1. Convex set
(1) Show that a polyhedron $\left\{x \in R^{n}: A x \leq b\right\}$ for some $A \in R^{m \times n}, b \in R^{m}$, is convex.
(2) Consider a convex function $f: R^{n} \rightarrow R$. Prove that the set

$$
\left\{(x, t) \mid f(x) \leq t, x \in R^{n}, t \in R\right\}
$$

is convex.
(3) Show that $\left\{x \in R_{+}^{n} \mid \prod_{i=1}^{n} x_{i} \geq 1\right\}$ is convex. (Hint: If $a, b \geq 0$ and $0 \leq \theta \leq 1$, than

$$
\left.a^{\theta} b^{(1-\theta)} \leq \theta a+(1-\theta) b\right)
$$

(4) Show that the set $\left\{\mathrm{x} \mid\|x-a\|_{2} \leq \theta\|x-b\|_{2}\right\}$, where $a \neq b$ and $0 \leq \theta \leq 1$, is convex.
2. Convex function
(1) Prove that that the entropy function, defined as

$$
f(x)=-\sum_{i=1}^{n} x_{i} \log \left(x_{i}\right)
$$

with $\operatorname{dom}(f)=\left\{\mathrm{x} \in \mathrm{R}_{++}^{n}: \sum_{i=1}^{n} x_{i}=1\right\}$, is strictly concave.
(2) Show that $f\left(x_{1}, x_{2}\right)=\frac{1}{x_{1} x_{2}}$ on R_{++}^{2} is convex.
(3) Show that $f(X)=\operatorname{tr}\left(X^{-1}\right)$ is convex on $\operatorname{dom} f=S_{++}^{n}$
3. Dual problem
(1) Formulate the dual problems of the following problems with one inequality constraint

$$
\begin{array}{ll}
\min & c^{T} x \\
\text { s.t. } & f(x) \leq 0
\end{array}
$$

(2) Find the dual problem of the following general Linear programming

$$
\begin{array}{ll}
\min & c^{T} x \\
\text { s.t. } & G x \leq h \\
& A x=b
\end{array}
$$

4. KKT condition
(1) Give the KKT conditions of the following optimization problem

$$
\begin{array}{ll}
\min & x_{1}^{2}+x_{2}^{2} \\
\text { s.t. } & \left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2} \leq 1 \\
& \left(x_{1}-1\right)^{2}+\left(x_{2}+1\right)^{2} \leq 1
\end{array}
$$

(2) Consider the equality constrained least square problem

$$
\begin{aligned}
& \min \quad\|A x-b\|_{2}^{2} \\
& \text { s.t. } \quad G x=h
\end{aligned}
$$

Where $A \in R^{m \times n}$ with $\operatorname{rank} A=n$ and $G \in R^{p \times n}$ with $\operatorname{rank} G=p$
Give the KKT conditions and derive expressions for the primal solution x^{*} and the dual solution v^{*}.
5. Gradient and Newton Descent

Consider the optimization

$$
\min _{x_{1}, x_{2}} e^{x_{1}+3 x_{2}-0.1}+e^{x_{1}-3 x_{2}-0.1}+e^{-x_{1}-0.1}
$$

Write a code to solve this optimization using the gradient method and Newton method with the backtracking parameters $\alpha=0.1$ and $\beta=0.6$, draw $f\left(x_{k}\right)$ verses k for $\mathrm{k}=0,1,2 \cdots \cdots, 50$.

