
1. Convex set 

(1) Show that a polyhedron{ : }nx R Ax b   for some m nA R  ， mb R ，is convex. 

(2) Consider a convex function : nf R R→ . Prove that the set   

{( , ) | ( ) , , }nx t f x t x R t R    

is convex. 

(3) Show that 
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   is convex. (Hint: If , 0a b   and 0 1  , than 

(1 ) (1 )a b a b   −  + − ) 

(4) Show that the set 
2 2

{x| }x a x b−  − ,where a b  and 0 1  , is convex. 

 

2. Convex function 

 

(1) Prove that that the entropy function, defined as  
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=  = , is strictly concave. 

(2) Show that 1 2
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2R++  is convex. 

(3) Show that 1( ) ( )f X tr X −=  is convex on dom nf S++=  

 

 

3. Dual problem 

 

(1) Formulate the dual problems of the following problems with one inequality constraint 
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(2) Find the dual problem of the following general Linear programming  
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4. KKT condition 

(1) Give the KKT conditions of the following optimization problem 
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(2) Consider the equality constrained least square problem  
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Where m nA R   with rankA n=  and p nG R  with rankG p=  

Give the KKT conditions and derive expressions for the primal solution *x  and the 

dual solution *v . 

 

 

5. Gradient and Newton Descent  

 

Consider the optimization  
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Write a code to solve this optimization using the gradient method and Newton 

method with the backtracking parameters =0.1  and =0.6 , draw ( )kf x  

verses k for k =0, 1, 2……,50. 

 

 


