概率论与数理统计模拟试题(五)

一、填空题(每小题 3 分,共 5 小题,满分 15 分)
1. 设事件 A 、 B 仅发生一个的概率为 0.3 ,且 $P(A)+P(B)=0.5$,则 A 、 B 至
有一个不发生的概率为
2. 设在每次试验中,事件 A 出现的概率均为 P ,若已知在三次独立试验中 A 至
出现一次的概率等于 $\frac{19}{27}$,则 $P =$.
3. 己知随机变量 X 和 Y 的联合概率密度为
$f(x,y) = \begin{cases} e^{-(x+y)}, & x > 0, y > 0, \\ 0, & \sharp ' \Xi. \end{cases}$
则 $E(XY) = $
4. 总体 $X\sim E(\lambda)$, X_1,\cdots,X_n 为简单随机样本, 其均值为 \bar{X} , 方差 S^2 .
$\overline{X} + (3-2a)\lambda S^2$ 是 $\frac{1}{\lambda}$ 无偏估计,则 $a = \underline{\hspace{1cm}}$.
5 . 总体 $X \sim N(\mu, \sigma^2)$, $\sigma^2 = 9$, 抽取简单随机样本 X_1, \cdots, X_n ,
$(\overline{X}-0.98,\overline{X}+0.98)$ 为 μ 的置信度 0.95 下的置信区间,则 $n=$
二、选择题(每小题 3 分,共 5 小题,满分 15 分)
(每小题给出的四个选项中,只有一个是符合题目要求的,把所选项的字母填在题的括号内)
1. 对任意的两个事件 $A \cap B$,与 $A \cup B = B$ 不等价的是()
(A) $A \subset B$; (B) $\overline{B} \subset \overline{A}$; (C) $A\overline{B} = \Phi$; (D) $\overline{A}B = \Phi$. 2. 设随机变量 X, Y 相互独立,方差存在,以下结论正确的是(
(A) $D(XY) = DXDY$; (B) $D(XY) \le DXDY$;
(C) $D(XY) \ge DXDY$; (D) 前三者都不一定成立.
3. 设 $X \sim N(2,4)$, $Y \sim N(2,5)$, $E(XY) = 6$, 则 ()
(A) X,Y 不相关; (B) X,Y 相互独立;
(C) $D(X-Y)=5$; (D) $D(X-Y)=13$.
4. 随机变量 X,Y 不相关, $DX = DY$,则 $X 与 X + Y$ 相关系数为 ()
(A) -1 (B) 0 (C) $\frac{1}{\sqrt{2}}$ (D) 1

- 5. 总体 $X \sim N(\mu,4)$,抽取简单随机样本 X_1,\cdots,X_{17} ,其均值为 \overline{X} ,方差 S^2 ,若 $P(S^2 > a) = 0.01$, $\bigcup E(S^2 - a) + D(S^2 - a) = ($ $(A) 2 \qquad (B) 4 \qquad (C) -2 \qquad (D) -4$

- 三、(10分)三个箱子,第一个箱子中有4个黑球,1个白球;第二个箱子中有3个黑球, 3个白球;第三个箱子中有3个黑球,5个白球. 现随机地取一个箱子,再从这个箱 子中取出一个球, 求该球是白球的概率?

四、 $(10\,

eta)$ 一台电子仪器由两个部件组成,以 X 和 Y 分别表示两个部件的寿命(单位: 千小时),已知 X 与 Y 的联合分布函数为

$$F(x,y) = \begin{cases} C - e^{-0.5x} - e^{-0.5y} + e^{-0.5(x+y)}, & x \ge 0, y \ge 0\\ 0, & \text{ } \sharp \text{ } \vdots \end{cases}$$

(1) 求常数C; (2) 问随机变量X与Y是否独立?为什么? (3) 求两个部件的寿命都超过1000小时的概率?

五、 $(10\, eta)$ 已知随机变量 X 和 Y 分别服从 $N(1,\ 3^2)$ 和 $N(0,\ 4^2)$,且 X 和 Y 的相关系数 $\rho_{XY}=-\frac{1}{2}$,设 $Z=\frac{X}{3}+\frac{Y}{2}$,(1) 求 EZ 和 DZ (2)求 ρ_{XZ}

六、 $(14 \, \text{分})$ 总体 X 分布列为 $\frac{X \, | \, 0 \, | \, 1 \, | \, 2}{P \, | \, \theta \, | \, 1 - 2\theta \, | \, \theta}$,抽取简单随机样本中有 2 个 0, 4 个 1,4 个 2.求 θ 的矩估计,最大似然估计值.

七、 $(6 \ \beta)$ 某人有一串钥匙共n 把,其中只有一把能开家门,他任意取一把去开门,直至门开为止,若他把每次用过的钥匙分开,求所需开门次数的数学期望。 把所有n 把钥匙排成列,则能打开门的那一把钥匙排在n 个位置中的每一个位置都

 $P(\xi=k)=\frac{1}{n}$ 是等可能的,设恰在第 k 次打开门,则

$$\begin{split} &E\xi = 1 \cdot \frac{1}{n} + 2 \cdot \frac{1}{n} + 3 \cdot \frac{1}{n} + \Lambda + n \cdot \frac{1}{n} = \frac{n+1}{2} \\ &D\xi = (1 - \frac{n+1}{2})^2 \cdot \frac{1}{n} + (2 - \frac{n+1}{2})^2 \cdot \frac{1}{n} + (3 - \frac{n+1}{2})^2 \cdot \frac{1}{n} + \Lambda + (k - \frac{n+1}{2})^2 \cdot \frac{1}{n} \\ &+ \Lambda \left(n - \frac{n+1}{2}\right)^2 \cdot \frac{1}{n} \\ &= \frac{1}{n} [(1^2 + 2^2 + 3^2 + \Lambda + n^2) - (n+1)(1 + 2 + 3 + \Lambda + n) + (\frac{n+1}{2})^2 \cdot n] \\ &= \frac{1}{n} \cdot \left[\frac{1}{6} n(n+1)(2n+1) - \frac{n(n+1)^2}{2} + \frac{n(n+1)^2}{4} \right] = \frac{n^2 - 1}{12} \end{split}$$