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1. (16 Points) Prove that the following two sets are convex sets. (8 points each)

@) {a=(ay,a,....a,) R | p(0)=1]| p(t) I<1 p(t) =a, +at+---+a_t""}

@) {(x,y,2)|z=x*+y°}cR®
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2. (16 Points) Prove that the following two functions are convex (or concave). (8 points each)

(1) The perspective of a function f :R" — R isthe function g:R"xR —>R

g(x,t)=tf (x/t), domg={(x,t)|x/tedom f,t>0}

Prove that g is convex if f is convex.
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3. (10 Points) Formulate the following problem into a convex optimization problem:
min ],
st. Ax=Db
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4. (10 Points) Formulate the KKT conditions for the following convex optimization problem:
1
rmnEﬂPx+dx+r

st. Ax=hb
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5. (20 Points) Formulate the dual problems for the following convex optimization problems. (10
: points each)
S €Y
min x" x
st. Ax=b
¢
minc’x
st. Ax=hb
x>0
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6.

(15 Points) Suppose the state equations of the system is

X1 =X,
X, =U
The initial conditions are
x(0)=1
X,(0) =1
and the terminal conditions are
x@1)=0
X, (1) is free

Derive the optimal control rule to minimize

J() = [ u* Byt
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7. (13 Points) Formulate the following robust linear program problem into convex optimization
problem.

minc’x
st.al x<b,wherea & ={a +Pul|u|, <1},& eR", P eR™

i=1...,n
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