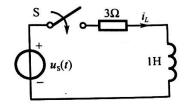
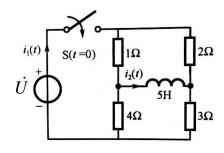

电路复习作业 8 线性动态电路暂态过程的时域分析

(共7题,总分70分)请通过雨课堂拍照提交

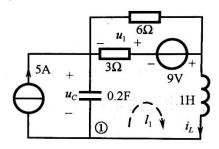
1. (10分) 如图所示电路在换路前已工作了很长时间,t=0 时开关断开。试求零输入响应 i(t)。

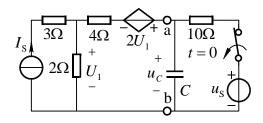


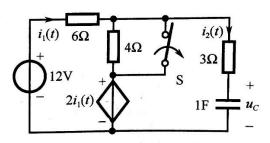
2. (10分) 如图所示电路中, $i_L(0_-)=0$,t=0 时开关 S 闭合,求 t>0 时的 $i_L(t)$ 。

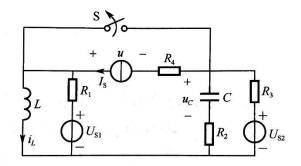


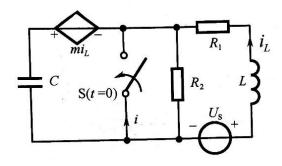
3. 填空题。【得出结果后请附上规范分析过程,写分析过程不计时】


(1) (3分) 图示电路中, $u_S(t) = 10\sin(4t + \theta)V$,电感无初始储能,t = 0 时将开关 S 闭合。若 S 闭合后电路中不产生过渡过程,则电源的初相角 θ 为______. $(-\pi \le \theta \le \pi)$


(2) (3分)图示电路中,电源角频率为 1 rad/s,电感无初始储能,t=0 时将开关 S 闭合。若 S 闭合后 $i_2(t)$ 直接达到稳态,则电源的接入角为______.


(3) (4分) 如图所示电路,若以 i_L 和 u_C 为状态变量,写出电路的状态方程:(以矩阵形式表达)


4. (10 分) 图示电路原处于稳态, $I_{\rm S}=1{\rm A}$, $u_{\rm S}=20\cos(10t){\rm V}$, $C=0.02{\rm F}$ 。 t=0时开关由闭合突然断开,用三要素法求 t>0时的电压 $u_C(t)$ 。


5. (10 分) 图示电路原处于稳态,t=0时开关 S 断开,用三要素法求 $i_2(t)$,并计算在暂态过程中 3Ω 电阻所消耗的能量。

6.(**10** 分)动态电路如下图所示,已知 $R_1 = 5\Omega$, $R_2 = R_3 = 10\Omega$, $R_4 = 2\Omega$, L = 2H, C = 0.01F, $U_{S1} = 20$ V, $U_{S2} = 30$ V, $I_S = 6$ A,开关 S 打开前电路已达稳态, t = 0 时 S 打开。求 S 打开后电容电压 $u_C(t)$ 、电感电流 $i_L(t)$ 和电流源两端电压 u(t)。

7. **(10 分)** 图示电路中, $R_1 = R_2 = 4\Omega$,L = 4H,C = 2F, $U_S = 16$ V,m = 4。S 断开已久,t = 0时 S 闭合。求t > 0时的 i(t)。

