive semidefinite matrix. Thus, the function $f(x)$ is a convex function, the 0 -sublevel set is convex.
2. Convex function
(1) Prove that that the entropy function, defined as

$$
f(x)=-\sum_{i=1}^{n} x_{i} \log \left(x_{i}\right)
$$

with $\operatorname{dom}(f)=\left\{\mathrm{x} \in \mathrm{R}_{++}^{n}: \sum_{i=1}^{n} x_{i}=1\right\}$, is strictly concave.

Proof:

$$
\left.\left.\begin{array}{c}
\nabla f=\left[-\left(\log x_{1}+1\right)-\left(\log x_{2}+1\right)\right. \\
\cdots
\end{array}\right]-\left(\log x_{n}+1\right)\right] \text { } \begin{gathered}
\nabla^{2} f=\left[\begin{array}{cccc}
-\frac{1}{x_{1}} & 0 & \cdots & 0 \\
0 & -\frac{1}{x_{2}} & \cdots & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & \cdots & -\frac{1}{x_{n}}
\end{array}\right]
\end{gathered}
$$

Which is a negative matrix since $x \in R_{++}^{n}$.
Moreover, the set $\operatorname{dom}(f)=\left\{\mathrm{x} \in \mathrm{R}_{++}^{n}: \sum_{i=1}^{n} x_{i}=1\right\}$ is a convex set. Thus, the entropy function, defined as

$$
f(x)=-\sum_{i=1}^{n} x_{i} \log \left(x_{i}\right)
$$

with $\operatorname{dom}(f)=\left\{\mathrm{x} \in \mathrm{R}_{++}^{n}: \sum_{i=1}^{n} x_{i}=1\right\}$, is strictly concave.
(2) Show that $f\left(x_{1}, x_{2}\right)=\frac{1}{x_{1} x_{2}}$ on R_{++}^{2} is convex.

Proof: $\nabla f=\left[\begin{array}{ll}-\frac{1}{x_{1}^{2} x_{2}} & -\frac{1}{x_{1} x_{2}^{2}}\end{array}\right]$
$\nabla^{2} f=\left[\begin{array}{cc}\frac{2}{x_{1}^{3} x_{2}} & \frac{1}{x_{1}^{2} x_{2}^{2}} \\ \frac{1}{x_{1}^{2} x_{2}^{2}} & \frac{2}{x_{1} x_{2}^{3}}\end{array}\right]$, since $x \in R_{++}^{2}$, matrix $\nabla^{2} f$ is a positive semidefinite matrix.
The domain R_{++}^{2} is a convex set. Therefore, the function $f\left(x_{1}, x_{2}\right)=\frac{1}{x_{1} x_{2}}$ on R_{++}^{2} is convex.
(3) Show that $f(X)=\operatorname{tr}\left(X^{-1}\right)$ is convex on $\operatorname{dom} f=S_{++}^{n}$

Proof:
Define $g(t)=f(Z+t V)$ where $Z \in S_{++}^{n}, V \in S^{n}$
$g(t)=\operatorname{tr}\left[(Z+t V)^{-1}\right]=\operatorname{tr}\left[Z^{-1}\left(I+t Z^{-\frac{1}{2}} V Z^{-\frac{1}{2}}\right)^{-1}\right]$
$=\operatorname{tr}\left[Z^{-1} Q(I+t \Lambda)^{-1} Q^{T}\right]$
where $\quad Z^{-\frac{1}{2}} V Z^{-\frac{1}{2}}=Q^{T} \Lambda Q, \quad \Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \cdots \lambda_{n}\right)$
Thus $g(t)=\operatorname{tr}\left[Z^{-1} Q(I+t \Lambda)^{-1} Q^{T}\right]=\operatorname{tr}\left[Q^{T} Z^{-1} Q(I+t \Lambda)^{-1}\right]=\sum_{i=1}^{n}\left(Q^{T} Z^{-1} Q\right)_{i i}\left(1+t \lambda_{i}\right)^{-1}$
Function $g(t)$ is a positive weighted sum of convex function $\frac{1}{1+t \lambda_{i}}$. Therefor $g(t)$ is convex. The set $\operatorname{dom} f=S_{++}^{n}$ is a convex set. Thus function $f(X)=\operatorname{tr}\left(X^{-1}\right)$ is convex on $\operatorname{dom} f=S_{++}^{n}$.
3. Dual problem
(1) Formulate the dual problems of the following problems with one inequality constraint $\min c^{T} x$
s.t. $\quad f(x) \leq 0$

Answer: For $\lambda=0, g(\lambda)=\inf _{x} c^{T} x=-\infty$
For $\lambda>0, g(\lambda)=\inf _{x}\left[c^{T} x+\lambda f(x)\right]=\lambda \inf _{x}\left[\left(\frac{c}{\lambda}\right)^{T} x+f(x)\right]$
$=-\lambda \sup _{x}\left[-\left(\frac{c}{\lambda}\right)^{T} x-f(x)\right]=-\lambda f^{*}\left(\frac{c}{\lambda}\right)$
Thus, the dual problem is

$$
\max -\lambda f^{*}\left(\frac{c}{\lambda}\right)
$$

s.t. $\quad \lambda>0$
(2) Find the dual problem of the following general Linear programming

$$
\begin{array}{cc}
\min & c^{T} x \\
\text { s.t. } & G x \leq h \\
& A x=b
\end{array}
$$

Answer:
The Lagrangian function is

$$
\begin{aligned}
& l(x, \lambda, v)=\mathrm{c}^{T} x+\lambda^{T}(G x-h)+v^{T}(A x-b) \\
& =\left(c+G^{T} \lambda+A^{T} v\right)^{T} x-\lambda^{T} h+v^{T} b
\end{aligned}
$$

The dual function is

$$
g(\lambda, v)=\inf _{x} L(x, \lambda, v)=\left\{\begin{array}{lr}
-\lambda^{T} h-v^{T} b, & c+G^{T} \lambda+A^{T} v=0 \\
-\infty, & \text { otherwise }
\end{array}\right.
$$

Thus the dual problem is

$$
\begin{array}{ll}
\max _{\lambda, v} & -h^{T} \lambda-b^{T} v \\
\text { s.t. } & \lambda \geq 0 \\
& c+G^{T} \lambda+A^{T} v=0
\end{array}
$$

4. KKT condition
(1) Give the KKT conditions of the following optimization problem

$$
\begin{array}{ll}
\min & x_{1}^{2}+x_{2}^{2} \\
\text { s.t. } & \left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2} \leq 1 \\
& \left(x_{1}-1\right)^{2}+\left(x_{2}+1\right)^{2} \leq 1
\end{array}
$$

Answer:
The KKT conditions are

$$
\begin{aligned}
& \left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2} \leq 1 \\
& \left(x_{1}-1\right)^{2}+\left(x_{2}+1\right)^{2} \leq 1 \\
& \lambda_{1} \geq 0, \quad \lambda_{2} \geq 0 \\
& \lambda_{1}\left[\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2}-1\right]=0 \\
& \lambda_{2}\left[\left(x_{1}-1\right)^{2}+\left(x_{2}+1\right)^{2}-1\right]=0 \\
& x_{1}+\lambda_{1}\left(x_{1}-1\right)+\lambda_{2}\left(x_{1}-1\right)=0 \\
& x_{2}+\lambda_{2}\left(x_{2}-1\right)+\lambda_{2}\left(x_{2}+1\right)=0
\end{aligned}
$$

(2) Consider the equality constrained least square problem

$$
\begin{aligned}
& \min \quad\|A x-b\|_{2}^{2} \\
& \text { s.t. } G x=h
\end{aligned}
$$

Where $A \in R^{m \times n}$ with $\operatorname{rank} A=n$ and $G \in R^{p \times n}$ with $\operatorname{rank} G=p$
Give the KKT conditions and derive expressions for the primal solution x^{*} and the dual solution v^{*}.

Answer:
The KKT conditions is

$$
\begin{aligned}
& G x=h \\
& 2 A^{T} A x=2 A^{T} b-G^{T} v
\end{aligned}
$$

We can solve the linear equation to obtain the optimal solution
First, since $\operatorname{rank} A=n, A^{T} A$ is inversible, we may obtain

$$
\begin{equation*}
x=\frac{1}{2}\left(A^{T} A\right)^{-1}\left(2 A^{T} b-G^{T} v\right) \tag{*}
\end{equation*}
$$

Putting it into the first equation, we have

$$
\begin{aligned}
& G\left[\frac{1}{2}\left(A^{T} A\right)^{-1}\left(2 A^{T} b-G^{T} v\right)\right]=h \\
& \frac{1}{2} G\left(A^{T} A\right)^{-1} G^{T} v=G\left(A^{T} A\right)^{-1} A^{T} b-h
\end{aligned}
$$

Thus the optimal solution of dual problem $v^{*}=2\left[G\left(A^{T} A\right)^{-1} G^{T}\right]^{-1}\left[G\left(A^{T} A\right)^{-1} A^{T} b-h\right]$
Putting it into (*), we obtain the optimal solution for the primal solution

$$
x^{*}=\left(A^{T} A\right)^{-1}\left\{A^{T} b-G^{T}\left[G\left(A^{T} A\right)^{-1} G^{T}\right]^{-1}\left[G\left(A^{T} A\right)^{-1} A^{T} b-h\right]\right\}
$$

5. Gradient and Newton Descent

Consider the optimization

$$
\min _{x_{1}, x_{2}} e^{x_{1}+3 x_{2}-0.1}+e^{x_{1}-3 x_{2}-0.1}+e^{-x_{1}-0.1}
$$

Write a code to solve this optimization using the gradient method and Newton method with the backtracking parameters $\alpha=0.1$ and $\beta=0.6$, draw $f\left(x_{k}\right)$ verses k for $\mathrm{k}=0,1,2 \cdots \cdots, 50$.


```
Alpha = 0.1;
Beta =0.6;
nK = 50;
x0 = [0.1;0.1];
points = zeros(3,nK);
x = x0;
for iter = 1:nk
    val = exp(x(1)+3*x(2)-0.1)+exp(x(1)-\mp@subsup{3}{}{*}x(2)-0.1)+\operatorname{exp}(-x(1)-0.1);
    grad = [exp(x(1)+3*x(2)-0.1)+exp(x(1)-3*x(2)-0.1)-\operatorname{exp}(-x(1)-0.1);
        3*}\operatorname{exp}(x(1)+\mp@subsup{3}{}{*}x(2)-0.1)-\mp@subsup{3}{}{*}\operatorname{exp}(x(1)-\mp@subsup{3}{}{*}x(2)-0.1)]
    hess = [exp(x(1)+3*x(2)-0.1)+exp(x(1)-3*x(2)-0.1)+\operatorname{exp}(-x(1)-0.1),\mp@subsup{3}{}{*}\operatorname{exp}(x(1)+\mp@subsup{3}{}{*}x(2)-0.1)-\mp@subsup{3}{}{*}\operatorname{exp}(x(1)-\mp@subsup{3}{}{*}x(2)-0.1);
        3*}\operatorname{exp}(x(1)+\mp@subsup{3}{}{*}x(2)-0.1)-\mp@subsup{3}{}{*}\operatorname{exp}(x(1)-\mp@subsup{3}{}{*}x(2)-0.1),\mp@subsup{9}{}{*}\operatorname{exp}(x(1)+\mp@subsup{3}{}{*}x(2)-0.1)+\mp@subsup{9}{}{*}\operatorname{exp}(x(1)-\mp@subsup{3}{}{*}x(2)-0.1)]
    points(1,iter)=x(1)
    points(2,iter)=x(2)
    points(3,iter)=val;
    v = -hess\grad;
    x = x+Alpha*v;
end
plot3(points(1,:), points(2,: ),points(3,:),'-0', 'Color', 'b', 'MarkerSize',10,\ldots
    'MarkerFaceColor', '#D9FFFF')
```


