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Preface to the Third English Edition

The present edition is the translation of the fourth Russian edition of 2007, with
the previous three published in 1980, 1989, and 2004. The English translations of
the first two appeared in 1984 and 1996. The third and fourth Russian editions,
extended compared to the second edition, were published in two volumes titled
“Probability-1" and “Probability-2”. Accordingly, the present edition consists of
two volumes: this vol. 1, titled “Probability-1,” contains chapters 1 to 3, and chap-
ters 4 to 8 are contained in vol. 2, titled “Probability-2,” to appear in 2016.

The present English edition has been prepared by translator D. M. Chibisov, Pro-
fessor of the Steklov Mathematical Institute. A former student of N. V. Smirnov, he
has a broad view of probability and mathematical statistics, which enabled him not
only to translate the parts that had not been translated before, but also to edit both
the previous translation and the Russian text, making in them quite a number of cor-
rections and amendments. He has written a part of Sect. 13, Chap. 3, concerning the
Kolmogorov—Smirnov tests.

The author is sincerely grateful to D. M. Chibisov for the translation and scien-
tific editing of this book.

Moscow, Russia A.N. Shiryaev
2015

Preface to the Fourth Russian Edition

The present edition contains some new material as compared to the third one. This
especially concerns two sections in Chap. 1, “Generating Functions” (Sect. 13) and
“Inclusion—Exclusion Principle” (Sect. 14).

In the elementary probability theory, dealing with a discrete space of elemen-
tary outcomes, as well as in the discrete mathematics in general, the method of
generating functions is one of the powerful tools of algebraic nature applicable to
diverse problems. In the new Sect. 13, this method is illustrated by a number of
probabilistic-combinatorial problems, as well as by the problems of discrete mathe-
matics like counting the number of integer-valued solutions to linear relations under
various constraints on the solutions or writing down the elements of sequences sat-
isfying certain recurrence relations.
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The material related to the principle (formulas) of inclusion—exclusion is given
undeservedly little attention in textbooks on probability theory, though it is very
efficient in various probabilistic-combinatorial problems. In Sect. 14, we state the
basic inclusion—exclusion formulas and give examples of their application.

Note that after publication of the third edition in two volumes, “Probability-1”
and “Probability-2,” we published the book, “Problems in Probability Theory,” [90]
where the problems were arranged in accordance with the contents of these two vol-
umes. The problems in this book are not only “problems-exercises,” but are mostly
of the nature of “theory in problems,” thus presenting large additional material for a
deeper study of the probability theory.

Let us mention, finally, that in “Probability-1" and ‘“Probability-2” some correc-
tions of editorial nature have been made.

Moscow, Russia A.N. Shiryaev
November 2006

Preface to the Third Russian Edition

Taking into account that the first edition of our book “Probability” was published in
1980, the second in 1989, and the present one, the third, in 2004, one may say that
the editions were appearing once in a decade. (The book was published in English
in 1984 and 1996, and in German in 1988.)

Time has shown that the selection of the topics in the first two editions remained
relevant to this day. For this reason, we retained the structure of the previous edi-
tions, having introduced, though, some essential amendments and supplements in
the present books “Probability-1" and “Probability-2.”

This is primarily pertinent to the last, 8th, chapter (vol. 2) dealing with the theory
of Markov chains with discrete time. This chapter, in fact, has been written anew. We
extended its content and presented the detailed proofs of many results, which had
been only sketched before. A special consideration was given to the strong Markov
property and the concepts of stationary and ergodic distributions. A separate section
was given to the theory of stopping rules for Markov chains.

Some new material has also been added to the 7th chapter (vol. 2) that treats the
theory of martingales with discrete time. In Sect. 9 of this chapter, we state a dis-
crete version of the K. Ito formula, which may be viewed as an introduction to the
stochastic calculus for the Brownian motion, where Ito’s formula for the change of
variables is of key importance. In Sect. 10, we show how the methods of the mar-
tingale theory provide a simple way of obtaining estimates of ruin probabilities for
an insurance company acting under the Cramér—Lundberg model. The next Sect. 11
deals with the “Arbitrage Theory” in stochastic financial mathematics. Here we state
two “Fundamental Theorems of the Arbitrage Theory,” which provide conditions in
martingale terms for absence of arbitrage possibilities and conditions guaranteeing
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the existence of a portfolio of assets, which enables one to achieve the objected aim.
Finally, Sect. 13 of this chapter is devoted to the general theory of optimal stopping
rules for arbitrary random sequences. The material presented here demonstrates how
the concepts and results of the martingale theory can be applied in the various prob-
lems of “Stochastic Optimization.”

There are also a number of changes and supplements made in other chapters.

We point out in this respect the new material concerning the theorems on mono-
tonic classes (Sect. 2 of Chap. 2), which relies on detailed treatment of the concepts
and properties of “m-A” systems, and the fundamental theorems of mathematical
statistics given in Sect. 13 of Chap. 3.

The novelty of the present edition is also the “Outline of historical development
of the mathematical probability theory,” placed at the end of “Probability-2.”

In a number of sections new problems have been added.

The author is grateful to T. B. Tolosova for her laborious work over the scientific
editing of the book and thanks the Publishing House of the Moscow Center for
Continuous Mathematical Education for the offer of the new edition and the fast
and efficient implementation of the publication project.

Moscow, Russia A.N. Shiryaev
2003

Preface to the Second Edition

In the Preface to the first edition, originally published in 1980, we mentioned that
this book was based on the author’s lectures in the Department of Mechanics and
Mathematics of the Lomonosov University in Moscow, which were issued, in part,
in mimeographed form under the title “Probability, Statistics, and Stochastic Pro-
cesses, I, II” and published by that University. Our original intention in writing the
first edition of this book was to divide the contents into three parts: probability,
mathematical statistics, and theory of stochastic processes, which corresponds to an
outline of a three-semester course of lectures for university students of mathemat-
ics. However, in the course of preparing the book, it turned out to be impossible
to realize this intention completely, since a full exposition would have required too
much space. In this connection, we stated in the Preface to the first edition that only
probability theory and the theory of random processes with discrete time were really
adequately presented.

Essentially all of the first edition is reproduced in this second edition. Changes
and corrections are, as a rule, editorial, taking into account comments made by both
Russian and foreign readers of the Russian original and of the English and German
translations [88, 89]. The author is grateful to all of these readers for their attention,
advice, and helpful criticisms.
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In this second English edition, new material also has been added, as follows:
in Chap. 3, Sect.5, Sects. 7-12; in Chap. 4, Sect. 5; in Chap. 7, Sect. 8. The most
important additions are in the third chapter. There the reader will find expositions of
a number of problems connected with a deeper study of themes such as the distance
between probability measures, metrization of weak convergence, and contiguity of
probability measures. In the same chapter, we have added proofs of a number of
important results on the rate of convergence in the central limit theorem and in
Poisson’s theorem on the approximation of the binomial by the Poisson distribution.
These were merely stated in the first edition.

We also call attention to the new material on the probabilities of large deviations
(Chap. 4, Sect.5), and on the central limit theorem for sums of dependent random
variables (Chap. 7, Sect. 8).

During the last few years, the literature on probability published in Russia
by Nauka has been extended by Sevastyanov [86], 1982; Rozanov [83], 1985;
Borovkov [12], 1986; and Gnedenko [32], 1988. In 1984, the Moscow University
Press published the textbook by Ya. G. Sinai [92]. It appears that these publica-
tions, together with the present volume, being quite different and complementing
each other, cover an extensive amount of material that is essentially broad enough
to satisfy contemporary demands by students in various branches of mathematics
and physics for instruction in topics in probability theory.

Gnedenko’s textbook [32] contains many well-chosen examples, including ap-
plications, together with pedagogical material and extensive surveys of the history
of probability theory. Borovkov’s textbook [12] is perhaps the most like the present
book in the style of exposition. Chapters 9 (Elements of Renewal Theory), 11 (Fac-
torization Identities) and 17 (Functional Limit Theorems), which distinguish [12]
from this book and from [32] and [83], deserve special mention. Rozanov’s text-
book contains a great deal of material on a variety of mathematical models which
the theory of probability and mathematical statistics provides for describing ran-
dom phenomena and their evolution. The textbook by Sevastyanov is based on his
two-semester course at the Moscow State University. The material in its last four
chapters covers the minimum amount of probability and mathematical statistics re-
quired in a I-year university program. In our text, perhaps to a greater extent than
in those mentioned above, a significant amount of space is given to set-theoretic
aspects and mathematical foundations of probability theory.

Exercises and problems are given in the books by Gnedenko and Sevastyanov at
the ends of chapters, and in the present textbook at the end of each section. These,
together with, for example, the problem sets by A. V. Prokhorov and V. G. and
N. G. Ushakov (Problems in Probability Theory, Nauka, Moscow, 1986) and by
Zubkov, Sevastyanov, and Chistyakov (Collected Problems in Probability Theory,
Nauka, Moscow, 1988), can be used by readers for independent study, and by teach-
ers as a basis for seminars for students.

Special thanks to Harold Boas, who kindly translated the revisions from Russian
to English for this new edition.

Moscow, Russia A.N. Shiryaev
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Preface to the First Edition

This textbook is based on a three-semester course of lectures given by the author
in recent years in the Mechanics—Mathematics Faculty of Moscow State University
and issued, in part, in mimeographed form under the title Probability, Statistics,
Stochastic Processes, I, Il by the Moscow State University Press.

We follow tradition by devoting the first part of the course (roughly one semester)
to the elementary theory of probability (Chap. 1). This begins with the construction
of probabilistic models with finitely many outcomes and introduces such funda-
mental probabilistic concepts as sample spaces, events, probability, independence,
random variables, expectation, correlation, conditional probabilities, and so on.

Many probabilistic and statistical regularities are effectively illustrated even by
the simplest random walk generated by Bernoulli trials. In this connection we study
both classical results (law of large numbers, local and integral De Moivre and
Laplace theorems) and more modern results (for example, the arc sine law).

The first chapter concludes with a discussion of dependent random variables gen-
erated by martingales and by Markov chains.

Chapters 2—4 form an expanded version of the second part of the course (second
semester). Here we present (Chap. 2) Kolmogorov’s generally accepted axiomati-
zation of probability theory and the mathematical methods that constitute the tools
of modern probability theory (o-algebras, measures and their representations, the
Lebesgue integral, random variables and random elements, characteristic functions,
conditional expectation with respect to a o-algebra, Gaussian systems, and so on).
Note that two measure-theoretical results—Carathéodory’s theorem on the exten-
sion of measures and the Radon—Nikodym theorem—are quoted without proof.

The third chapter is devoted to problems about weak convergence of probabil-
ity distributions and the method of characteristic functions for proving limit theo-
rems. We introduce the concepts of relative compactness and tightness of families
of probability distributions, and prove (for the real line) Prohorov’s theorem on the
equivalence of these concepts.

The same part of the course discusses properties “with probability 1 for se-
quences and sums of independent random variables (Chap. 4). We give proofs of
the “zero or one laws” of Kolmogorov and of Hewitt and Savage, tests for the con-
vergence of series, and conditions for the strong law of large numbers. The law of
the iterated logarithm is stated for arbitrary sequences of independent identically
distributed random variables with finite second moments, and proved under the as-
sumption that the variables have Gaussian distributions.

Finally, the third part of the book (Chaps. 5-8) is devoted to random processes
with discrete time (random sequences). Chapters 5 and 6 are devoted to the theory
of stationary random sequences, where “stationary” is interpreted either in the strict
or the wide sense. The theory of random sequences that are stationary in the strict
sense is based on the ideas of ergodic theory: measure preserving transformations,
ergodicity, mixing, etc. We reproduce a simple proof (by A. Garsia) of the maxi-
mal ergodic theorem; this also lets us give a simple proof of the Birkhoff-Khinchin
ergodic theorem.
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The discussion of sequences of random variables that are stationary in the wide
sense begins with a proof of the spectral representation of the covariance func-
tion. Then we introduce orthogonal stochastic measures and integrals with respect
to these, and establish the spectral representation of the sequences themselves. We
also discuss a number of statistical problems: estimating the covariance function and
the spectral density, extrapolation, interpolation and filtering. The chapter includes
material on the Kalman—Bucy filter and its generalizations.

The seventh chapter discusses the basic results of the theory of martingales and
related ideas. This material has only rarely been included in traditional courses in
probability theory. In the last chapter, which is devoted to Markov chains, the great-
est attention is given to problems on the asymptotic behavior of Markov chains with
countably many states.

Each section ends with problems of various kinds: some of them ask for proofs
of statements made but not proved in the text, some consist of propositions that will
be used later, some are intended to give additional information about the circle of
ideas that is under discussion, and finally, some are simple exercises.

In designing the course and preparing this text, the author has used a variety
of sources on probability theory. The Historical and Bibliographical Notes indicate
both the historical sources of the results and supplementary references for the mate-
rial under consideration.

The numbering system and form of references is the following. Each section
has its own enumeration of theorems, lemmas and formulas (with no indication of
chapter or section). For a reference to a result from a different section of the same
chapter, we use double numbering, with the first number indicating the number of
the section (thus, (2.10) means formula (10) of Sect. 2). For references to a different
chapter we use triple numbering (thus, formula (2.4.3) means formula (3) of Sect. 4
of Chap. 2). Works listed in the References at the end of the book have the form
[Ln], where L is a letter and n is a numeral.

The author takes this opportunity to thank his teacher A. N. Kolmogorov, and
B. V. Gnedenko and Yu. V. Prokhorov, from whom he learned probability theory
and whose advices he had the opportunity to use. For discussions and advice, the
author also thanks his colleagues in the Departments of Probability Theory and
Mathematical Statistics at the Moscow State University, and his colleagues in the
Section on probability theory of the Steklov Mathematical Institute of the Academy
of Sciences of the U.S.S.R.

Moscow, Russia A.N. Shiryaev
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Introduction

The subject matter of probability theory is the mathematical analysis of random
events, i.e., of those empirical phenomena which can be described by saying that:

They do not have deterministic regularity (observations of them do not always
yield the same outcome) whereas at the same time:

They possess some statistical regularity (indicated by the statistical stability of
their frequencies).

We illustrate with the classical example of a “fair” toss of an “unbiased” coin. It
is clearly impossible to predict with certainty the outcome of each toss. The results
of successive experiments are very irregular (now “head,” now “tail”’) and we seem
to have no possibility of discovering any regularity in such experiments. However, if
we carry out a large number of “independent” experiments with an “unbiased” coin
we can observe a very definite statistical regularity, namely that “head” appears with
a frequency that is “close” to %

Statistical stability of frequencies is very likely to suggest a hypothesis about a
possible quantitative estimate of the “randomness” of some event A connected with
the results of the experiments. With this starting point, probability theory postulates
that corresponding to an event A there is a definite number P(A), called the proba-
bility of the event, whose intrinsic property is that as the number of “independent”
trials (experiments) increases the frequency of event A is approximated by P(A).

Applied to our example, this means that it is natural to assign the probability %
to the event A that consists in obtaining “head” in a toss of an “unbiased” coin.

There is no difficulty in multiplying examples in which it is very easy to obtain
numerical values intuitively for the probabilities of one or another event. However,
these examples are all of a similar nature and involve (so far) undefined concepts
such as “fair” toss, “unbiased” coin, “independence,” etc.

Having been invented to investigate the quantitative aspects of “randomness,”
probability theory, like every exact science, became such a science only at the point
when the concept of a probabilistic model had been clearly formulated and axiom-
atized. In this connection it is natural for us to discuss, although only briefly, the

Xiii
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fundamental steps in the development of probability theory. A detailed “Outline of
the history of development of mathematical probability theory” will be given in the
book “Probability-2.”

Probability calculus originated in the middle of the seventeenth century with
Pascal (1623-1662), Fermat (1601-1655), and Huygens (1629-1695). Although
special calculations of probabilities in games of chance had been made earlier, in
the fifteenth and sixteenth centuries, by Italian mathematicians (Cardano, Pacioli,
Tartaglia, etc.), the first general methods for solving such problems were apparently
given in the famous correspondence between Pascal and Fermat, begun in 1654, and
in the first book on probability theory, De Ratiociniis in Aleae Ludo (On Calcula-
tions in Games of Chance), published by Huygens in 1657. It was at this time that
the fundamental concept of “mathematical expectation” was developed and theo-
rems on the addition and multiplication of probabilities were established.

The real history of probability theory begins with the work of Jacob' Bernoulli
(1654-1705), Ars Conjectandi (The Art of Guessing) published in 1713, in which
he proved (quite rigorously) the first limit theorem of probability theory, the law
of large numbers; and of de Moivre (1667-1754), Miscellanea Analytica Supple-
mentum (a rough translation might be The Analytic Method or Analytic Miscellany,
1730), in which the so-called central limit theorem was stated and proved for the
first time (for symmetric Bernoulli trials).

J. Bernoulli deserves the credit for introducing the “classical” definition of the
concept of the probability of an event as the ratio of the number of possible out-
comes of an experiment, which are favorable to the event, to the number of possible
outcomes.

Bernoulli was probably the first to realize the importance of considering infinite
sequences of random trials and to make a clear distinction between the probability
of an event and the frequency of its realization.

De Moivre deserves the credit for defining such concepts as independence, math-
ematical expectation, and conditional probability.

In 1812 there appeared Laplace’s (1749-1827) great treatise Théorie Analytique
des Probabilités (Analytic Theory of Probability) in which he presented his own
results in probability theory as well as those of his predecessors. In particular, he
generalized de Moivre’s theorem to the general (asymmetric) case of Bernoulli trials
thus revealing in a more complete form the significance of de Moivre’s result.

Laplace’s very important contribution was the application of probabilistic meth-
ods to errors of observation. He formulated the idea of considering errors of obser-
vation as the cumulative results of adding a large number of independent elementary
errors. From this it followed that under rather general conditions the distribution of
errors of observation must be at least approximately normal.

The work of Poisson (1781-1840) and Gauss (1777-1855) belongs to the same
epoch in the development of probability theory, when the center of the stage was
held by limit theorems. In contemporary probability theory the name of Poisson is
attributed to the probability distribution which appeared in a limit theorem proved

! Also known as James or Jacques.
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by him and to the related stochastic process. Gauss is credited with originating the
theory of errors and, in particular, justification of the fundamental method of least
squares.

The next important period in the development of probability theory is connected
with the names of P. L. Chebyshev (1821-1894), A. A. Markov (1856—-1922), and
A. M. Lyapunov (1857-1918), who developed effective methods for proving limit
theorems for sums of independent but arbitrarily distributed random variables.

The number of Chebyshev’s publications in probability theory is not large—four
in all—but it would be hard to overestimate their role in probability theory and in
the development of the classical Russian school of that subject.

“On the methodological side, the revolution brought about by Chebyshev was not only
his insistence for the first time on complete rigor in the proofs of limit theorems, . .. but also,
and principally, that Chebyshev always tried to obtain precise estimates for the deviations
from the limiting laws that are available for large but finite numbers of trials, in the form of
inequalities that are certainly valid for any number of trials.”

(A. N. KOLMOGOROV [50])

Before Chebyshev the main interest in probability theory had been in the calcu-
lation of the probabilities of random events. He, however, was the first to realize
clearly and exploit the full strength of the concepts of random variables and their
mathematical expectations.

The leading exponent of Chebyshev’s ideas was his devoted student Markov,
to whom there belongs the indisputable credit of presenting his teacher’s results
with complete clarity. Among Markov’s own significant contributions to probability
theory were his pioneering investigations of limit theorems for sums of dependent
random variables and the creation of a new branch of probability theory, the theory
of dependent random variables that form what we now call a Markov chain.

“Markov’s classical course in the calculus of probability and his original papers, which
are models of precision and clarity, contributed to the greatest extent to the transformation
of probability theory into one of the most significant branches of mathematics and to a wide
extension of the ideas and methods of Chebyshev.”

(S. N. BERNSTEIN [7])

To prove the central limit theorem of probability theory (the theorem on conver-
gence to the normal distribution), Chebyshev and Markov used what is known as
the method of moments. Under more general conditions and by a simpler method,
the method of characteristic functions, the theorem was obtained by Lyapunov. The
subsequent development of the theory has shown that the method of characteristic
functions is a powerful analytic tool for establishing the most diverse limit theorems.

The modern period in the development of probability theory begins with its ax-
iomatization. The first work in this direction was done by S. N. Bernstein (1880—
1968), R. von Mises (1883—-1953), and E. Borel (1871-1956). A. N. Kolmogorov’s
book Foundations of the Theory of Probability appeared in 1933. Here he presented
the axiomatic theory that has become generally accepted and is not only applicable
to all the classical branches of probability theory, but also provides a firm foundation
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for the development of new branches that have arisen from questions in the sciences
and involve infinite-dimensional distributions.

The treatment in the present books ‘“Probability-1" and “Probability-2” is based
on Kolmogorov’s axiomatic approach. However, to prevent formalities and logical
subtleties from obscuring the intuitive ideas, our exposition begins with the elemen-
tary theory of probability, whose elementariness is merely that in the corresponding
probabilistic models we consider only experiments with finitely many outcomes.
Thereafter we present the foundations of probability theory in their most general
form (‘“Probability-17).

The 1920s and 1930s saw a rapid development of one of the new branches of
probability theory, the theory of stochastic processes, which studies families of ran-
dom variables that evolve with time. We have seen the creation of theories of Markov
processes, stationary processes, martingales, and limit theorems for stochastic pro-
cesses. Information theory is a recent addition.

The book “Probability-2” is basically concerned with stochastic processes with
discrete time: random sequences. However, the material presented in the second
chapter of “Probability-1" provides a solid foundation (particularly of a logical na-
ture) for the study of the general theory of stochastic processes.

Although the present edition of “Probability-1" and “Probability-2” is devoted to
Probability Theory, it will be appropriate now to say a few words about Mathemat-
ical Statistics and, more generally, about Statistics and relation of these disciplines
to Probability Theory.

In many countries (e.g., in Great Britain) Probability Theory is regarded as “inte-
gral” part of Statistics handling its mathematical aspects. In this context Statistics is
assumed to consist of descriptive statistics and mathematical statistics. (Many en-
cyclopedias point out that the original meaning of the word statistics was the “study
of the status of a state” (from Latin status). Formerly statistics was called “political
arithmetics” and its aim was estimation of various numerical characteristics describ-
ing the status of the society, economics, etc., and recovery of various quantitative
properties of mass phenomena from incomplete data.)

The descriptive statistics deals with representation of statistical data (“statistical
raw material”) in the form suitable for analysis. (The key words here are, e.g.: pop-
ulation, sample, frequency distributions and their histograms, relative frequencies
and their histograms, frequency polygons, etc.)

Mathematical statistics is designed to produce mathematical processing of “sta-
tistical raw material” in order to estimate characteristics of the underlying distribu-
tions or underlying distributions themselves, or in general to make an appropriate
statistical inference with indication of its accuracy. (Key words: point and interval
estimation, testing statistical hypotheses, nonparametric tests, regression analysis,
analysis of variance, statistics of random processes, etc.)

In Russian tradition Mathematical Statistics is regarded as a natural part of Prob-
ability Theory dealing with “inverse probabilistic problems,” i.e., problems of find-
ing the probabilistic model which most adequately fits the available statistical data.

This point of view, which regards mathematical statistics as part of probability
theory, enables us to provide the rigorous mathematical background to statistical
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methods and conclusions and to present statistical inference in the form of rigor-
ous probabilistic statements. (See, e.g., “Probability-1,” Sect. 13, Chap. 3, “Fun-
damental theorems of mathematical statistics.”) In this connection it might be ap-
propriate to recall that the first limit theorem of probability theory—the Law of
Large Numbers—arose in J. Bernoulli’s “Ars Conjectandi” from his motivation to
obtain the mathematical justification for using the “frequency” as an estimate of
the “probability of success” in the scheme of “Bernoulli trials.” (See in this regard
“Probability-1,” Sect. 7, Chap. 1.)

We conclude this Introduction with words of J. Bernoulli from “Ars Conjectandi”
(Chap. 2 of Part 4)*:

“We are said to know or to understand those things which are certain and beyond doubt;
all other things we are said merely to conjecture or guess about.

To conjecture about something is to measure its probability; and therefore, the art of con-
Jecturing or the stochastic art is defined by us as the art of measuring as exactly as possible
the probabilities of things with this end in mind: that in our decisions or actions we may be
able always to choose or to follow what has been perceived as being superior, more advan-
tageous, safer, or better considered; in this alone lies all the wisdom of the philosopher and
all the discretion of the statesman.”

To the Latin expression ars conjectandi (the art of conjectures) there corresponds
the Greek expression oToxaoTisxn TExvn (with the second word often omitted).
This expression derives from Greek 076 x0( meaning aim, conjecture, assumption.

Presently the word “stochastic” is widely used as a synonym of “random.” For ex-
ample, the expressions “stochastic processes” and “random processes” are regarded
as equivalent. It is worth noting that theory of random processes and statistics of
random processes are nowadays among basic and intensively developing areas of
probability theory and mathematical statistics.

2 Cited from: Translations from James Bernoulli, transl. by Bing Sung, Dept. Statist., Harvard
Univ., Preprint No. 2 (1966); Chs. 1-4 also available on: http://cerebro.xu.edu/math/
Sources/JakobBernoulli/ars_ sung.pdf. (Transl. 2016 ed.).
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Chapter 1
Elementary Probability Theory

We call elementary probability theory that part of probability theory which deals with
probabilities of only a finite number of events.

A. N. Kolmogorov, “Foundations of the Theory of Probability” [51]

1 Probabilistic Model of an Experiment with a Finite
Number of Outcomes

1. Let us consider an experiment of which all possible results are included in a
finite number of outcomes w, ..., wy. We do not need to know the nature of these
outcomes, only that there are a finite number N of them.

We call wy, . .. ,wy elementary events, or sample points, and the finite set

Q: {wl,...,wN},

the (finite) space of elementary events or the sample space.

The choice of the space of elementary events is the first step in formulating a
probabilistic model for an experiment. Let us consider some examples of sample
spaces.

Example 1. For a single toss of a coin the sample space €) consists of two points:
Q = {H, T},
where H = “head” and T = “tail.”
Example 2. For n tosses of a coin the sample space is
Q={w:w=(a1,...,a,), a; =Hor T}
and the total number N(2) of outcomes is 2".
© Springer Science+Business Media New York 2016 1
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Example 3. First toss a coin. If it falls “head” then toss a die (with six faces num-
bered 1, 2, 3, 4, 5, 6); if it falls “tail,” toss the coin again. The sample space for this
experiment is

Q = {H1,H2,H3,H4,H5,H6, TH, TT}.

2. We now consider some more complicated examples involving the selection of n
balls from an urn containing M distinguishable balls.

Example 4 (Sampling with Replacement). This is an experiment in which at each
step one ball is drawn at random and returned again. The balls are numbered
1,...,M, so that each sample of n balls can be presented in the form (ay,...,a,),
where g; is the label of the ball drawn at the ith step. It is clear that in sampling
with replacement each a; can have any of the M values 1, 2, ... , M. The description
of the sample space depends in an essential way on whether we consider samples
like, for example, (4, 1, 2, 1) and (1, 4, 2, 1) as different or the same. It is customary
to distinguish two cases: ordered samples and unordered samples. In the first case
samples containing the same elements, but arranged differently, are considered to
be different. In the second case the order of the elements is disregarded and the two
samples are considered to be identical. To emphasize which kind of sample we are
considering, we use the notation (ay, ..., a,) for ordered samples and [ay, ..., a,]
for unordered samples.
Thus for ordered samples with replacement the sample space has the form

Q={w:w=(a1,...,ay), a;=1,...,M}

and the number of (different) outcomes, which in combinatorics are called arrange-
ments of n out of M elements with repetitions, is

N(Q) =M". 1)

If, however, we consider unordered samples with replacement (called in combi-
natorics combinations of n out of M elements with repetitions), then

Q={w:w=[ay,...,a,), a;=1,...,M}.

Clearly the number N(2) of (different) unordered samples is smaller than the num-
ber of ordered samples. Let us show that in the present case

N() = Gyt 2

where C} = k!/[I!(k — [)!] is the number of combinations of k elements, taken [ at a
time.

We prove this by induction. Let N(M, n) be the number of outcomes of interest.
It is clear that when k < M we have

N(k,1) =k = Cy.
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Now suppose that N(k, n) = C; 1 for k < M; we will show that this formula con-
tinues to hold when 7 is replaced by n+ 1. For the unordered samples [ay, . . ., a,11]
that we are considering, we may suppose that the elements are arranged in nonde-
creasing order: a1 < as < --- < a,41. Itis clear that the number of unordered sam-
ples of size n + 1 with a; = 1 is N(M, n), the number with a; = 2 is N(M — 1, n),
etc. Consequently

NM,n+1)=NM,n)+ NM —1,n)+---+N(1,n)
= CXlJrnfl + Clrll471+n71 +oot CZ
= (CX/I—:}n - C[r\l/lt—ln—l) + (CX/IJF—11+n - Cir\l/ltll-i—n—l)

+ot (O —ath+ =t
here we have used the easily verified property
C'+C=Ciyy

of the binomial coefficients C,l{. (This is the property of the binomial coefficients
which allows for counting them by means of “Pascal’s triangle.”)

Example 5 (Sampling Without Replacement). Suppose that n < M and that the
selected balls are not returned. In this case we again consider two possibilities,
namely ordered and unordered samples.

For ordered samples without replacement (called in combinatorics arrangements
of n out of M elements without repetitions) the sample space

Q={w:w= (a,...,ay), g #a, k#lLa=1,... M},

consists of M(M — 1) ... (M — n + 1) elements. This number is denoted by (M), or
A}, and is called the number of arrangements of n out of M elements.

For unordered samples without replacement (called in combinatorics combina-
tions of n out of M elements without repetitions) the sample space

Q={w:w=lay,...,a), ax #a, k#1,a;=1,... .M}

consists of
NQ) = C, 3)

elements. In fact, from each unordered sample [ay,...,a,] consisting of distinct
elements we can obtain n! ordered samples. Consequently

N(Q) -l = (M),

and therefore

The results on the numbers of samples of size n from an urn with M balls are
presented in Table 1.1.
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Table 1.1

With

M" Chtrn-1 replacement
Without

(M), Ch replacement

Ordered | Unordered Sample
© nordere
TAer: Type

For the case M = 3 and n = 2, the corresponding sample spaces are displayed in
Table 1.2.

Table 1.2
L1 1,2 @3 | [1,1] [2,2] [3.3] With
2,1 (2,2) (2,3) [1,2] [1,3] replacement
3.1 32 (33 {2,3]
(1,2) (1.3 (1,21 [1.3] Without
2.1 (2,3 [2, 3] replacement
3,1 (3,2
Sample
Ordered Unordered
Type

Example 6 (Allocation of Objects Among Cells). We consider the structure of the
sample space in the problem of allocation of n objects (balls, etc.) among M cells
(boxes, etc.). For example, such problems arise in statistical physics in studying the
distribution of n objects (which might be protons, electrons, ...) among M states
(which might be energy levels).

Let the cells be numbered 1, 2, ..., M, and suppose first that the objects are dis-
tinguishable (numbered 1, 2, ..., n). Then an allocation of the n objects among the
M cells is completely described by an (ordered) collection (ay, ... ,a,), where a;
is the index of the cell containing the ith object. However, if the objects are indis-
tinguishable their allocation among the M cells is completely determined by the
unordered set [ay, .. .,a,], where a; is the index of the cell into which an object is
put at the ith step.
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Comparing this situation with Examples 4 and 5, we have the following corre-
spondences:

(ordered samples) < (distinguishable objects),

(unordered samples) < (indistinguishable objects),

by which we mean that to an instance of choosing an ordered (unordered) sample of
n balls from an urn containing M balls there corresponds (one and only one) instance
of distributing n distinguishable (indistinguishable) objects among M cells.
In a similar sense we have the following correspondences:
. . a cell may receive any number
(sampling with replacement) < (of objects > ,

. . 11 i t t
(sampling without replacement) < (a cel Thay recetve at mos ) .

one object
These correspondences generate others of the same kind:

indistinguishable objects in the
problem of allocation among cells
when each cell may receive at
most one object

an unordered sample in
sampling without -
replacement

etc.; so that we can use Examples 4 and 5 to describe the sample space for the
problem of allocation distinguishable or indistinguishable objects among cells either
with exclusion (a cell may receive at most one object) or without exclusion (a cell
may receive any number of objects).

Table 1.3 displays the allocation of two objects among three cells. For distin-
guishable objects, we denote them by W (white) and B (black). For indistinguish-
able objects, the presence of an object in a cell is indicated by a +.

The duality that we have observed between the two problems gives us an obvious
way of finding the number of outcomes in the problem of placing objects in cells.
The results, which include the results in Table 1.1, are given in Table 1.4.

In statistical physics one says that distinguishable (or indistinguishable, respec-
tively) particles that are not subject to the Pauli exclusion principle® obey Maxwell-
Boltzmann statistics (or, respectively, Bose—Einstein statistics). If, however, the par-
ticles are indistinguishable and are subject to the exclusion principle, they obey
Fermi-Dirac statistics (see Table 1.4). For example, electrons, protons and neu-
trons obey Fermi—Dirac statistics. Photons and pions obey Bose—Einstein statistics.
Distinguishable particles that are subject to the exclusion principle do not occur in
physics.

3. In addition to the concept of sample space we now introduce the important con-
cept of event playing a fundamental role in construction of any probabilistic model
(“theory”) of the experiment at hand.

* At most one particle in each cell. (Translator).
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Table 1.3
Wh| w]a W B] ++ [+
55
[BIw] ] [ Iws] | [ w]s] ;-
b

8] Tw] [Isw] [ [ i L

mE] @I ]
W (el mEE 2

o . . 1stribu-
Distinguishable Indistinguishable ) Dis :0:
objects objects Kind
of objects

Table 1.4
N{£2) in the problem of placing » objects in M cells
K‘;‘l‘fj:(is Distinguishable | Indistinguishable

Distribution objects objects

Without exclusion M* Man-1 With
{Maxwell- {Bose- replacement
Boltzmann Einstein
statistics) statistics)

With exclusion (M), Chy Without
(Fermi-Dirac replacement
statistics)

Ordered Unordered Sample
samples samples Type
N(€2) in the problem of choosing n balls from an urn
containing M balls

Experimenters are ordinarily interested, not in what particular outcome occurs as
the result of a trial, but in whether the outcome belongs to some subset of the set
of all possible outcomes. We shall describe as events all subsets A < €2 for which,
under the conditions of the experiment, it is possible to say either “the outcome
w € A” or “the outcome w ¢ A.”
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For example, let a coin be tossed three times. The sample space {2 consists of the
eight points
Q = {HHH,HHT,..., TTT}

and if we are able to observe (determine, measure, etc.) the results of all three tosses,
we say that the set
A = {HHH,HHT,HTH, THH}

is the event consisting of the appearance of at least two heads. If, however, we can
determine only the result of the first toss, this set A cannot be considered to be
an event, since there is no way to give either a positive or negative answer to the
question of whether a specific outcome w belongs to A.

Starting from a given collection of sets that are events, we can form new events by

EEIT3

means of statements containing the logical connectives “or,” “and” and “not,” which
correspond in the language of set theory to the operations “union,” “intersection,”
and “complement.”

If A and B are sets, their union, denoted by A U B, is the set of points that belong

either to A or to B (or to both):
AuB={weQ:weAorweB}.

In the language of probability theory, A U B is the event consisting of the realization
of at least one of events A or B.

The intersection of A and B, denoted by A N B, or by AB, is the set of points that
belong to both A and B:

AnB={weN: weAandw e B}.

The event A N B consists of the simultaneous realization of both A and B.
For example, if A = {HH, HT, TH} and B = {TT, TH, HT} then

AUB = {HH,HT, TH,TT} (=9),
An B = {TH HT}.

If A is a subset of ), its complement, denoted by A, is the set of points of € that
do not belong to A.

If B\A denotes the difference of B and A (i.e., the set of points that belong to B
but not to A) then A = Q\A. In the language of probability, A is the event consisting
of the nonrealization of A. For example, if A = {HH, HT, TH} then A = {TT}, the
event in which two successive tails occur.

The sets A and A have no points in common and consequently A N A is empty. We
denote the empty set by &. In probability theory, & is called an impossible event.
The set 2 is naturally called the certain event.

When A and B are disjoint (AB = @), the union A U B is called the sum of A and
B and written A + B.

If we consider a collection <7, of sets A < {2 we may use the set-theoretic opera-
tors U, M and \ to form a new collection of sets from the elements of «7%; these sets
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are again events. If we adjoin the certain and impossible events {2 and & we obtain a
collection <7 of sets which is an algebra, i.c. a collection of subsets of §2 for which

(1) Qe o,
(2) ifAe o/, Be o/, the sets A U B, A n B, A\B also belong to <.

It follows from what we have said that it will be advisable to consider collections
of events that form algebras. In the future we shall consider only such collections.
Here are some examples of algebras of events:

() {Q, @}, the collection consisting of 2 and the empty set (we call this the trivial
algebra);

(b) {A,A, Q, T}, the collection generated by A;

(c) & = {A: A < Q}, the collection consisting of all the subsets of ) (including
the empty set @).

It is easy to check that all these algebras of events can be obtained from the
following principle.
We say that a collection

2 =1{Di, ..., Dy}

of sets is a decomposition of €2, and call the D; the atoms of the decomposition, if
the D; are not empty, are pairwise disjoint, and their sum is {2:

Di+-+D,=9Q.

For example, if {2 consists of three points, Q = {1,2, 3}, there are five different
decompositions:

.@1 = {Dl} with D1 = {1,273},

@2 = {Dl, DQ} with Dl = {1,2}, D2 = {3},
@3 = {Dh DQ} with D1 = {1,3}, D2 = {2},
P4 = {Dy, Dy} with Dy = {2,3}, Dy = {1};

@5 = {Dl, Dg, Dg} Wlth D1 = {1}, DQ = {2}, Dg = {3}

(For the general number of decompositions of a finite set see Problem 2.)

If we consider all unions of the sets in &, the resulting collection of sets, together
with the empty set, forms an algebra, called the algebra induced by &, and denoted
by «(2). Thus the elements of a(Z) consist of the empty set together with the sums
of sets which are atoms of Z.

Thus if 2 is a decomposition, there is associated with it a specific algebra # =
a(D).

The converse is also true. Let Z4 be an algebra of subsets of a finite space 2.
Then there is a unique decomposition 2 whose atoms are the elements of %, with
B = a(Z). In fact, let D € % and let D have the property that for every B € Z the
set D n B either coincides with D or is empty. Then this collection of sets D forms
a decomposition & with the required property a(2) = 2. In Example (a), 2 is the
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trivial decomposition consisting of the single set D; = Q; in (b), 2 = {A, A}. The
most fine-grained decomposition &, which consists of the singletons {w;}, w; € 2,
induces the algebra in Example (c), i.e., the algebra of all subsets of (2.

Let 21 and 9, be two decompositions. We say that 2 is finer than &y, and write
D <X Do, if()é(@l) < Oé(@g).

Let us show that if {2 consists, as we assumed above, of a finite number of points

w1, . ..,wy, then the number N(.27) of sets in the collection <7 as in Example (c)
is equal to 2V. In fact, every nonempty set A € </ can be represented as A =
{wiy, ..., wi}, where w;, € Q, 1 < k < N. With this set we associate the sequence

of zeros and ones
(0,...,0,1,0,...,0,1,...),

where there are ones in the positions i1, . . ., iy and zeros elsewhere. Then for a given
k the number of different sets A of the form {w;,, ..., w;, } is the same as the number
of ways in which k ones (k indistinguishable objects) can be placed in N positions
(N cells). According to Table 1.4 (see the lower right-hand square) we see that this
number is C¥. Hence (counting the empty set) we find that

N()=1+Cy+-+Cy=(1+1)"=2"

4. We have now taken the first two steps in defining a probabilistic model (“theory”)
of an experiment with a finite number of outcomes: we have selected a sample space
and a collection o7 of its subsets, which form an algebra and are called events.
(Sometimes the pair & = (), /) is regarded as an experiment.) We now take the
next step, to assign to each sample point (outcome) w; € 2, i = 1,...,N, a weight.
This is denoted by p(w;) and called the probability of the outcome w;; we assume
that it has the following properties:

(a) 0 < p(w;) <1 (nonnegativity),
(b) p(w1) + -+ + p(wy) = 1 (normalization).

Starting from the given probabilities p(w;) of the outcomes w;, we define the
probability P(A) of any event A € <7 by

P@A)= > plw) )

Definition. The “probability space”
(Q, o, P),
where Q = {w1,...,wy}, & is an algebra of subsets of 2, and

P={P(A);Aec o},
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is said to specify the probabilistic model (“theory”) of an experiment with a (fi-
nite) space {2 of outcomes (elementary events) and algebra 7 of events. (Clearly,
P({wi}) = p(w;), i = 1,...,N.) A probability space (€2, .27, P) with a finite set 2
is called discrete.

The following properties of probability follow from (4):

P(2) =0, ©)
P(Q) =1, (6)
P(Au B) =P(A) + P(B) — P(A n B). @)
In particular, if A N B = @, then
P(A + B) = P(A) + P(B) ®
and B
P@A) =1 —P(A). 9)

5. In constructing a probabilistic model for a specific situation, the construction of
the sample space (2 and the algebra .« of events are ordinarily not difficult. In ele-
mentary probability theory one usually takes the algebra .7 to be the algebra of all
subsets of (2. Any difficulty that may arise is in assigning probabilities to the sample
points. In principle, the solution to this problem lies outside the domain of probabil-
ity theory, and we shall not consider it in detail. We consider that our fundamental
problem is not the question of how to assign probabilities, but how to calculate the
probabilities of complicated events (elements of .7) from the probabilities of the
sample points.

It is clear from a mathematical point of view that for finite sample spaces we can
obtain all conceivable (finite) probability spaces by assigning nonnegative numbers
D1, .-, PN, satisfying the condition p; + - - - + py = 1, to the outcomes wy, . . . , wx.

The validity of the assignments of the numbers p, ..., py can, in specific cases,
be checked to a certain extent by using the law of large numbers (which will be
discussed later on). It states that in a long series of “independent” experiments,
carried out under identical conditions, the frequencies with which the elementary
events appear are “close” to their probabilities.

In connection with the difficulty of assigning probabilities to outcomes, we note
that there are many actual situations in which for reasons of symmetry or homogene-
ity it seems reasonable to consider all conceivable outcomes as equally probable. In
such cases, if the sample space consists of points w1, . .., wy, with N < o0, we put

p(wi) = -+ =p(wy) = 1/N,

and consequently
P(A) = N(A)/N (10)

for every event A € o/, where N(A) is the number of sample points in A.
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This is called the classical method of assigning probabilities. It is clear that in
this case the calculation of P(A) reduces to calculating the number of outcomes be-
longing to A. This is usually done by combinatorial methods, so that combinatorics,
dealing with finite sets, plays a significant role in the calculus of probabilities.

Example 7 (Coincidence Problem). Let an urn contain M balls numbered
1,2,...,M. We draw an ordered sample of size n with replacement. It is clear
that then

Q={w:w=(a1,...,an), a; =1, ..., M}

and N(2) = M". Using the classical assignment of probabilities, we consider the
M" outcomes equally probable and ask for the probability of the event

A={w:w="(ai,...,an), a; # a;, i #j},

i.e., the event in which there is no repetition. Clearly N(A) = M(M — 1) --- (M —
n + 1), and therefore

P(A)—(ZZ"—<1—A1/I) <1—A24)--.<1—"A_41>. (11)

This problem has the following striking interpretation. Suppose that there are n
students in a class and that each student’s birthday is on one of 365 days with all
days being equally probable. The question is, what is the probability P, that there are
at least two students in the class whose birthdays coincide? If we interpret selection
of birthdays as selection of balls from an urn containing 365 balls, then by (11)

(365),
365"

P, =1

The following table lists the values of P, for some values of n:

n 4 16 22 23 40 64
P, 0.016| 0.284| 0.476| 0.507| 0.891| 0.997

For sufficiently large M
M), "3 k 1S 1n(n—1)
1 - Y (1ff)~ff k=22
o8 3 = 215 (1 W 2 M~ 2
k=1 k=1
hence iy
Py(n)=1— (Mzn ~1— e (=Pu(n), M— o

The figures below present the graphs of Psgs(n) and Psgs(n) and the graph of

their difference. The graphs of Psgs(n) and its approximation Psgs(n) shown in the
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left panel practically coincide. The maximal difference between them in the interval
[0, 60] equals approximately 0.01 (at about n = 30).

1k 0.01F

0.8 F 0,008 £

0.6 F 0,006

04F 0,004 F

0.2F 0,002

0" 10 20 30 40 50 60 n 710 20 30 40 50 60
Graph of P3¢5(n) and Pses(n) Graph of P3g5(n) — Pses(n)

It is interesting to note that (unexpectedly!) the size of class in which there is
probability % of finding at least two students with the same birthday is not very

large: only 23.

Example 8 (Prizes in a Lottery). Consider a lottery that is run in the following
way. There are M tickets numbered 1,2,...,M, of which n, numbered 1,...,n,
win prizes (M > 2n). You buy n tickets, and ask for the probability (P, say) of
winning at least one prize.

Since the order in which the tickets are drawn plays no role in the presence or
absence of winners in your purchase, we may suppose that the sample space has the
form

Q={w:w=la1,...,an], ax #a;, k#1,a;=1,..., M}.

By Table 1.1, N(Q2) = C};. Now let
Ag={w:w=lar,...,a), ax #a, k#1lL,a,=n+1,... M}

be the event that there is no winner in the set of tickets you bought. Again by
Table 1.1, N(Ag) = C},_,,. Therefore

P(ao) — e — Ll

1—£ 1-— n 1_L
M M—-1 M—-n+1
and consequently
P=1-PA)=1-(1-2)(1--" ). (1—-—" ).
M M—-1 M—-—n+1

If M = n? and n — o0, then P(Agy) — e~ ! and

P—1-—e¢'20.632

The convergence is quite fast: for n = 10 the probability is already P = 0.670.
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6. PROBLEMS
1. Establish the following properties of the operators N and U:
AUB=BuUA, AB=BA (commutativity),
AuBuC)=(AuB)uC, A(BC)= (AB)C (associativity),
ABuUC)=ABUAC, Au (BC)=(AuUB)AuC) (distributivity),
AUA=A, AA=A (idempotency).
Show also the following De Morgan’s laws:
AUB=AnB, AB=AUB.
2. Let Q) contain N elements. Show that Bell’s number By of different decompo-
sitions of {2 is given by the formula

1 J- kN
By=¢') T (12)
k=0
(Hint: Show that
N—1
By = ) Ch_,Bi, where Bg=1,
k=0

and then verify that the series in (12) satisfy the same recurrence relations.)
3. For any finite collection of sets A1, ...,A,,

PAju---UA,) <P(A1) + -+ P(A)).

4. Let A and B be events. Show that AB U BA is the event in which exactly one of
A and B occurs. Moreover,

P(AB U BA) = P(A) + P(B) — 2P(AB).
5. LetAq,...,A, be events, and define Sy, S1, ..., S, as follows: So = 1,

S,:ZP(Aklm---mAk,), 1<r<n,
J;

where the sum is over the unordered subsets J, = [kq,...,k] of {1, ...,n},
ki # ki, i # .
Let B,, be the event in which exactly m of the events Ay, ...,A, occur si-

multaneously. Show that

In particular, for m = 0

P(Bo)=1—S1+S8—---+S,.
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Show also that the probability that at least m of the events Ay, . .., A, occur
simultaneously is

P(B,) + -+ P(B,) = an (_1)r7mc:n:115r.

r=m

In particular, the probability that at least one of the events A1, . .., A, occurs is
P(Bi)+---+P(B,) =8 —Ss+---FS,.

Prove the following properties:
(a) Bonferroni’s inequalities: for any k = 1,2, ... such that 2k < n,

S1—SQ+"'_S21¢§P(UAI') <81 —S8So+ -+ So_1;

i=1

(b) Gumbel’s inequalities:

n R
S
P(UAi)g m"il, m=1,...,n,
r=1 Cnfl

where

1<ii<...<im<n

(c) Frechét’s inequalities:

m Slﬂ
(UA) m“f e m=1,...,n—1.
Cn 1 Cn—l

6. Show that P(A nBn C) > P(A) + P(B) + P(C) — 2 and, by induction,

P(QA,) ZP —(n—1).

7. Explore the asymptotic behavior of the probabilities Py (n) in Example 7 under
various assumptions about n and M (for example: n = xM, M — o0, or n =
xvVM, M — oo, where x is a fixed number). Compare the results with the local
limit theorem in Sect. 6.

2 Some Classical Models and Distributions

1. Binomial distribution. Let a coin be tossed » times and record the results as an
ordered set (ay,...,a,), where a; = 1 for a head (“success”) and a; = 0 for a tail
(“failure”). The sample space is

={w:w=1(ay,...,ay), a; =0,1}.
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To each sample point w = (ay, ..., a,) we assign the probability (“weight”)

p(w) = p=ig" >,
where the nonnegative numbers p and ¢ satisfy p + ¢ = 1. In the first place, we
verify that this assignment of the weights p(w) is consistent. It is enough to show
that 3 _,p(w) = 1.
Consider all outcomes w = (ay,...,a,) for which > .a; = k, where k =
0,1,...,n. According to Table 1.4 (allocation of k indistinguishable objects over
n places) the number of these outcomes is C¥. Therefore

D pw) = Z Cr'¢" = +q" =1
k=0

we

Thus the space (2 together with the collection .7 of all its subsets and the proba-
bilities P(A) = >} ., p(w), A € & (in particular, P({w}) = p(w), w € ), defines
a discrete probabilistic model. It is natural to call this the probabilistic model for n
tosses of a coin. This model is also called the Bernoulli scheme.

In the case n = 1, when the sample space contains just the two points w = 1
(“success”) and w = 0 (“failure™), it is natural to call p(1) = p the probability of
success. We shall see later that this model for n tosses of a coin can be thought of as
the result of n “independent” experiments with probability p of success at each trial.

Let us consider the events
Ay ={w:w=(a1,...,an), a1+ +a, =k}, k=0,1,...,n,
containing exactly k successes. It follows from what we said above that
P(4y) = Cp'q"™, (1

and >/ P(Ay) = 1.

The set of probabilities (P(Ao), ..., P(A,)) is called the binomial distribution
(the probability distribution of the number of successes in a sample of size n). This
distribution plays an extremely important role in probability theory since it arises in
the most diverse probabilistic models. We write P, (k) = P(A;), k = 0,1, ..., n.
Figure 1 shows the binomial distribution in the case p = % (symmetric coin) for
n = 5,10, 20.

We now present a different model (in essence, equivalent to the preceding one)
which describes the random walk of a “particle.”

Let the particle start at the origin, and after unit time let it take a unit step upward
or downward (Fig. 2).

Consequently after n steps the particle can have moved at most n units up or
n units down. It is clear that each path w of the particle is completely specified
by a vector (ay,...,a,), where a; = +1 if the particle moves up at the ith step,
and @; = —1 if it moves down. Let us assign to each path w the weight p(w) =
p’ @ g7 where v(w) is the number of +1’s in the sequence w = (a1, . . ., a,),
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P(k) P, (k)
0.3 il 0.3 n=10
0.2 0.2
0.1 | 0.1 I ‘
1 | . |
0123435 k 0123454678910 Kk
P(k)
0.3 n =20
0.2
"Ll H“Hh
l | l l
>
12345678910 k
Fig. 1 Graph of the binomial probabilities P, (k) for n = 5, 10, 20
w
t +—»
n

Fig. 2

ie, v(w) =[(a1 + - + ay) + n]/2, and the nonnegative numbers p and g satisfy
p+qg=1

Since Y _, p(w) = 1, the set of probabilities p(w) together with the space 2 of
paths w = (ay,...,a,) and its subsets define an acceptable probabilistic model of
the motion of the particle for n steps.

Let us ask the following question: What is the probability of the event A; that
after n steps the particle is at a point with ordinate £? This condition is satisfied by
those paths w for which v(w) — (n — v(w)) =k, i.e.,

n+k

v(w) = 5 k=-n-n+2,....n

The number of such paths (see Table 1.4) is C,(ln+k)/ 2, and therefore
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P(A) = CltR/2p(0+0/2 4 (1=k)/2,
Consequently the binomial distribution (P(A_,),...,P(A),...,P(A,)) can be
said to describe the probability distribution of the position of the particle after n
steps.
Note that in the symmetric case (p = g = %) when the probabilities of the
individual paths are equal to 27",

P(Ay) = C{mt/2 . 27n,

Let us investigate the asymptotic behavior of these probabilities for large n.
If the number of steps is 2n, it follows from the properties of the binomial coef-
ficients that the largest of the probabilities P(Ay), |k| < 2nis

P(Ag) = C3, - 272"
From Stirling’s formula (see formula (6) below)
n! ~ A 2rne "n".*

Consequently
n (2”)! ~ 22)1 . 1

= ()2 Jn

1
v’
Figure 3 represents the beginning of the binomial distribution for 2n steps of a
random walk (in contrast to Fig. 2, the time axis is now directed upward).

and therefore for large n

P(Ao) ~

Fig. 3 Beginning of the binomial distribution

* The notation f(n) ~ g(n) means that f(n)/g(n) — 1 asn — .
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2. Multinomial distribution. Generalizing the preceding model, we now suppose
that the sample space is

Q={w:w=(a1,...,an), a;="by,...,b},

where b1, ..., b, are given numbers. Let v;(w) be the number of elements of w =
(ai,...,a,) thatare equal to b;, i = 1, ..., r, and define the probability of w by

vy (w) .

p(w) = p; «)

v,
P )

where p; > 0 and p; + - - - + p, = 1. Note that

Mpw) = D Caln..m)pipl,

weN n1>0, 0y >0,
{n1+-~+nr:n }
where C,(ny,...,n,) is the number of (ordered) sequences (ay,...,a,) in which

b1 occurs ny times, ..., b, occurs n, times. Since n; elements b; can be allocated
among n positions in Cy;' ways; no elements by among n — ny positions in C,2 |
ways, etc., we have

C”(nl’ te ’n") = C'ylll ’ Czinl e CZL(111+"'+nr—l)
_ n! (n—m)! .
Coml(n—ny)! nol(n—ny —no)!
n!
B I’l1! s I’lr!'
Therefore
_ m! ny ne _ n_1
D Pw) = P = (ot p) = 1
we {n120,...,n,20.} n ny:
ni+---+n=n

and consequently we have defined an acceptable method of assigning probabilities.
Let
Apy,om, = {w: 1 (w) =ny,..., 1 (w) =nt.
Then
P(Anl,-..,nr) = C,,(nl,. -wnr)qu cepy (2)
The set of probabilities
{P(An,....n)}

is called the multinomial (or polynomial) distribution.
We emphasize that both this distribution and its special case, the binomial distri-
bution, originate from problems about sampling with replacement.

3. The multidimensional hypergeometric distribution occurs in problems that
involve sampling without replacement.
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Consider, for example, an urn containing M balls numbered 1, 2, ..., M, where
M balls have the color b1, ..., M, balls have the color b,, and M1 +-- -+ M, = M.
Suppose that we draw a sample of size n < M without replacement. The sample
space is

Q={w:w=(a1,...,ay), ax #ap, k#1l,a;,=1,..., M}

and N(Q2) = (M),. Let us suppose that the sample points are equiprobable, and find
the probability of the event B, ., in which n; balls have color by, ..., n, balls
have color b,, where n1 + - - - + n, = n. It is easy to show that

N(Bnl,...,n,.) = Cn(i’l1, e 7nr)(M1)n1 e (Mr)n,a

and therefore
P, )= Y Bnon) _ Cit, - Cui, 3)
e N(§) Ciy
The set of probabilities {P (B, ... )} is called the multidimensional hypergeo-
metric distribution. When r = 2 it is simply called the hypergeometric distribution
because its “generating function” is a hypergeometric function.
The structure of the multidimensional hypergeometric distribution is rather com-

plicated. For example, the probability

Ci Cy?
PBun) = —5—2, m+ny=n My +My=M, 4)
Cy
contains nine factorials. However, it is easily established that if M, M; — o0 in such
a way that M1 /M — p (and therefore Mo /M — 1 — p) then

P(Buyny) = Col o™ (1= p)". )

In other words, under the present hypotheses the hypergeometric distribution is
approximated by the binomial; this is intuitively clear since when M and M; are
large (but finite), sampling without replacement ought to give almost the same result
as sampling with replacement.

Example. Let us use (4) to find the probability of picking six “lucky” numbers in
a lottery of the following kind (this is an abstract formulation of the “Sportloto,”
which was well known in Russia in 1970s—80s):

There are 49 balls numbered from 1 to 49; six of them are lucky (colored red,
say, whereas the rest are white). We draw a sample of six balls, without replacement.
The question is, What is the probability that all six of these balls are lucky? Taking
M =49, My = 6, n; = 6, ny = 0, we see that the event of interest, namely

Bg,o = {6 balls, alllucky}

has, by (4), probability
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4. The numbers n! increase extremely rapidly with n. For example,

10! = 3,628, 800,
15! = 1,307, 674, 368, 000,

and 100! has 158 digits. Hence from either the theoretical or the computational point
of view, it is important to know Stirling’s formula,

nl = 27Tn(Z)nexp<192”n>, 0<6, <1, (6)

whose proof can be found in most textbooks on mathematical analysis.
5. PROBLEMS

1. Prove formula (5).

2. Show that for the multinomial distribution {P(A,, ., )} the maximum proba-
bility is attained at a point (kq, . .., k,) that satisfies the inequalities np; — 1 <
k<@m+r—1Dp,i=1...,r

3. One-dimensional Ising model. Consider n particles located at the points 1, 2,

., n. Suppose that each particle is of one of two types, and that there are n
particles of the first type and ns of the second (ny + ny = n). We suppose that
all n! arrangements of the particles are equally probable.

Construct a corresponding probabilistic model and find the probability of
the event A, (m11, mi2, ma1, Mmaz) = {vi1 = mi1, ..., vag = maa}, where v;;
is the number of particles of type i following particles of type j (i, j = 1, 2).

4. Prove the following equalities using probabilistic and combinatorial argu-
ments:

i ck =2,
k=0

Z(C]:;)2 = C3,,
nka_ fn—lv mZ”‘Fla

=m(m—1)2""2 m>2,

m

kCk = nCk—1

n—1»

C’T_ZCJ n— k7

WhereOgmgn,nggnandwesetC{=0f0rj<00rj>l.
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5. Suppose we want to estimate the size N of a population without total counting.
Such a question may be of interest, for example, when we try to estimate the
population of a country, or a town, etc.

In 1786 Laplace proposed the following method to estimate the number N of
inhabitants of France.

Draw a sample of size M, say, from the population and mark its elements.
Then return them into the initial population and assume that they become “well
mixed” with unmarked elements. Then draw n elements from the “mixed”
population. Suppose there are X marked elements among them.

Show that the corresponding probability Py ».,{X = m} is given by the for-
mula for the hypergeometric distribution (cf. (4)):

n n—m
CMCNfM

PN,M;n{X = m} = Cn
N

For fixed M, n and m find N maximizing this probability, i.e., find the “most
likely” size of the whole population (for fixed M and n) given that the number
X of marked elements in the repeated sample is equal to m.

Show that the “most likely” value (to be denoted by N)is given by the formula
(with [ - ] denoting the integral part):

N = [Mnm™].

The estimator N for N obtained in this way is called the maximum likelihood
estimator.
(This problem is continued in Sect. 7 (Problem 4).)

6. (Compare with Problem 2 in Sect. 1.) Let € contain N elements and let d (N)
be the number of different decompositions of € with the property that each
subset of the decomposition has odd number of elements. Show that

d(1)
d(4) =

) a(3) = 3

1, d2)=1 2
, 12, d(6) =37

and, in general,

i a(”)xn sinhx _ 1’

=e x| < 1.
n!

n=1

3 Conditional Probability: Independence

1. The concept of probabilities of events lets us answer questions of the following
kind: If there are M balls in an urn, M; white and M black, what is the probabil-
ity P(A) of the event A that a selected ball is white? With the classical approach,
P(A) = M1/M.
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The concept of conditional probability, which will be introduced below, lets us
answer questions of the following kind: What is the probability that the second ball
is white (event B) under the condition that the first ball was also white (event A)?
(We are thinking of sampling without replacement.)

It is natural to reason as follows: if the first ball is white, then at the second step
we have an urn containing M — 1 balls, of which M; — 1 are white and M5 black;
hence it seems reasonable to suppose that the (conditional) probability in question
is(My —1)/(M —1).

We now give a definition of conditional probability that is consistent with our
intuitive ideas.

Let (Q, <7, P) be a (discrete) probability space and A an event (i.e. A € &).

Definition 1. The conditional probability of event B given that event A, P(A) > 0,
occurred (denoted by P(B|A)) is

)]

In the classical approach we have P(A) = N(A)/N(§2), P(AB) = N(AB)/N(),
and therefore
N(AB)
N(4) -
From Definition 1 we immediately get the following properties of conditional
probability:

P(B|A) = 2

P(A]A) = 1,
P(2]A) =0,
P(B|A) =1, B2A,

P(By + By | A) = P(B1| A) + P(B2| A).

It follows from these properties that for a given set A the conditional probability
P(-]A) has the same properties on the space (d N A, &/ n A), where & N A =
{BnA: Be 4}, that the original probability P(-) has on (Q, ).

Note that

P(B|A) +P(B|A) = 1;

however in general

P(B|A) + P(B|A) # 1,

P(B|A) + P(B|A) # 1.
Example 1. Consider a family with two children. We ask for the probability that
both children are boys, assuming

(a) that the older child is a boy;
(b) that at least one of the children is a boy.
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The sample space is
Q) = {BB, BG, GB, GG},

where BG means that the older child is a boy and the younger is a girl, etc.
Let us suppose that all sample points are equally probable:

P(BB) = P(BG) = P(GB) = P(GG) = 1.

Let A be the event that the older child is a boy, and B, that the younger child
is a boy. Then A U B is the event that at least one child is a boy, and AB is the
event that both children are boys. In question (a) we want the conditional probability
P(AB|A), and in (b), the conditional probability P(AB|A U B).

It is easy to see that

P(AB|A) = P;E‘f)) -4
P(AB|A U B) = Fm -4- ;
4

2. The simple but important formula (3), below, is called the formula for total prob-
ability. It provides the basic means for calculating the probabilities of complicated
events by using conditional probabilities.

Consider a decomposition 2 = {Ay,...,A,} withP(4;) > 0,i=1,...,n(such
a decomposition is often called a complete set of disjoint events). It is clear that

B=BA; +---+BA,

and therefore

But
P(BA:) = P(B|A;) P(A)).

Hence we have the formula for total probability:
P(B) = ) P(B|A;) P(4)). (€)
i=1

In particular, if 0 < P(A) < 1, then
P(B) = P(B|A)P(A) + P(B|A)P(A). 4

Example 2. An urn contains M balls, m of which are “lucky.” We ask for the prob-
ability that the second ball drawn is lucky (assuming that the result of the first
draw is unknown, that a sample of size 2 is drawn without replacement, and that
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all outcomes are equally probable). Let A be the event that the first ball is lucky, and
B the event that the second is lucky. Then

m(m—1
_ P(BA) M(Mfl)) m—1

P(B|A) = - -
BI="pay =T Tww
__ m(M—m)
P(B MM —1 m
P8 1) - o) - M —
M

and

P(B) = P(B|A)P(A) -I—P(B\Z)P )
m—1 ﬂ+ m M—m m
M—-1 M M-1 M M

It is interesting to observe that P(A) is precisely m/M. Hence, when the nature
of the first ball is unknown, it does not affect the probability that the second ball is
lucky.

By the definition of conditional probability (with P(A) > 0),

P(AB) = P(B|A) P(A). 5)

This formula, the multiplication formula for probabilities, can be generalized (by
induction) as follows: If Ay, ..., A,_; are events with P(A; ---A,_1) > 0, then

P(Ay---A,) =P(A1)P(Az|Ay)---PA, |A1 -+ Auq) (6)

(here Ay - A, =A1nAs - N Ay).

3. Suppose that A and B are events with P(A) > 0 and P(B) > 0. Then along with
(5) we have the parallel formula

P(AB) = P(A|B)P(B). (7

From (5) and (7) we obtain Bayes’s formula

P(A|B) = ®)
If the events Ay, ..., A, form a decomposition of €2, (3) and (8) imply Bayes’s
theorem:

P(A;) P(B|A;)
Y1 P(A)P(BIA)

j=1

P(Ai|B) = 9

In statistical applications, Aq,...,A, (A1 + -+ + A, = ) are often called
hypotheses, and P(A;) is called the prior (or a priori)* probability of A;. The condi-

* Apriori: before the experiment; aposteriori: after the experiment.
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tional probability P(A; | B) is considered as the posterior (or the a posteriori) prob-
ability of A; after the occurrence of event B.

Example 3. Let an urn contain two coins: A1, a fair coin with probability % of falling
H; and A, a biased coin with probability % of falling H. A coin is drawn at random
and tossed. Suppose that it falls head. We ask for the probability that the fair coin
was selected.

Let us construct the corresponding probabilistic model. Here it is natural to take
the sample space to be the set 2 = {A1H, A;T, AoH, A;T}, which describes all
possible outcomes of a selection and a toss (A;H means that coin A; was selected
and fell heads, etc.) The probabilities p(w) of the various outcomes have to be as-
signed so that, according to the statement of the problem,

P(41) = P(42) = 5

and

PH|A;) = 1, PH|A2) = 3.

With these assignments, the probabilities of the sample points are uniquely deter-
mined:

P(AiH) = 1, PAIT) =1, P(AH) =1}, P(AT) =1

Then by Bayes’s formula the probability in question is

P(A,)P(H|A;) 3
P(A1[H) = P(A1)P(H|A,) + P(A) P(H|Ay) 5

and therefore
P(A2|H) = 2.

4. In certain sense, the concept of independence, which we are now going to in-
troduce, plays a central role in probability theory: it is precisely this concept that
distinguishes probability theory from the general theory of measure spaces.

If A and B are two events, it is natural to say that B is independent of A if knowing
that A has occurred has no effect on the probability of B. In other words, “B is
independent of A” if

P(B|A) = P(B) (10)
(we are supposing that P(A) > 0).
Since
_ P(AB)
it follows from (10) that
P(AB) = P(A) P(B). (11)

In exactly the same way, if P(B) > 0 it is natural to say that “A is independent of
B if
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P(A|B) = P(A).

Hence we again obtain (11), which is symmetric in A and B and still makes sense
when the probabilities of these events are zero.
After these preliminaries, we introduce the following definition.

Definition 2. Events A and B are called independent or statistically independent
(with respect to the probability P) if

P(AB) = P(A) P(B).

In probability theory we often need to consider not only independence of events
(or sets) but also independence of collections of events (or sets).
Accordingly, we introduce the following definition.

Definition 3. Two algebras <7 and <% of events (or sets) are called independent or
statistically independent (with respect to the probability P) if all pairs of sets A; and
Ao, belonging respectively to o) and <7, are independent.

For example, let us consider the two algebras
JZ{1 = {Alagla @’ Q} and % = {A2>X2a ®7 Q},

where A; and A, are subsets of 2. It is easy to verify that <7} and .o% are indepen-
dent if and only if A; and A5 are independent. In fact, the independence of <7 and
«f» means the independence of the 16 pairs of events A; and Az, A1 and Ag, ...,
and Q2. Consequently A; and A5 are independent. Conversely, if A; and A5 are inde-
pendent, we have to show that the other 15 pairs of events are independent. Let us
verify, for example, the independence of A; and A,. We have

P(A4142) = P(A1) = P(A142) = P(A1) — P(41) P(42)

=P(A;) - (1 — P(A2)) = P(A1) P(A2).
The independence of the other pairs is verified similarly.

5. The concept of independence of two sets (events) or two algebras of sets can be
extended to any finite number of sets or algebras of sets.

Definition 4. We say that the sets (events) A1, ..., A, are mutually independent or
statistically independent (with respect to the probability P) if forany k = 1,....,n
and1§i1<i2<---<ik§n

P(A;, ...A;) =P(A;) ... P(4,). (12)

e
Definition 5. The algebras <71, ..., of sets (events) are called mutually inde-
pendent or statistically independent (with respect to the probability P) if any sets
A1, ...,A, belonging respectively to &7, . . ., <, are independent.
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Note that pairwise independence of events does not imply their independence. In
fact if, for example, 2 = {w1, w2, ws,w,} and all outcomes are equiprobable, it is
easily verified that the events

A ={wi,wa}, B={wi,wz}, C={w,ws}
are pairwise independent, whereas
P(ABC) = 1 # (3)* = P(A) P(B) P(C).

Also note that if
P(ABC) = P(A) P(B)P(C)

for events A, B and C, it by no means follows that these events are pairwise indepen-
dent. In fact, let Q consist of the 36 ordered pairs (i,;), where i, j = 1,2, ..., 6 and
all the pairs are equiprobable. Then if A = {(i, j): j =1, 2 or5}, B = {(i,j): j =
4, 50r6}, C = {(i,j): i +j =9} we have

P(AC) = 35 # 5 = P(A) P(C),
P(BC) = {5 # 1z = P(B)P(C),

but also
P(ABC) = 3= = P(A)P(B) P(C).

6. Let us consider in more detail, from the point of view of independence, the clas-
sical discrete model (2, <7, P) that was introduced in Sect. 2 and used as a basis for
the binomial distribution.

In this model

Q={w:w=(ar,...,a,),a;,=0,1}, & ={A:AcQ}

and
p(w) _ pZa,-qn—Za;. (13)

Consider an event A < €). We say that this event depends on a trial at time £ if it
is determined by the value a; alone. Examples of such events are

Av={w:aq =1}, A= {w:a =0}.

Let us consider the sequence of algebras ., %, . . . , oy, where <} = {Ay, Ay,
@, 1} and show that under (13) these algebras are independent.



28 1 Elementary Probability Theory

It is clear that

PA) = > plw)y= > pg

{w: =1} {w: =1}
=p Z p(l1+'“+(1k—1+ak+1+'“+(lu

(@150 @1, Ak 150250

n—1
% q(n—l)—(al+"'+ak—1+ak+1+"'+an) =p Z CZ.L, 1, (n=1)—1 _

1Pq D,

=0

and a similar calculation shows that P(A;) = ¢ and that, for k # [,

P(AcA) =p*, P(AcA) =pq, P(AA) =pq, PAA) =4q>

It is easy to deduce from this that <% and .7 are independent for k # [.

It can be shown in the same way that .27} , o, . . . , 7, are independent. This is the
basis for saying that our model (2, o7, P) corresponds to “n independent trials with
two outcomes and probability p of success.” James Bernoulli was the first to study
this model systematically, and established the law of large numbers (Sect. 5) for
it. Accordingly, this model is also called the Bernoulli scheme with two outcomes
(success and failure) and probability p of success.

A detailed study of the probability space for the Bernoulli scheme shows that it
has the structure of a direct product of probability spaces, defined as follows.

Suppose that we are given a collection (Q, %1,P1),...,(Qy, %, P,) of dis-
crete probability spaces. Form the space @ = Q5 x Qg x -+ x €, of points
w = (ai,...,a), where a; € Q;. Let o/ = $; ® --- ® B, be the algebra of
the subsets of {2 that consists of sums of sets of the form

A:Bl XBQX"'XBn

with B; € %,. Finally, for w = (ay,...,a,) take p(w) = pi1(a1)---pn(a,) and
define P(A) for the set A = B; X By X -+ x B, by

PA) = > pi(ar)...pa(an).

{a1€B1,...,a,€B,}

It is easy to verify that P(€2) = 1 and therefore the triple (2, <7, P) defines a
probability space. This space is called the direct product of the probability spaces
(1, %1,P1),..., (2, By, Py).

We note an easily verified property of the direct product of probability spaces:
with respect to P, the events

Ay ={w:a; €B}, ..., A, ={w: a, € B,},

where B; € %;, are independent. In the same way, the algebras of subsets of (2,
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ﬂl = {Ali Al = {w: ay EBl}, B1 € %1},

are independent.
It is clear from our construction that the Bernoulli scheme

(Q, o, P)withQ = {w: w = (a1, ..., ay), a; = 0or 1},
o ={A: AC Q}and p(w) = pZ g F%

can be thought of as the direct product of the probability spaces (£2;, %, P;), i = 1,
2,...,n, where

Qi = {071}5 @i = {{0}7 {1}7 g, Qi}a
P.({1}) =p,  Pi({0}) =¢q.
7. PROBLEMS

1. Give examples to show that in general the equations
A)
A)

P(B|A) + P(
P(B|A) + P(

=1,

B|
B|

are false.

2. An urn contains M balls, of which M are white. Consider a sample of size n.
Let B; be the event that the ball selected at the jth step is white, and Ay the
event that a sample of size n contains exactly £ white balls. Show that

P(B;|Ac) = k/n

both for sampling with replacement and for sampling without replacement.
3. LetAq,...,A, be independent events. Then

P (OA,) =1- ﬁp(gl)

4. Let Ay,...,A, be independent events with P(A;) = p;. Then the probability
Py that neither event occurs is

n

PO = H(l —p,‘).

i=1

5. Let A and B be independent events. In terms of P(A) and P(B), find the prob-
abilities of the events that exactly k, at least k, and at most k£ of A and B occur
(k=0,1,2).
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6.

7.

Fig. 4

9.

10.

11.
12.

13.

14.

15.
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Let event A be independent of itself, i.e., let A and A be independent. Show
that P(A) is either O or 1.

Let event A have P(A) = 0 or 1. Show that A and an arbitrary event B are
independent.

Consider the electric circuit shown in Fig. 4. Each of the switches A, B, C, D,
and E is independently open or closed with probabilities p and g, respectively.
Find the probability that a signal fed in at “input” will be received at “output.”
If the signal is received, what is the conditional probability that E is open?

A B
input E >—~oulpul
(‘\1)0
Let P(A + B) > 0. Show that
P(4)
PA|A+B) = —————.
Al ) P(A) + P(B)

Let an event A be independent of events B,, n > 1, such that B; n B; = &,
i # j. Then A and Ule B, are independent.

Show thatif P(A| C) > P(B|C) and P(A | C) > P(B| C), then P(A) > P(B).
Show that

P(A|B) = P(A|BC) P(C|B) + P(A|BC) P(C|B).

Let X and Y be independent binomial random variables with parameters
(n,p).* Show that

k ~m—k
Cn Cn
m 9
C2n

PX=k|X+Y=m)= k=0,1,...,min(m,n).

Let A, B, C be pairwise independent equiprobable events such that AnBnC =
@. Find the largest possible value of the probability P(A).

Into an urn containing one white ball another ball is added which is white
or black with equal probabilities. Then one ball is drawn at random which
occurred white. What is the conditional probability that the ball remaining in
the urn is also white?

* See (2) in the next section. Translator.
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4 Random Variables and Their Properties

1. Let (2, o7, P) be a discrete probabilistic model of an experiment with a finife
number of outcomes, N(Q2) < oo, where 7 is the algebra of all subsets of 2. We
observe that in the examples above, where we calculated the probabilities of various
events A € o7, the specific nature of the sample space €2 was of no interest. We
were interested only in numerical properties depending on the sample points. For
example, we were interested in the probability of some number of successes in a
series of n trials, in the probability distribution for the number of objects in cells,
etc.

The concept “random variable,” which we now introduce (later it will be given a
more general form), serves to define quantities describing the results of “measure-
ments” in random experiments.

Definition 1. Any numerical function £ = £(w) defined on a (finite) sample space
Q is called a (simple) random variable. (The reason for the term “simple” random
variable will become clear after the introduction of the general concept of random
variable in Sect. 4, Chap. 2).

Example 1. In the model of two tosses of a coin with sample space 2 = {HH, HT,
TH, TT}, define a random variable £ = £(w) by the table

w HH| HT| TH| TT
£(w) 2 1 1 0

Here, from its very definition, £(w) is nothing but the number of heads in the
outcome w.

Another extremely simple example of a random variable is the indicator (or char-
acteristic function) of aset A € o/ :

§=I(w),

where*
1, weA,
Ia(w) = {0, w ¢ A.

When experimenters are concerned with random variables that describe observa-
tions, their main interest is in the probabilities with which the random variables take
various values. From this point of view they are interested, not in the probability dis-
tribution P on (2, /), but in the probability distribution over the range of a random
variable. Since we are considering the case when 2 contains only a finite number
of points, the range X of the random variable ¢ is also finite. Let X = {x1, ..., X},
where the (different) numbers x1, ..., x, exhaust the values of .

* The notation I(A) is also used. For frequently used properties of indicators see Problem 1.
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Let 2 be the collection of all subsets of X, and let B € 2". We can also interpret
B as an event if the sample space is taken to be X, the set of values of .
On (X, Z7), consider the probability P¢(-) induced by & according to the formula

P¢(B) = P{w: {(w)e B}, Be XZ.
It is clear that the values of this probability are completely determined by the prob-
abilities

Pe(x;) = P{w: E(w) = x}, x€X.

The set of numbers {P¢(x1), ..., Pe(xn)} is called the probability distribution
of the random variable &.

Example 2. A random variable ¢ that takes the two values 1 and 0 with probabilities
p (“success”) and ¢ (“failure”), is called a Bernoulli* random variable. Clearly

Pe(x) = gt x=0,1. (1)

A binomial (or binomially distributed) random variable & is a random variable
that takes the n + 1 values 0,1, ..., n with probabilities

Pe(x) =Cp*q"™, x=0,1,...,n. 2)

Note that here and in many subsequent examples we do not specify the sample
spaces (2, <7, P), but are interested only in the values of the random variables and
their probability distributions.

The probabilistic structure of the random variables £ is completely specified by
the probability distributions {P¢(x;), i = 1, ..., m}. The concept of distribution
function, which we now introduce, yields an equivalent description of the proba-
bilistic structure of the random variables.

Definition 2. Let x € R!. The function
Fe(x) = P{w: §(w) < x}

is called the distribution function of the random variable &.

Clearly
Fe(x) = >, Pe(x)
{i: x;<x}
* We use the terms “Bernoulli, binomial, Poisson, Gaussian, ..., random variables” for what are
more usually called random variables with Bernoulli, binomial, Poisson, Gaussian, ..., distribu-

tions.
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and
Pe(x;) = Fe(xi) — Fe(xi —),

where F¢(x—) = limy 4, Fe(y).
If we suppose that x; < x3 < - - < X,,, and put F¢(xg) = 0, then

Pg(x,‘) = Fg(x,-) — Fg(x,‘_l), i= 1, ce., M.

The following diagrams (Fig. 5) exhibit P¢(x) and F¢(x) for a binomial random
variable.

Py(x)
™
-~ e
2L —
q — pﬂ
o 1 2 n
F¢(x)
l———— e ———— -
|E.D
| |
! |
LU
|
|
I
!
qﬂ
) VS = il
0 1 2 n

Fig. 5

It follows immediately from Definition 2 that the distribution function F¢ =
F¢(x) has the following properties:

(1) Fe(—0) =0, Fe(+0) = 1;
(2) Fe(x) is continuous on the right (F¢(x+) = Fe¢(x)) and piecewise constant.

Along with random variables it is often necessary to consider random vectors
¢ = (&,...,&) whose components are random variables. For example, when we
considered the multinomial distribution we were dealing with a random vector v =
(vi,...,v;), where v; = v;(w) was the number of elements equal to b;, i = 1,...,7,
in the sequence w = (ay, ..., a).

The set of probabilities

Pe(x1, ..., x) =Plw: & (w) =x1, ..., &(w) = x},
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where x; € X;, the range of &;, is called the probability distribution of the random
vector £, and the function

Fe(x1, ..., x) =Pl{w: &(w) <x1, ..., & (w) < x},

where x; € R!, is called the distribution function of the random vector & =

(517 L) fr)

For example, for the random vector v = (v1, ..., v,) mentioned above,
PV(n17 IR nr) = Cn(nl, ey I’lr)pql .. p;lr
(see (2), Sect. 2).

2.Let &, ..., & be a set of random variables with values in a (finite) set X < R!.
Let 2 be the algebra of all subsets of X.

Definition 3. The random variables &1, ..., & are said to be (mutually) indepen-
dent if

Pl&o =x1, ..., & =x} =P{& =x} P{{ =x}
for all x1, ..., x, € X; or, equivalently, if

P{{1€Bi, ..., eB} =P{{& eBi}--P{{ B}
forall By, ..., B, e 2.

We can get a very simple example of independent random variables from the
Bernoulli scheme. Let

Q:{w:w:(ah"'7an)7ai:071}7 p(w):pxaiqn_zui
and &(w) = g; forw = (a1, ..., a,), i = 1, ..., n. Then the random variables
&1, &9, ..., &, are independent, as follows from the independence of the events

Ay ={w:a; =1}, ..., A, = {w: a, = 1},
which was established in Sect. 3.

3. We shall frequently encounter the problem of finding the probability distributions
of random variables that are functions f (&1, ..., &) of random variables &1, ..., &,.
For the present we consider only the determination of the distribution of a sum
¢ = £ + n of random variables.

If ¢ and 7 take values in the respective sets X = {x1,...,x} and ¥ =
{¥1, ..., yi}, the random variable { = £ + 7 takes values in the set Z = {z: z =
Xi+y,i=1,...,k j=1,..., l}. Thenit s clear that

P(z) =P{{=z} =P{{+n=2} = Y P{E=x, =y}

{G.)): xityj=z}
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The case of independent random variables ¢ and 7 is particularly important. In
this case

P{§ = xi, n =y} = P{§ = xi} P{n =y},

and therefore

k
PC(Z) = Z z 7} y] Z Z _xz) 3)

{G@0): Xi+y.f=f}

for all z € Z, where in the last sum P, (z — x;) is taken to be zero if z — x; ¢ Y.
For example, if £ and 7 are independent Bernoulli random variables, taking the
values 1 and 0 with respective probabilities p and ¢, then Z = {0, 1, 2} and

T,
Pc(1) = Pe(0)Py(1) + Pe(1)Py(0) = 2pg,
p2

It is easy to show by induction that if &1, &9, ..., &, are independent Bernoulli
random variables with P{&; = 1} = p, P{& = 0} = ¢, then the random variable
¢ =& + - + &, has the binomial distribution

Pc(k) = Cip* g™, k=0,1,...,n. )

4. We now turn to the important concept of the expectation, or mean value, of a
random variable.

Let (9, <7, P) be a (discrete) probability space and £ = £(w) a random variable
with values in the set X = {x1, ..., xx}. fweputA; = {w: { =x}, i=1, ..., k,
then ¢ can evidently be represented as

k
w) = Y xl(Ay), )
i=1

where the sets A1, ..., A; form a decomposition of €2 (i.e., they are pairwise disjoint
and their sum is €2; see Subsection 3 of Sect. 1).

Let p; = P{¢ = x;}. It is intuitively plausible that if we observe the values of
the random variable £ in “n repetitions of identical experiments,” the value x; ought
to be encountered about p; n times, i = 1, ..., k. Hence the mean value calculated
from the results of n experiments is roughly

1
;[”Plh + - npx] = ZP[XL

This discussion provides the motivation for the following definition.
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Definition 4. The expectation® or mean value of the random variable £ = ZLI X;
I(4;) is the number

k
E& =) xiPA). 6)
i=1

Since A; = {w: &{(w) = x;} and P¢(x;) = P(A;), we have

k
E¢ =) xiPe(x). 7)

i=1
Recalling the definition of F¢ = F¢(x) and writing
AFg(x) = Fe(x) — Felx—),

we obtain Pg (x;) = AF¢(x;) and consequently

k
EE = inAFg(xi>. (8)

i=1

Before discussing the properties of the expectation, we remark that it is often
convenient to use another representation of the random variable £, namely

where By + -+ + B; = (2, but some of the x; may be repeated. In this case E ¢

can be calculated from the formula ZJI _1 % P(B;), which differs formally from (6)
because in (6) the x; are all different. In fact,

Z xiP(B) = x; Z P(Bj) = x; P(A))

U x=xi} {r xf=xi}
and therefore 1 )
DA P(B) = > xP(A)).
j=1 i=1
5. We list the basic properties of the expectation:

(1) If€ > 0 then E€ > 0.

(2) E(a& +bn) = aEE + bEn, where a and b are constants.
() If§ = nthenEE > En.

@) [EEI <E[].

* Also known as mathematical expectation, or expected value, or (especially in physics) expecta-
tion value. (Translator of 1984 edition).
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(5) If € and n are independent, then EEn = EE - E.
6) (E|&n|)? < EE2 - En? (Cauchy-Bunyakovskii inequality).*
(7) If€ = I(A) then E € = P(A).

Properties (1) and (7) are evident. To prove (2), let

§= inI(Ai)a n= Z)’./I(Bj)-

Then
a§ + b?] = (IZ)C,'I(Ai N Bj) + beJI(A, M Bj)
i,j i,j
= (ax; + by)I(A; 0 By)
i,J
and

E(a + bn) = Z(ax,- + by;) P(A; N B))
iJ
= > ax; P(A;) + ). by; P(B))
i J
= ain P(A;) +b2yj P(B;)) =aE¢+bEn.
i J

Property (3) follows from (1) and (2). Property (4) is evident, since

Bl = | Xx P(a)] < Yl Pa) = Ee]

To prove (5) we note that

eor =€ (Nuie) ) (Lwie)

= sziyjI(Ai M B]) = inyj P(Al M B])
ij iJ
= inyj P(A;) P(B))
J

i,j

- (inm») (SwPwe)) - EcEn

37

where we have used the property that for independent random variables the events

Ai={w: {(w) =x} and B; = {w:n(w) =y}
are independent: P(A; n B;) = P(A;) P(B,)).

* Also known as the Cauchy—Schwarz or Schwarz inequality. (Translator of 1984 edition).
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To prove property (6) we observe that
€ =>x71A), 0=y I(B)
i J

and

E¢® =) 5/ PA), En*=)7P(B).
i J

Let E€2 > 0, En? > 0. Put

I3 .
vEe T Er

Since 2|¢77| < €2 + 772, we have 2E |£7j] < E£2 + E#? = 2. Therefore E |€7| < 1
and (E[¢n])* <EE*-En?.

However, if, say, E£? = 0, this means that . x? P(4;) = 0 and consequently
the mean value of £ is 0, and P{w: £(w) = 0} = 1. Therefore if at least one of
E &2 or En? is zero, it is evident that E |¢n] = 0 and consequently the Cauchy—
Bunyakovskii inequality still holds.

£ =

Remark. Property (5) generalizes in an obvious way to any finite number of ran-
dom variables: if &1, ..., &, are independent, then

E& & =E& - E¢,.
The proof can be given in the same way as for the case r = 2, or by induction.

Example 3. Let ¢ be a Bernoulli random variable, taking the values 1 and 0 with
probabilities p and g. Then

E¢=1-P{{=1}+0-P{¢ =0} =p.

Example 4. Let &y, ..., & be n Bernoulli random variables with P{§; = 1} =
p, P{& =0} =¢q,p+ g =1 Thenif

Sp=&+ - +&

we find that
ES, =np.

This result can also be obtained in a different way. It is easy to see that E S,
is not changed if we assume that the Bernoulli random variables &1, ..., £, are
independent. With this assumption, we have according to (4)

P(S, = k) = Ckp*q" %, k=0,1,...,n
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Therefore
n n
ES, = >, kP(S, = k) = > kCip*q" ™
k=0 k=0
n

n!
Z k- pkqn—k
= K(n—k)!

o < (n_1)| - o
,npkgl (k_1)!((n_1)_(k_1))!pk 1= D= (k=)

- (n—1)! 1 _(n—1)—I
=np Z P4 = np.
= M((n—1) =)

However, the first method is more direct.

6. Let £ = > xil(A;), where A; = {w: {(w) = x;}, and let ¢ = @({(w)) be a
function of {(w). If B; = {w: ¢(&(w)) = y;}, then

p(€(w)) = Zyjl(Bj%

and consequently

Ev =) %PB) = 5Pe (). 9)
j j

But it is also clear that

P(EW)) = X e(x)I(4).
Hence, along with (9), the expectation of the random variable ¢ = (&) can be

calculated as
Ep(§) = Z P (xi) Pe (x;).

l

7. The important notion of the variance of a random variable ¢ indicates the amount
of scatter of the values of £ around E €.

Definition 5. The variance of the random variable £ (denoted by Var &) is
Var¢ = E(¢ — E€)?%

The number o = ++/Var¢ is called the standard deviation (of £ from the mean
value E &).

Since

E(€—E¢)* =E(&* - 26-E¢ + (EE)?) = EE* — (E¢)?,
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we have

Var¢ = E€2 — (E€)2
Clearly Var ¢ > 0. It follows from the definition that

Var(a + b¢) = b?> Varé,  where a and b are constants.

In particular, Vara = 0, Var(b§) = b? Var €.
Let £ and 7 be random variables. Then

Var(€ +1) = E((€ —E&) + (n — En))®
= Var{ + Varn+ 2E(§ —E¢&)(n— En).

Write
Cov(§, n) =E(E—E&)(n—En).

This number is called the covariance of & and 7. If Var £ > 0 and Varn > 0, then

Cov(¢,n)
vVar - Varn

is called the correlation coefficient of £ and 7. It is easy to show (see Problem 7
below) that if p(§, n) = +1, then £ and 7 are linearly dependent:

p(€,m) =

n=a&+b,

witha > 0if p(§, n) = landa < 0if p(§, ) = —1.
We observe immediately that if £ and n are independent, so are £ — E¢ and
1 — En. Consequently by Property (5) of expectations,

Cov(¢, n) =E( —E&)-E(n—En) =0.
Using the notation that we introduced for covariance, we have
Var(€ + n) = Var€ + Varn + 2 Cov (€, n); (10)

if € and n are independent, the variance of the sum £ + n is equal to the sum of the
variances,

Var(§ +n) = Varé + Varn. (11)

It follows from (10) that (11) is still valid under weaker hypotheses than the in-
dependence of ¢ and 7. In fact, it is enough to suppose that & and 7 are uncorrelated,
ie., Cov(&, ) =0.

Remark. If £ and 7 are uncorrelated, it does not follow in general that they are
independent. Here is a simple example. Let the random variable « take the values
0, w/2 and 7 with probability % Then £ = sina and 7 = cos « are uncorrelated;
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however, they are stochastically dependent (i.e., not independent with respect to the
probability P):

Ple=1,n=1} =0+ 5 =P{¢=1}P{y=1}.

Properties (10) and (11) can be extended in the obvious way to any number of
random variables:

Var (Z g,) = Z Var & + 2 Z Cov(&, &). (12)

i=1 i=1 i>j

In particular, if &1, . .., &, are pairwise independent (pairwise uncorrelated is suffi-

cient), then
Var (Z f,) = Z Var ;. (13)
i=1

i=1
Example 5. If ¢ is a Bernoulli random variable, taking the values 1 and 0 with
probabilities p and g, then

Varé = E(¢ —E&)? =E(€—p)® = (1 —p)°p +p*q = pq.

It follows that if &, ..., &, are independent identically distributed Bernoulli ran-
dom variables, and S, = &1 + - - - + &, then

Var S, = npq. (14)

8. Consider two random variables £ and 7. Suppose that only £ can be observed. If £
and 7 are correlated, we may expect that knowing the value of ¢ allows us to make
some inference about the values of the unobserved variable 7.

Any function f = f(£) of £ is called an estimator for 1. We say that an estimator
f* = f*(&) is best (or optimal) in the mean-square sense if

E(n —f*()* = inf E(n —f(€))%.

Let us show how to find the best estimator in the class of linear estimators A(§) =
a + b¢. Consider the function g(a, b) = E(n — (a + b€))?. Differentiating g(a, b)
with respect to a and b, we obtain

W = —2E[n— (a +b¢)],
ﬁg(afz P) _ 9E[(y — (a + bo))e],

whence, setting the derivatives equal to zero, we find that the best mean-square
linear estimator is A*(£) = a* + b*¢, where

* % % COV(fﬂ?)
at*=En—b*EE b —7\/%5 . (15)
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In other words,

* (o) Cov(&,n) _
(€)= En+ Var € € —EQ. (16)

The number E(n — \*(€))? is called the mean-square error of estimation. An
easy calculation shows that it is equal to

Cov?(&,m)

A* = E(n — A*(£))? = Varn — Varé

=Varn-[1—p*(& n)].  (7)

Consequently, the larger (in absolute value) the correlation coefficient p(&, )
between £ and 7, the smaller the mean-square error of estimation A*. In particular,
if |p(&, n)| = 1 then A* = 0 (cf. Problem 7). On the other hand, if £ and 7 are
uncorrelated (p(§, n) = 0), then A*(§) = Ep, i.e., in the absence of correlation
between £ and 7 the best estimate of 7 in terms of £ is simply E 7 (cf. Problem 4).

9. PROBLEMS.
1. Verify the following properties of indicators Iy = I4(w):
Ip=0, Ig=1, Li+I;=1,
Iy = 1a - I,

Iaop = Iy + Ip — Iyp.

The indicator of | J;_; A; is 1 —[]_;(1 — I4,), the indicator of | J/_, A; is
[T, (1 — L4,), the indicator of > | A;is >, I4,, and
IAAB = (IA—IB)2 =IA +IB (mod 2),
where A AB is the symmetric difference of A and B, i.e., the set (A\B) U (B\A).
2. Let&q, ..., & be independent random variables and
gmin = min(fl» sy fn)v gmax = max(fl, ey gn)
Show that
n n
P{min > x} = [ [P{& > 5}, Plémax <3} = [ [P{& <.
i=1 i=1

3. Let&y,. .., &, be independent Bernoulli random variables such that
P{¢ =0} =1—-XNA, P{{=1}=NA,

where nand \; > 0,7 = 1,...,n, are fixed and A > 0 is a small number.
Show that

n

P{&i+ +& =1} = <Z>\i>A+0(A2),

i=1

P&+ +& > 1} = 0(A?).
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4. Show that inf_,, .o E(¢ — @)? is attained for a = E £ and consequently

inf E(¢£—a)? = Varé.

—00<a<xo

5. Let £ be a random variable with distribution function Fe¢(x) and let m, be a
median of Fe(x), i.e., a point such that

Fe(me—) <} < Fe(m,).

Show that
inf E|¢—al=E|¢—m,|

—o0<a<oo

6. Let P¢(x) = P{{ = x} and F¢(x) = P(§ < x}. Show that

Pug1p(x) = Pe (x — b),

a

Fagip(x) = F (x — b)

a

fora > 0and —o0 < b < o0. If y > 0, then

Fea(y) = Fe(++/y) — Fe(—9) + Pe(—/).

Let £ = max(¢, 0). Then

0, x <0,
F5+(x) = Fg(O), )CZO,
Fe(x), x>0.

7. Let & and n be random variables with Varé > 0, Varn > 0, and let p =
p(&, n) be their correlation coefficient. Show that |p| < 1.If |p| = 1, there are
constants a and b such that n = a& + b. Moreover, if p = 1, then

n—En §—-E¢

vVarn  4/Varé

(and therefore a > 0), whereas if p = —1, then

n—En_ §-E¢
v/ Varn v/ Var €

(and therefore a < 0).
8. Let £ and 7 be random variables with E{ = En = 0, Var{ = Varn = 1 and
correlation coefficient p = p(&, ). Show that

E max(¢2, n%) <1+ /1 — p2.
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9. Use the equation
n n
Indicator of UA,- = H(l —1Ly,)
i=1 i=1

to prove the formula P(By) =1 — S + Sz + - -+ £ S, in Problem 4 of Sect. 1.

10. Let &1, ..., &, be independent random variables, 1 = ¢1(&1, ..., &) and
w2 = ©2(&+1, - - -, &), functions respectively of &1, ..., & and Ey 1, - .-y Ep-
Show that the random variables ¢, and (5 are independent.

11. Show that the random variables &1, ..., &, are independent if and only if

Fepg, (01, -0y Xn) = Fey (x1) -+ Fe, ()
forall xq, ..., x,, Wwhere Fe, ¢ (x1, ..., %) = P{& <x1, ..., & < x,}.

12. Show that the random variable £ is independent of itself (i.e., £ and & are
independent) if and only if £ = const.

13. Under what conditions on £ are the random variables ¢ and sin £ independent?

14. Let £ and 7 be independent random variables and 1 # 0. Express the proba-
bilities of the events P{¢n < z} and P{¢/n < z} in terms of the probabilities
Pe(x) and P,y (y).

15. Let &, n, ¢ be random variables such that || < 1, || < 1, |¢| < 1. Prove the
Bell inequality:

|E&C—En¢l <1-Eé&n.

(See, e.g., [46].)

16. Let k balls be independently thrown into n urns. (Each ball falls into any
specific urn with probability 1/n.) Find the expectation of the number of
nonempty urns.

5 The Bernoulli Scheme: I—The Law of Large Numbers

1. In accordance with the definitions given in Sect. 2, Subsection 1, forn = 1,2, ...,
a triple

(Q, ,,P,) with Q, ={w: w = (a1,...,a,), a; = 0,1},

(1
hy={A:Ac ), Pu({w}) =p™q"™>" (¢=1-p)

is called a (discrete) probabilistic model of n independent experiments with two
outcomes, or a Bernoulli scheme.

In this and the next section we study some limiting properties (in a sense de-
scribed below) for Bernoulli schemes. These are best expressed in terms of random
variables and of the probabilities of events connected with them.
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We introduce random variables &,1, . . ., &, by taking &,;(w) = a;, i = 1,...,n,
where w = (a1, ...,a,). As we saw above, the Bernoulli variables ,;(w) are inde-
pendent and identically distributed:

Pn{gni = ]-} =D, Pn{gni = O} =4q, i = 17 RN

It is natural to think of &,; as describing the result of an experiment at the ith stage
(or at time i).
Let us put S,,0(w) = 0 and

Snk:§n1+"'+§nk7 k:17--~7n-

For notational simplicity we will write S, for S,,,. As we found above, E, S, = np
and consequently

Sn
n

In other words, the mean value of the frequency of “success,” i.e., S,/n, coincides
with the probability p of success. Hence we are led to ask how much the frequency
S,/n of success differs from its probability p.

We first note that we cannot expect that, for a sufficiently small € > 0 and for
sufficiently large n, the deviation of S, /n from p is less than ¢ for all w, i.e., that

Sn(w)

n

—p‘ <e we, 3)
In fact, when 0 < p < 1,
Pn{n = 1} = Pn{gnl = 17'-~7§nn = 1} :pna
S, n
Pn{n :O} = Pn{gnl :O»“-;gnn :0} =q,

whence it follows that (3) is not satisfied for sufficiently small € > 0.

We observe, however, that for large n the probabilities of the events {S,/n = 1}
and {S,/n = 0} are small. It is therefore natural to expect that the total probability
of the events for which |[S,(w)/n] — p| > € will also be small when 7 is sufficiently
large.

We shall accordingly try to estimate the probability of the event

{w: [[Sa(w)/n] = p| > €}
Forn > 1and 0 < k < n, write

Py(k) = Cipkqn_k-
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Then
S,

P {|= —p|>ce} = :
{ . p‘ e} > Pulk) )
{k: |(k/n)—p|>e}

It was proved by J. Bernoulli that, as n — o0, the expression in the right-hand side
and hence the probability in the left-hand side tend to 0. The latter statement is
called the law of large numbers.

The analytic proof of this statement is rather involved, and we will prove that

Sﬂ
—p‘>€}—>0 as n— ®))

Pn{
n

by probabilistic methods. For this purpose we will use the following inequality,
which was established by Chebyshev.

Chebyshev’s (Bienaymé-Chebyshev’s) inequality. Ler (2, o7, P) be a (discrete)
probability space and § = £(w) a nonnegative random variable defined on (2, o).
Then

P{{>c} <E¢/e (6)

forall e > 0.

PROOF. We notice that
E=EIE>e)+EI(E <) > EIE > e) > el(€ > o),
where I(A) is the indicator of A. Then, by the properties of the expectation,
E¢>cEI(E>¢e)=cP(€20),

which establishes (6).
]

Corollary. If ¢ is any random variable defined on (2, <), we have for € > 0,

P{l¢| > e} <E[¢|/e,

P{l¢] > e} = P{¢? > %} <E&?/%,
P{|¢ — E¢| > &} < Varg/e?,

P (¢ —E¢|/+/Varg > ¢) < 1/2%.

(The last inequality represents the form in which Chebyshev obtained the in-
equality in his paper [16].)

Now we turn again to the probability space (1). Take £ = S, /n in the next-to-last
of inequalities (7). Then using (14) of Sect. 4, we obtain

)

= _pl>

p (|5 o | o Varu(Sa/n) _ Var,S, _ npg _ pg
N ep < = = = =<
n g? n2e2 n2¢2  pe?
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Therefore

Sy Pq 1

P, {22 —pl>ecl <L < , 8
{ n p‘ - 5} ne? ~ 4ne? ®

and, since € > 0 is fixed, this implies the law of large numbers (5).

Y

np — ne o np + ne

Fig. 6

It is clear from (4) and (5) that

P,(k) - 0, n— 0. (©)]
{k: |(k/n)—plze}

We can clarify this graphically in the following way. Let us represent the bino-
mial distribution {P,(k), 0 < k < n} as in Fig. 6.

Then as n increases the graph spreads out and becomes flatter. At the same time
the sum of P, (k) over k, for which np — ne < k < np + ne, tends to 1.

Let us think of the sequence of random variables S,o, Sy1, - - - , Sun as the path of
a wandering particle. Then (9) has the following interpretation.

Let us draw lines from the origin of slopes kp, k(p+¢), and k(p —¢). Then on the
average the path follows the kp line, and for every € > 0 we can say that when 7 is
sufficiently large there is a large probability that the point S, specifying the position
of the particle at time 7 lies in the interval [n(p — ), n(p + €)]; see Fig. 7.

The statement (5) goes by the name of James Bernoulli’s law of large numbers.
We may remark that to be precise, Bernoulli’s proof consisted in establishing (9),
which he did quite rigorously by using estimates for the “tails” of the binomial prob-
abilities P, (k) (for the values of k for which |(k/n) — p| > ¢). A direct calculation
of the sum of the tail probabilities of the binomial distribution >} .|/, —pj>e Pn(k)
is rather difficult problem for large n, and the resulting formulas are ill adapted for
actual estimates of the probability with which the frequencies S,/n differ from p
by less than . Important progress resulted from the discovery by de Moivre (for
p= %) and then by Laplace (for 0 < p < 1) of simple asymptotic formulas for
P, (k), which led not only to new proofs of the law of large numbers but also to
more precise statements of both local and integral limit theorems, the essence of
which is that for large n and at least for k ~ np,

1
\/2mnpq

Pa(k) ~ e—(k—np)2/(2npq)’
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S,
kip + €)

Fig. 7

and

1 e\/n/pq
> Py(k) ~ Vor
{k: |(k/m)—p| <} T J=en/nlpg

2. The next section will be devoted to precise statements and proofs of these results.
For the present we consider the question of the real meaning of the law of large
numbers, and of its empirical interpretation.

Let us carry out a large number, say N, of series of experiments, each of which
consists of “n independent trials with probability p of the event C of interest.” Let
Si /n be the frequency of event C in the ith series and N. the number of series in
which the frequency deviates from p by less than ¢:

e 2y,

N_. is the number of i’s for which |(S! /n) — p| < e.
Then by the law of large numbers
N/N ~ P (10)
where P. = P,{|(S}/n) — p| < &}.

3. Let us apply the estimate obtained above,

g

to answer the following question that is typical of mathematical statistics: what is
the least number n of observations which guarantees (for arbitrary 0 < p < 1) that

Sn 1
— > = E <
n p' N 8} Palk) < 4ne?’ (D
ke (fm—pl>2}

S

{2

"—p'<5}>1—a, 12)
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where « is a given number (usually small)? (Here and later we omit the index »n of
P and the like when the meaning of the notation is clear from the context.)
It follows from (11) that this number is the smallest integer n for which

S 1
n )
T 4e2¢

13)

For example, if & = 0.05 and € = 0.02, then 12500 observations guarantee that
(12) will hold independently of the value of the unknown parameter p.

Later (Subsection 5, Sect. 6) we shall see that this number is much overstated;
this came about because Chebyshev’s inequality provides only a very crude upper
bound for P{|(S,/n) — p| > €}.

4. Let us write

Cln, <) — {w S"fl‘”) —p’ < g} .

From the law of large numbers that we proved, it follows that for every € > 0 and
for sufficiently large n, the probability of the set C(n, €) is close to 1. In this sense it
is natural to call paths (realizations) w that are in C(n, ¢) typical (or (n, €)-typical).

We ask the following question: How many typical realizations are there, and what
is the weight p(w) of a typical realization?

For this purpose we first notice that the total number N(Q2) of points is 2", and
that if p = 0 or 1, the set of typical paths C(n, €) contains only the single path
(0,0, ...,0)or (1,1,...,1). However, if p = % it is intuitively clear that “almost
all” paths (all except those of the form (0,0, ..., 0) or (1,1,...,1)) are typical and
that consequently there should be about 2" of them.

It turns out that we can give a definitive answer to the question when 0 < p < 1;
it will then appear that both the number of typical realizations and the weights p(w)
are determined by a function of p called the entropy.

In order to present the corresponding results in more depth, it will be helpful to
consider the somewhat more general scheme of Subsection 2 of Sect. 2 instead of
the Bernoulli scheme itself.

Let (p1,p2,--.,pr) be a finite probability distribution, i.e., a set of nonnegative
numbers satisfying p; + - - - + p, = 1. The entropy of this distribution is

H = _ZPiIngia 14
i=1

with 0 -log 0 = 0. It is clear that H > 0, and H = 0 if and only if every p;, with one
exception, is zero. The function f(x) = —xlogx, 0 < x < 1, is convex upward, so
that, as we know from the theory of convex functions,

flo) o) (M) .

r r
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Consequently

,
+ .+ + .+
H= —ZPi logp; < —r- L TP g <p1 Pr> =logr.

= r r

In other words, the entropy attains its largest value for p; = -+ = p, = 1/r (see
Fig. 8 for H = H(p) in the case r = 2).

If we consider the probability distribution (p1, pa, . .., p,) as giving the probabil-
ities for the occurrence of events A1,As, ..., A,, say, then it is quite clear that the
“degree of indeterminacy” of an event will be different for different distributions.
If, for example, p; = 1, po = --- = p, = 0, it is clear that this distribution does
not admit any indeterminacy: we can say with complete certainty that the result of
the experiment will be A;. On the other hand, if p; = --- = p, = 1/r, the distri-
bution has maximal indeterminacy, in the sense that it is impossible to discover any
preference for the occurrence of one event rather than another.

H(p)

Fig. 8 The function H(p) = —plogp — (1 — p) log(1 — p)

Consequently it is important to have a quantitative measure of the indeterminacy
of different probability distributions, so that we may compare them in this respect.
As we will see, such a measure of indeterminacy is successfully provided by the
entropy; it plays an important role in statistical mechanics and in many significant
problems of coding and communication theory.

Suppose now that the sample space is

Q={w:w=(a1,...,an), a;=1,...,r}

and that p(w) = pi*“ .. pi") where v;(w) is the number of occurrences of i in
the sequence w, and (p1, ..., p,) is a probability distribution.
Fore > 0andn =1,2,...,letus put

vilw)

—pi|l <&, i—l,...,r}.

.

Cln, €) = {w

It is clear that
vi(w)
n

—Di

P(C(n, €)) > 1~ Z P{
i=1
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and for sufficiently large n the probabilities P{|(v;(w)/n) — p;| > ¢} are arbitrarily
small when 7 is sufficiently large, by the law of large numbers applied to the random

variables )
1, a =1,

&(w) = k=1,....n.
07 ak7éi7

Hence for large n the probability of the event C(n, ¢) is close to 1. Thus, as in the
case n = 2, a path in C(n, ¢) can be said to be typical.
If all p; > 0, then for every w € )

p(w) = exp {nkZl <vk;w) 10gpk> } :

Consequently if w is a typical path, we have

zr} (—vkiw)logpa —H <~ Z

k=1 k=1

Vi (W 4
w@) g < —e > logpr

k=1

— Pk

It follows that for typical paths the probability p(w) is close to e~ and—since, by
the law of large numbers, the typical paths “almost” exhaust {2 when n is large—
the number of such paths must be of order ", These considerations lead us to the
following proposition.

Theorem (Macmillan). Letp; > 0, i = 1,...,r,and 0 < € < 1. Then there is an
ng = no(e; p1,-- ., pr) such that for all n > ng

(a) en(H—E) < N(C(I’l, 51)) < en(H-‘rs);
(b) e "H+e) < p(w) < e =2 e C(n, &1);
() P(C(n,e1))= > plw) —1, n— oo,

weC(n,e1)

where

€1 is the smaller of € and 5/ {—2 Z logpk} .

k=1

PROOF. Conclusion (c) follows from the law of large numbers. To establish the
other conclusions, we notice that if w € C(n, ;) then

npy —en < v (w) <npp+en, k=1,...,r,
and therefore

p(w) = exp{— Y wlogpi} < exp{—n Y. plogpi — £1n ) log pi}
< exp{—n(H — 3¢)}.
Similarly
p(w) > exp{—n(H + 3¢)}.

Consequently (b) is now established.
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Furthermore, since

P(C(n, e1)) > N(C(n, e1)) - min p(w),

weC(n,e1)
we have
P(C(n,e1)) L _ n(H+(1/2)e)
N(C(n, 1)) = — - p(w) = enmErame ¢

weC(n,e1)
and similarly

P(C(n,e1))

werg(gﬁl)p(m

N(C(n, e1)) = > P(C(n, e1))e" = 1/22),

Since P(C(n, 1)) — 1, n — oo, there is an ny such that P(C(n, €1)) > 1 —¢
for n > nq, and therefore
N(C(n, e1)) > (1 — ) exp{n(H — 1)}
= exp{n(H —¢) + (ine +log(1 — ¢€))}.

Let n5 be such that
sne +log(1 —¢) >0

for n > ny. Then when n > ng = max(ny, ng) we have
N(C(n, 1)) > e"H—e)

This completes the proof of the theorem.
|

5. The law of large numbers for Bernoulli schemes lets us give a simple and elegant
proof of the Weierstrass theorem on the approximation of continuous functions by
polynomials.

Let f = f(p) be a continuous function on the interval [0, 1]. We introduce the
polynomials

n k B
B.(p) = > f <n) g, q=1-p, (15)
k=0

which are called Bernstein’s polynomials after the inventor of this proof of Weier-
strass’s theorem.

If &, ..., & is a sequence of independent Bernoulli random variables with
P{¢ =1} =p, P{¢, =0} =qgand S, =& + -+ + &, then

er (%) =)
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Since the function f = f(p), being continuous on [0,1], is uniformly continuous, for
every € > 0 we can find 0 > 0 such that |[f(x) — f(y)| < € whenever |x —y| < 4.1t
is also clear that this function is bounded: |[f(x)| < M < oo.

Using this and (8), we obtain

kio [f(p) —f (ﬁ)] Chpgrt

<5 s ()|

{k:| (k/n)—p| <6}

+ ) P(P) —f <z> ‘ Cplq

{k:|(k/n)—p| >3}

f(p) — Bulp)| =

2M M
2 k n—k —
§€+2M Cnp <€+m—€+m.
{k:| (k/n)—p|>5}

Hence for Bernstein’s polynomials (15)

lim max If(p) — B.(p)| =0,

n—o0 0<p<
which is the conclusion of the Weierstrass theorem.

6. PROBLEMS

1. Let £ and n be random variables with correlation coefficient p. Establish the
following two-dimensional analog of Chebyshev’s inequality:

Plle ~ €| > ey/VarE or [y — En| > ey/Varn) < (1 +v/1- p2)

(Hint: Use the result of Problem 8 of Sect. 4.)
2. Letf = f(x) be a nonnegative even function that is nondecreasing for positive

x. Then for a random variable £ with |{(w)| < C,

Ef () —f(e)
P >l > s 2
In particular, if f(x) = x2,
E¢? Var
B = cpe-Eg=q < YL
3. Let&y,. .., &, be asequence of independent random variables with Var §; < C.

Then
G+-+& EG+-+6)

n n

ze} <S5 e
ne

g
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(Inequality (16) implies the validity of the law of large numbers in more gen-
eral contexts than Bernoulli schemes.)

4. Let &, ..., &, be independent Bernoulli random variables with P{¢; = 1} =
p > 0,P{¢& = —1} = 1—p. Derive the following Bernstein’s inequality: there
is a number a > 0 such that

P{ % —(2p — 1)‘ > 5} < 2e_‘”52"7
where S, =&+ -+ &, and e > 0.
5. Let £ be a nonnegative random variable and @ > 0. Find sup P{x > a} over
all distributions such that:
(1) E&=20;
(i) E€ = 20, Var & = 25;
(iii)) E& = 20, Var £ = 25 and £ is symmetric about its mean value.

6 The Bernoulli Scheme: II—Limit Theorems (Local,
de Moivre-Laplace, Poisson)

1. As in the preceding section, let

Sn:€1+"’+£n-

Then g
E—==p, (1)
n
and by (14) of Sect. 4
2
Sn
E ( —p> _Pq Q)
n n

Formula (1) implies that % ~ p, where the precise meaning of the equivalence
sign ~ has been provided by the law of large numbers in the form of bounds for

probabilities P{ S}—l — p‘ > 5}. We can naturally expect that the “relation”

2 ©

)
n n

obtainable apparently as a consequence of (2), can also receive an exact probabilistic
meaning by treating, for example, the probabilities of the form

"—p‘<x pq}’ x € RY,
n

{15

n

or equivalently
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S, —ES,

P{m <’C}

(since E S,, = np and Var S,, = npq).
If, as before, we write

forn > 1, then

S, —ES, <
v/ Var$§,

d
We set the problem of finding convenient asymptotic formulas, as n — oo, for
P, (k) and for their sum over the values of k that satisfy the condition on the right-
hand side of (4).
The following result provides an answer not only for these values of k (that is,
for those satisfying |k — np| = O(,/npq)) but also for those satisfying |k — np| =

o(npq)*3.

< } _ Pa(k). 4
{k: |(k—np)//npq| <x}

Local Limit Theorem. Let 0 < p < 1; then

1
\/2mnpq

uniformly in k such that |k — np| = o(npq)**, more precisely, as n — o

P, (k) ~ o~ (k—np)*/(2npq) 5)

Py (k)

g e B Rl ©)

sup T
{k: k=np|<e(m)} | 2mnpq

where p(n) = o(npq)?/>.

THE PROOF depends on Stirling’s formula (6) of Sect. 2
n!=+2mne”"n"(1 + R(n)),

where R(n) — 0 as n — o0.
Then if n — o0, k — o0, n — k — o0, we have

ok _ n!
"kl (n—k)!
7 V2 e n" 1+ R(n)
- \/me*kkk e~ (n=k) (n — f)n—k (L+R(k))(1 +R(n—k))
1 .1+5(n,k,n—k)

s (-5 () =D
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where ¢ = &(n, k, n — k) is defined in an evident way and ¢ — 0 asn — oo,
k — o0, n—k — o0.
Therefore

Py(k) = Goplq"™" = —(1+e).

Write p = k/n. Then

"0 s (3) (155) 009
= ﬁexp{klogl’; +(nk)1og1_;} S(1+¢)

- mexp{n [ilogng (1—i> logi:Z]}(l—FE)

-l e aHG)( 1 o),

A/ 27mnp(1l — p)

where 1
H(x) =x log;7 + (1 —x)log 1 —*

We are considering values of k such that |k — np| = o(npq)?/®, and consequently
p—p—0,n— c0.

Since, for0 < x < 1,

1—
H’()c):logf—log1 al
1 1

H' _
&)=<+
1 1
H"(x) = -5+

if we write H(p) in the form H(p + (p — p)) and use Taylor’s formula, we find that
asn — oo

H(p) = H(p) + H'(p)(p — p) + 3H"(p)(p — )* + O(Ip — pI*)

5 (2 DY o-pr+ 00—
Consequently
1 no.. 2 N 3
Pul) = e {QM@ —p)? +n0(p — pl >} (1+2).
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”(p_p)2_”<k_p>2_(k_”p)2.

Notice that

2pq 2pg \n 2npq
Therefore
1 2
P(k) = ————e k=) /Cwad) (1 4 /(n k, n—k
( ) \/We ( + € (n, , n )),
where
1t e, Ky n—K) = (14 (n, & n— k) exp{n O(p — p[*)} H

and, as is easily seen,
sup |¢'(n, k, n — k)| = 0, n— o0,

if the sup is taken over the values of k for which

k= np| < @(n), @(n) = o(npg)*?.

This completes the proof. O

Corollary. The conclusion of the local limit theorem can be put in the following
equivalent form: For all x € R* such that x = o(npq)l/ﬁ, and for np + x./npq an
integer from the set{0, 1, ...,n},

1 2
Pa(np + ~ e, 7
(p +/pd) ~ e ™
ie,asn — o0,
P, (np + x,/npq)
sup 1—_)62/2 -1 — O, (8)
{r: <9 )} | TZmmpg©
1/6

where 1p(n) = o(npq)

We can reformulate these results in probabilistic language in the following way:

P{Sk =k} ~ e CTP @0 | = o(upg)*?, (9)

\2mnpgq
Sy —np } 1 —x2/2 1/6
P =xb ~ e , x=o(n . 10
{ Vnpq V2mnpq (ra) (1o

(In the last formula np + x,/npq is assumed to have one of the values 0, 1,...,n.)

If we put & = (k — np)/s/npq and Aty = 11 — t, = 1/,/npq, the preceding
formula assumes the form

S, —n Aty _
F’{ npqp = tk} ~ \/727;6‘ ’*2/2, b =0(npq)1/6. (1D
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It is clear that At = 1/,/npg — 0 and the set of points {#;} as it were “fills” the
real line. It is natural to expect that (11) can be used to obtain the integral formula

_ 1 b
P{a<S" npgb}~fe_x2/2dx, —wn<a<b< oo
A/ npq V21 Ja

Let us now give a precise statement.

2.For —0 <a <b < wlet

P,(a,b] = Z Py(np + x\/npq),

a<x<b

where the summation is over those x for which np + x,/npq is an integer.
It follows from the local theorem (see also (11)) that for all # defined by k =
np + ty/npq and satisfying |t;| < T < oo,

ll(np+tk\/np ) ﬁ 7[k/2|: +€(tk,l’l)], (12)
where
sup |e(t,n)| = 0, n— 0. (13)
[t <T

Consequently, if a and b are given so that —T < a < b < T, then

DT Pulnp + tey/npg) = ). e”f/2+ DT et n \ﬁ o /2

a<t;,<b a<tk<b a<t;,<b 2

_ E J e Pax + RV (@, b) + RP (0, b),  (14)

where

RV(a, b) = 3] Bt g L J ’ 2 gy
V2T V2T Jg, ’

a<ty<b
Aty 2
R®(a, b) = Z e(ty, n)—=e /2,
a<ui<b V2m

From the standard properties of Riemann sums,

sup  |RWV(a,b)| -0, n— 0. (15)
—T<a<b<T
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It also clear that

sup  |RY(a, b)|

—T<a<b<T
2
< sup |e(t, n)|- Z Db =i/
| <T 0] < (16)
< sup |e(te, )]
ln|<T

1 2
—x*/2 (1) ,
X e dx+ su R,/ (a, b 0
[v% J—T —TﬁangT| ( ”]

where the convergence of the right-hand side to zero follows from (15) and from

1 1 © 2
— 2 < f e Pdx =1, 17
V2T J_ V2T a7

the value of the last integral being well known. We write

D(x) e 2 .

1
N vV 27T J—OO
Then it follows from (14)—(16) that

sup  |Pu(a,b] — (®(b) — ®(a))] > 0, n— oo. (18)
—T<a<b<T

We now show that this result holds for 7 = oo as well as for finite 7. By (17),
corresponding to a given € > 0 we can find a finite T = T'(¢) such that

T
- —2%/2 4 _1

e x> 1 E. (19)
V2T f_r 4

According to (18), we can find an N such that for all n > N and T = T(¢) we have

sup  |Pu(a,b] — (®(b) — D(a))| < is. (20)
—T<a<b<T
It follows from this and (19) that
Py(~T,T] > 1— 3¢,

and consequently

Py(—0, T] + Py(T, 0) < L,

where P,(—00, T| = limg| o P, (S, T] and P, (T, o0) = limgo0 Pu(T, S].
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Therefore for —c0 <a < T <T<b< w0,

SR
P,(a, b] — \/?,[ e /2 dx

T
< |Pu(~T, T]—f e 12 dx
+|Pu(a, —T]—\/T?J e 2 ax| + |P,(T, b] — WJ /2 dx
i + P, (—o0, T]+—J *"/de—kP(T o)

1 1 1 1
’X/de<f€+ -+ -+ —e=c¢.

\/27r J 4 2 8 8

By using (18) it is now easy to see that P, (a, b] tends to ®(b) — ®(a) uniformly
for —o0 < a < b < o0.
Thus we have proved the following theorem.

De Moivre—Laplace Integral Theorem. Ler0 <p < 1,

P,(k) = Ckp*q" %, P,(a, b] = Z P,(np + x\/npq).

a<x<b

Then

1 (" .
a, b| — — e /2 dx
Py(a, b] o )

In probabilistic language (21) can be stated in the following way:

sup
—0<a<b<oo

-0, n-— o. 1)

sup — 0, n— oo

—o0<a<b<ow0

P{a<S"_ES"< } J *X/Q dx
v/ Vars§, V2T
It follows at once from this formula that
B — A —
P{A<Sn§B}—[<I>< ”p)—é( ”p>]_>o, (22)
\/1Pq Vg

as n — o0, whenever —o0 < A < B < o0.

Example. A true die is tossed 12000 times. We ask for the probability P that the
number of 6’s lies in the interval (1800, 2100].
The required probability is

1 k 5 12000—k
P = Z Cla000 (6) (6) :
1800<k<2100
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An exact calculation of this sum would obviously be rather difficult. However,
if we use the integral theorem we find that the probability P in question is approxi-

mately (n = 12000, p = &, a = 1800, b = 2100)

2100 — 2000 > 1800 — 2000

4/12000- & - 2 4/12000- & - 2

~ ©(2.449) — B(—4.898) ~ 0.992,

= ®(V/6) — d(—26)

where the values of ®(2.449) and ®(—4.898) were taken from tables of ®(x) (this
is the normal distribution function; see Subsection 6 below).

3. We have plotted a graph of P,(np+x,/npq) (with x assumed such that np+x,/npq
is an integer) in Fig. 9.

Then the local theorem says that the curve (1/+/27npg)e* /2 provides a close
fit to P, (np + x/npq) when x = o(npq)*/®. On the other hand the integral theorem
says that

P,(a, b] = P{a\/npq < S, — np < b\/npq}
= P{np + a\/npg < S, < np + b\/npq}

is closely approximated by the integral (1/+/27) SZ e /2 dx.

P(np + x\/n}x;)‘

1 2
- .._.'h‘-‘-“‘-“"- ——— e_x‘lllz
- S W/ 2mnpg
// \\
// \\
N N SR R SR S EA SR S SR E R I
0
Fig. 9
We write S
n — np
F, =P,(— =P
) = Palee ( {M—D
Then it follows from (21) that
sup |F,(x) — ®(x)] > 0, n— oo. (23)

—o0<x<00
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It is natural to ask how rapid the approach to zero is in (21) and (23), as n — 0.
We quote a result in this direction (a special case of the Berry—Esseen theorem: see
Sect. 11 in Chap. 3):

(24)

Fig. 10

It is important to recognize that the order of the estimate (1/,/mpg) cannot be
improved; this means that the approximation of F,(x) by ®(x) can be poor for values
of p that are close to 0 or 1, even when 7 is large. This suggests the question of
whether there is a better method of approximation for the probabilities of interest
when p or g is small, something better than the normal approximation given by the
local and integral theorems. In this connection we note that for p = % say, the
binomial distribution {P,(k)} is symmetric (Fig. 10, left). However, for small p the
binomial distribution is asymmetric (Fig. 10, right), and hence it is not reasonable to
expect that the normal approximation will be satisfactory.

4. It turns out that for small values of p the distribution known as the Poisson distri-
bution provides a good approximation to {P,(k)}.
Let k k n—k
Pu(k) = {Cnp g, k=0,1,...,n,
0, k=n+1n+2,...,

and suppose that p is a function p(n) of n.

Poisson’s Theorem. Let p(n) — 0, n — 0, in such a way that np(n) — \, where
A>0.Thenfork=1,2,...,

P,(k) > 7, n— o, 25)
where

)\kef)\
Tk = A )

k=0,1,.... (26)

THE PROOF is extremely simple. Since p(n) = (A/n) 4+ o(1/n) by hypothesis,
foragivenk =0,1, ... and n — 0,
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Pn(k) = Cﬁpkqnik

e e GRS IO T

n(n—1)-(n—k+1) [2+o<i)]k

:n(l’l—1>""1k(n_k+1)[}\+0(1)]k_))\k, n— o,

by 1 n—k
[1—+0<>] - n— o,
n n

which establishes (25). o

But

and

The set of numbers {7, k = 0, 1,...} defines the Poisson probability distribu-
tion (my > 0, ;7 m = 1). Notice that all the (discrete) distributions considered
previously were concentrated at only a finite number of points. The Poisson dis-
tribution is the first example that we have encountered of a (discrete) distribution
concentrated at a countable number of points.

The following result of Prokhorov exhibits the rate of convergence of P, (k) to 7y
asn — oo: if np(n) = A > 0, then

DTIPak) — | < 28 min(2, \). 27)
k=0 n

The proof of a somewhat weaker result is given in Sect. 12, Chap. 3.

5. Let us return to the de Moivre—Laplace limit theorem, and show how it implies
the law of large numbers. Since

(-l

it is clear from (21) that for e > 0

S, —np
npq

n
SE }7
pq

Sn 1 e~/n/pq
P{_p‘<€}_J e Pdv—0, n—-o, (28
n V21 J_e\/ulp

whence
Sn ‘ }
— =D <ep— 1) n— o,

{2

which is the conclusion of the law of large numbers.
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From (28)
S 1 EM 2
P{n_l"ﬁg}wwﬁ e Pdx, o0, (29)
n 21 J—er/njpq

whereas Chebyshev’s inequality yielded only
Sn
s =)o

n ne?’
It was shown in Subsection 3 of Sect.5 that Chebyshev’s inequality yielded the
estimate

n2 e (=m()

for the number of observations needed for the validity of the inequality

—p‘ga}zl—a.

Thus with ¢ = 0.02 and o = 0.05, 12500 observations were needed. We can now
solve the same problem by using the approximation (29).
We define the number k() by

1 (M,
_— X2 =1—
e X .
V2m Jk(a)
Since e4/(n/pq) > 2e+/n, if we define n as the smallest integer satisfying
2e/n > k(a) (30)

we find that

S”—plgs}zl—a. a3

p{2

We find from (30) that the smallest integer n > ny () with

k() ]

4e2

na(a) = [

guarantees that (31) is satisfied, and the accuracy of the approximation can easily be
established by using (24).

Taking € = 0.02, a = 0.05, we find that in fact 2500 observations suffice, rather
than the 12500 found by using Chebyshev’s inequality. The values of k(«) have
been tabulated. We quote a number of values of k(«) for various values of «:

a 0,50 0,3173 0,10 0,05 0,0454 0,01 0,0027
k(«) 0,675 1,000 1,645 1,960 2,000 2,576 3,000
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6. The function

D(x /2 g, (32)

1 X
== e
V2r )
which was introduced above and occurs in the de Moivre—Laplace integral theorem,
plays an exceptionally important role in probability theory. It is known as the normal
or Gaussian distribution function on the real line, with the (normal or Gaussian)
density

2
e /2 xeR.

1
p(x) = E

_} _e—xl-'2
[ 1
[ 1
[
-+
. =0 »
| I o T1 1 " x
-3 =2 —1 1
0.67 1.96 2.58

Fig. 11 Graph of the normal probability density ¢(x)

We have already encountered (discrete) distributions concentrated on a finite or
countable set of points. The normal distribution belongs to another important class
of distributions that arise in probability theory. We have mentioned its exceptional
role; this comes about, first of all, because under rather general hypotheses, sums
of a large number of independent random variables (not necessarily Bernoulli vari-
ables) are closely approximated by the normal distribution (Sect. 4, Chap. 3). For the
present we mention only some of the simplest properties of ¢(x) and ®(x), whose
graphs are shown in Figs. 11 and 12.

The function p(x) is a symmetric bell-shaped curve, decreasing very rapidly
with increasing |x|: thus ¢(1) = 0.24197, »(2) = 0.053991, ¢(3) = 0.004432,
©(4) = 0.000134, ©(5) = 0.000016. Its maximum is attained at x = 0 and is equal
to (2m)~ /2 ~ 0.399.

The curve ®(x)=(1/v2m) {* e~"/2dt approaches 1 very rapidly as x increases:
O(1) = 0.841345, ®(2) = 0.977250, (3) = 0.998650, &(4) = 0.999968,
D (4.5) = 0.999997.

For tables of ¢(x) and ®(x), as well as of other important functions that are used
in probability theory and mathematical statistics, see [11].

It is worth to mention that for calculations, along with ®(x), a closely related
error function
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Fig. 12 Graph of the normal distribution function ®(x)

2 (f 2
erf(x) = —J e "dt, x>0,
VT o
is often used. Obviously, for x > 0,

X

O(x) = %[1 + erf(\/iﬂ, erf(x) = 20(v/2x) — 1.

7. At the end of Subsection 3, Sect.5, we noticed that the upper bound for the
probability of the event {w: |(S,/n) — p| > &}, given by Chebyshev’s inequal-
ity, was rather crude. That estimate was obtained from Chebyshev’s inequality
P{X > ¢} < EX?/e? for nonnegative random variables X > 0. We may, how-
ever, use Chebyshev’s inequality in the form

E X21<
g2k °

P{X > ¢} = P{Xx* > %) < (33)

However, we can go further by using the “exponential form” of Chebyshev’s in-
equality: if X > 0 and A\ > 0, this states that

P{X > e} = P{eM > &’} <ENX9), (34)
Since the positive number A is arbitrary, it is clear that

P{X>¢} < inf Ee X2, (35)
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Let us see what the consequences of this approach are in the case when X =

Sﬂ/nv Sn :gl +"‘+£m P(f, = 1) =D P(gl :0) =q,i2> L.
Let us set ¢(\) = Ee*ét. Then

p(A) =1 —p +pe’
and, under the hypothesis of the independence of &1,&o, ..., &,
EeM = [p(N)]".

Therefore (0 < a < 1)

P {ﬁ > a} < )1\11% Ee)\(S”/n—a) — inf e—n[Aa/n—log e(A/n)]
>

n A>0
_ igg e Mas—log ()] _ ,—nsupeolas—loge(s)] (36)
Similarly,
S :
P {n" < a} < e "SUPs<olas—log o (s)] (37)

The function f(s) = as — log[1 — p + pe*] attains its maximum forp < a <1 at
the point so (f(so) = 0) determined by the equation

%0 = a( _p).
p(l—a)
Consequently,
supf(s) = H(a),
s>0
where

1—
H(a) =alogg—|—(1—a)log1 a
p

is the function that was used in the proof of the local theorem (Subsection 1).
Thus, forp <a <1

P {S > a} < eH@), (38)
n

and therefore, since H(p + x) > 2x% and 0 < p +x <1, we have, for ¢ > 0 and
0<p<l,

P{S”—pzs} <e 39)
n

We can establish similarly that fora < p <1

P {S" < a} < e (40)

n
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and consequently, for every e > 0and 0 < p <1,

S, _
P{n—pg—s}ge 2ne’, (41)
Therefore,
S, _
P{n—p‘25}§26 2me? (42)

This implies that the number of observations n3(a)) which ensures the validity of
the inequality

Sn—p'SE}Zl—a, (43)

{2

for any 0 < p < 11is given by the formula

mla) = | 5. (44)

2e2

where [x] is the integral part of x. If we neglect “integral parts” and compare n3 ()
with 1 (o) = [(4ae?)~1], we find that

ni(a) 1
ny(a) 2a10g%

1o, alO0.

It is clear from this that when « | 0, an estimate of the smallest number of observa-
tions needed to ensure (43), which can be obtained from the exponential Chebyshev
inequality, is more precise than the estimate obtained from the ordinary Chebyshev
inequality, especially for small a.

Using the relation

_yz/Qdy~71 2y S

1 0
i e ’
V2T J; V27X
which is easily established with the help of L'Hopital’s rule, one can show that
k*(a) ~ 2log %, a | 0. Therefore,

)

na ()
ns(«@)

-1, «alO0.

Inequalities like (38)—(42) are known as inequalities for the probability of large
deviations. This terminology can be explained in the following way.

The de Moivre-Laplace integral theorem makes it possible to estimate in a sim-
ple way the probabilities of the events {|S, — np| < x/n} characterizing the “stan-
dard” deviation (up to order 4/n) of S, from np, whereas the inequalities (39), (41),
and (42) provide bounds for the probabilities of the events {w: |S, — np| < xn},
describing deviations of order greater than 4/n, in fact of order n.
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We shall continue the discussion of probabilities of large deviations in more gen-
eral situations in Sect. 5, Chap. 4, Vol. 2.

8. PROBLEMS

1. Letn = 100, p = 0.1, 0.2, 0.3, 0.4, 0.5. Using tables (for example, those
in [11]) of the binomial and Poisson distributions, compare the values of the
probabilities

P{lO < SlOO < 12}, P{20 < SIOO < 22},
P{33 < S100 < 35}, P{40 < S100 < 42},
P{5O < Si00 < 52}

with the corresponding values given by the normal and Poisson approxima-
tions.
2. Letp = % and Z,, = 2S5, — n (the excess of 1’s over 0’s in n trials). Show that

sup |v/mnP{Zs, = j} — efj2/4”| —0, n— oo
J

3. Show that the rate of convergence in Poisson’s theorem (with p = A\/n) is
given by
Ae=A
k!

222
< 22

P,(k) — .
sip (k) .

(It is advisable to read Sect. 12, Chap. 3.)

7 Estimating the Probability of Success in the Bernoulli Scheme

1. In the Bernoulli scheme (2, &7, P) with Q = {w: w = (x1, ..., x,), x;, = 0,1)},
o ={A: A< Q}, P{w}) = p(w), where

pw) = p™ig" >,
we supposed that p (the probability of “success”) was known.

Let us now suppose that p is not known in advance and that we want to determine
it by observing the outcomes of experiments; or, what amounts to the same thing, by
observations of the random variables &1, . . ., &,, where £;(w) = x;. This is a typical
problem of mathematical statistics, which can be formulated in various ways. We
shall consider two of the possible formulations: the problem of point estimation and
the problem of constructing confidence intervals.

In the notation used in mathematical statistics, the unknown parameter is denoted
by 6, assuming a priori that 6 belongs to the set © = [0, 1]. The set of objects

& = (Q,sz, Py; 0 € @) with Pa({w}) _ aExi(l _ e)nfEx,v
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is often said to be the probabilistic-statistical model (corresponding to “n indepen-
dent trials” with probability of “success” § € ©), and any function 7,, = T, (w) with
values in © is called an estimator.

IfS, =&+ -+ & and T = S,/n, it follows from the law of large numbers
that T* is consistent, in the sense that (¢ > 0)

Po{|T} — 0] > ¢} -0, n— . ()
Moreover, this estimator is unbiased: for every 6
E@ T: = 07 (2)

where Ey is the expectation corresponding to the probability Py.

The property of being unbiased is quite natural: it expresses the fact that any
reasonable estimate ought, at least “on the average,” to lead to the desired result.
However, it is easy to see that 7,* is not the only unbiased estimator. For example,
the same property is possessed by every estimator

bixy + -+ byx
Tn: 141 . nn7

where by + - - - + b, = n. Moreover, the law of large numbers (1) is also satisfied
by such estimators (at least if |»;] < K < o0); and so these estimators T}, are just as
“good” as T,*.

By the very meaning of “estimator,” it is natural to suppose that an estimator is
the better, the smaller its deviation from the parameter that is being estimated. On
this basis, we call an estimator T}, efficient (in the class of unbiased estimators 7},) if

Varg T, = inf Vary T,, 0 €6, (3)

where Vary T, is the variance of Ty, i.e., Eg(T,, — 0)2.
Let us show that the estimator 7,*, considered above, is efficient. We have

Vary T* = Vary (Sn) _ Vary S, n9(12— 0) _ (1 — 9)' @
n n

n? n
Hence to establish that 7)* is efficient, we have only to show that

(1 - 0)

®)

iITlf Varyg T,, >

This is obvious for § = 0 or 1. Let § € (0,1) and
po(x;) = 04(1 — ).

It is clear that Py ({w}) = pg(w), where

po(w) = Hpe(xi)-
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Let us write

Ly(w) = log pg(w)-

Then
Ly(w) = logHin +log(1—6) Z(l —X)
and
0Ly (w) _ D —0)
06 6(1—0) "
Since

and since 7, is unbiased,

0=Ey T, = 2 T,,(OJ)pa (W)’

after differentiating with respect to #, we find that

o) o (252) OLy(w)
O=;69=;pe(w)m(w)=E9[ o0 ],
. (2552) B oL ()
= %}Tnm po(w) = Eg [Tn o0 ] .
Therefore .
1=E, [(T,, - H)UL;(SW)]

and by the Cauchy-Bunyakovskii inequality,

1 < Eo[T, — 6] - E [aL"(w)]z7

00
whence
1
2
— 0% >
E0 [Tn 9] = 1’1(9) ) (6)

where

[ oLg(w)

is known as Fisher’s information.
From (6) we can obtain a special case of the Rao—Cramér inequality for unbiased
estimators T,:

1
inf Varg T, >

I, T L(0) @
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In the present case
oL@ - [2E-01"  no(1-0) n
w0 =& | "5 | =& |55 = Gimap - aae

which also establishes (5), from which, as we already noticed, there follows the
efficiency of the unbiased estimator T¥ = S, /n for the unknown parameter 6.

2. It is evident that, in considering 7,* as a point estimator for 6, we have intro-
duced a certain amount of inaccuracy. It can even happen that the numerical value
of T calculated from observations of x1, ..., x, differs rather severely from the
true value 6. Hence it would be advisable to determine the size of the error.

It would be too much to hope that T* (w) differs little from the true value 6 for all
sample points w. However, we know from the law of large numbers that for every
0 > 0 the probability of the event {|¢ — T;*(w)| > ¢} will be arbitrarily small for
sufficiently large n.

By Chebyshev’s inequality

Varg T¥  0(1 —0)

Po{|0 — TF| > 0} < 52 L= 52

and therefore, for every A > 0,

91— 6) 1
Poll0—TF <M/ ——2 3 >1— —.
0{| n|— n } )\2

If we take, for example, A = 3, then with Py-probability greater than 0.8888
(since 1 — (1/3%) = 8 ~ 0.8889) the event

0(1—-20
0 —T7[ <3 61 -6)
n
will be realized, and a fortiori the event
3
0—T* < —
0T < 5
since 6(1 — 6) < 1.
Therefore
3
0—TF < P T*——<9 TF + —— } > (.8888.
{ | xf} { 2v/n "+2x/ﬁ}

In other words, we can say with probability greater than 0.8888 that the exact value
of f isin the interval [T* — (3/24/n), T} + (3/2+/n)]. This statement is sometimes
written in the symbolic form

o:r:i% (> 88%),

where “ > 88%” means “ in more than 88% of all cases.”
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The interval [T;F — (3/2+/n), T + (3/2+/n)] is an example of what are called
confidence intervals for the unknown parameter.

Definition. An interval of the form

[¥1(w), P2(w)]

where 11 (w) and 2 (w) are functions of sample points, is called a confidence inter-
val of reliability 1 — 6 (or of significance level §) if

Po{t1(w) <0 <apo(w)} > 196
forall § € ©.

The preceding discussion shows that the interval

T*—L T*+L
n 2\/’;’ n 2\/%

has reliability 1 —(1/)?). In point of fact, the reliability of this confidence interval
is considerably higher, since Chebyshev’s inequality gives only crude estimates of
the probabilities of events.

To obtain more precise results we notice that

{w: 0—TF <A 9“‘9’} — fwr a(TF n) <0< U (TF, ),
n
where ¢ = 1 (T, n) and 1o = (T, n) are the roots of the quadratic equation
)\2
(9 - Tn*)2 = 79(1 - 9),

which describes an ellipse situated as shown in Fig. 13.

Fig. 13
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Now let

Then by (24) of Sect. 6

Slip |Fg(x) — @(x)] < m

Therefore if we know a priori that
0<A<HI<1I-A<1,

where A is a constant, then

1
Avn

sup [ Fy(x) — ®(x)] <

and consequently

2
> (20 -1 _—
> (2000~ 1)~ 57
Let A* be the smallest \ for which
2
20(\)—1) — ——>1—6*
R -1 - 57 2 18,

where §* is a given significance level. Putting § = §* — (2/A+/n), we find that \*
satisfies the equation

1
d(N) =1-— 4.
N =1-3
For large n we may neglect the term 2/A+/n and assume that \* satisfies
* ]‘ *

In particular, if A* = 3 then 1 —¢* = 0.9973. ... Then with probability approx-
imately 0.9973

00L=0) _ppw, 4 [00=0)

n n

®)



8 Conditional Probabilities and Expectations with Respect to Decompositions 75

or, after iterating and then suppressing terms of order O(n*‘g/ 4), we obtain

rr -3y TEUZTD g o e gy [T T ©)

Hence it follows that the confidence interval

% o

has (for large n) reliability 0.9973 (whereas Chebyshev’s inequality only provided
reliability approximately 0.8889).

To illustrate the practical meaning of this result, suppose that we carry out a large
number N of series of experiments, in each of which we estimate the parameter 6
after n observations. Then in about 99.73 % of the N cases the estimate will differ
from the true value of the parameter by at most %ﬁ (On this topic see also the end
of Sect.5.)

One should remember that the confidence interval (10) is approximate and valid
only for large n. For the construction of the exact confidence interval with appropri-
ate tables and references see [11].

3. PROBLEMS

1. Let it be known a priori that 6 takes values in the set ©¢ < [0, 1]. When does
an unbiased estimator for § exist, taking values only in ©¢?

2. Under the conditions of the preceding problem, find an analog of the Rao—
Cramér inequality and discuss the problem of efficient estimators.

3. Under the conditions of the first problem, discuss the construction of confi-
dence intervals for 6.

4. In addition to Problem 5 in Sect.2 discuss the problem of unbiasedness and
efficiency of the estimator N assuming that N is sufficiently large, N » M, N >»
n. By analogy with the confidence intervals for 6 (see (8) and (9)), construct
confidence intervals [N — a(N), N + b(N)] for N such that

Py, u:nfN —a(N) <N <N+bN)} ~ 1-a,

where « is a small number.

8 Conditional Probabilities and Expectations with Respect
to Decompositions

1. Let (2, o7, P) be a finite probability space and

={Dy, ..., Dy}
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a decomposition of Q (D; € &/, P(D;) >0, i=1,...,k,and Dy +--- + Dy = Q).
Also let A be an event from &7 and P(A | D;) the conditional probability of A with
respect to D;.

With a set of conditional probabilities {P(A | D;),i = 1,..., k} we may associate
the random variable

k
m(w) = > P(A[D)ip, () (1)

(cf. (5) of Sect. 4), that takes the values P(A | D;) on the atoms of D;. To emphasize
that this random variable is associated specifically with the decomposition 2, we
denote it by

P(A]|2) or PA|2)(w)

and call it the conditional probability of the event A with respect to the decomposi-
tion 9.

This concept, as well as the more general concept of conditional probabilities
with respect to a o-algebra, which will be introduced later, plays an important role
in probability theory, a role that will be developed progressively as we proceed.

We mention some of the simplest properties of conditional probabilities:

P(A+B|2)=P(A|2)+P(B|2); 2)
if 7 is the trivial decomposition consisting of the single set €2 then
P(A[Q) = P(A). ©)

The definition of P(A | 2) as a random variable lets us speak of its expectation; by
using this, we can write the formula for total probability (see (3), Sect.3) in the
following compact form:

P(4|2) = P(A). )

In fact, since
k

P(A|2) =Z (A| D)Ip, (w),

then by the definition of expectation (see (5) and (6), Sect. 4)

k
P(A]2) = Z (A|Di)P(D;) = Z P(AD;) = P(A).
i=1
Now let = n(w) be a random variable that takes the values yi, ..., y; with

positive probabilities:
k
= > vilp, (@)
j=1

where D; = {w: n(w) = y;}. The decomposition &, = {D1,..., Dy} is called the
decomposition induced by 7. The conditional probability P(A | 2,,) will be denoted
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by P(A |n) or P(A | n)(w), and called the conditional probability of A with respect to
the random variable 1. We also denote by P(A | = y;) the conditional probability
P(A|D;), where D; = {w: n(w) = y;}.

Similarly, if 11,72, ...,n, are random variables and %, ,,. ..., is the decom-
position induced by 11,12, . . . , N, With atoms

Dy, yorcym = {W: 771(‘*)) =Y1,---s nm(w) = ym}a

then P(A | Dy, 1y, ... n,,) Will be denoted by P(A | n1,72, ... ,m,) and called the con-
ditional probability of A with respect to 11,2, . . ., M-

Example 1. Let £ and 7 be independent identically distributed random variables,
each taking the values 1 and 0 with probabilities p and g. For k = 0, 1, 2, let us find
the conditional probability P(£ + n = k|n) of the event A = {w: & + n = k} with
respect to 7.

To do this, we first notice the following useful general fact: if £ and 7 are inde-
pendent random variables with respective values x and y, then

PE+n=zln=y)=PE+y=2). (5)
In fact,

P+n=2zn=y)
P(n=y)
_PE+y=zn=y) PE+y
P(n=y) P(
=P +y=2).

P+n=zln=y) =

&\l
~—

3
I

Using this formula for the case at hand, we find that

P(+n=kln) = P{E+n=k[n=0)y-nw)
+P(E+n=kln=1)Iy-1(w)
P& = k)l—0)(w) + P{& =k — 1} -1y (w).

Thus

ql(n—oy (W), k=
P(§ +n= k | 77) = pl{n=0}<w) + ql{77=1}(w)7 k=
Ply—13 (W), k=

. (6)

or equivalently

) )
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2. Let £ = £(w) be a random variable with values in the set X = {x1,...,x,}:

!
§= ijIA,»(w)7 Aj = {w: § = x},
j=1

and let 2 = {Dy,...,D;} be a decomposition. Just as we defined the expectation
of & with respect to the probabilities P(4;),j = 1,...,1,

1
E¢ =) x5P4)), )
j=1

it is now natural to define the conditional expectation of & with respect to & by using
the conditional probabilities P(4;| Z),j = 1,...,1. We denote this expectation by
E(|2) or E(¢| 2)(w), and define it by the formula

E(¢|2) = Zx, 4,192). ©)

According to this definition the conditional expectation E(¢ | 2)(w) is a random
variable which, at all sample points w belonging to the same atom D;, takes the
same value 25:1 x; P(A; | D;). This observation shows that the definition of E(¢ | 2)
could have been expressed differently. In fact, we could first define E(¢| D;), the
conditional expectation of & with respect to D;, by

E(¢| D) Zx, AD( [(1,)])’ (10)

and then define L

E(¢|2)(w) = Y E(|Di)lp,(w (11)

i=1
(see the diagram in Fig. 14).

p() — & E¢

1(3-1)

(10)

P(| D) E(¢|D)
l(l) [(11)
P(12) —2— E¢|9)

Fig. 14

It is also useful to notice that E(¢ | D) and E(¢ | 2) are independent of the repre-
sentation of &.
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The following properties of conditional expectations follow immediately from
the definitions:

E(aE+bn|2) =aE(|2)+bE(n|2), aandb constants; (12)
E(1Q) = E¢; (13)
E(C|2)=C, C constant; (14)

if £ = I4(w) then
E(¢[2) =P(A|2). (15)

The last equation shows, in particular, that properties of conditional probabilities
can be deduced directly from properties of conditional expectations.
The following important property extends the formula for total probability (4):

EE(|2) =EC¢. (16)
For the proof, it is enough to notice that by (4)
! l !
EE(|2)=E) 5P| 2) = Y 5EP4;|2) = Y xP(4)) = EC.
j=1 Jj=1 j=1

Let 9 = {D1,...,Dy} be a decomposition and n = n(w) a random variable.
We say that n is measurable with respect to this decomposition, or Z-measurable,
if 7, < 2,1i.e.,n = n(w) can be represented in the form

k
n(w) = ZYiID, (w),
i=1
where some y; might be equal. In other words, a random variable is Z-measurable
if and only if it takes constant values on the atoms of 2.

Example 2. If 2 is the trivial decomposition, ¥ = {1}, then 7 is 2-measurable if
and only if n = C, where C is a constant. Every random variable 7 is measurable
with respect to Z,.

Suppose that the random variable 7 is Z-measurable. Then
E(¢n|2) =nE(£]2) (17)

and in particular

Eml2)=n  (En|Z,) =n). (18)

To establish (17) we observe that if £ = Z,l'=1 Xila;, then

Ik
&n = Z Z X;yila;p,
j=li=1
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and therefore

I
-~
'M’*

E(n|2) xyi P(A;Di | 2)

\
I

—_
I

—_

Il
M-~
M» i M»

i P(A;D; | Dy)Ip, ()

I
.MN-

~

II
—

Il
—

x;yi P(A;D; | D;)Ip,(w)

I
-~
M»

xyi P(A; [ Di)Ip, (w). 19)

~.

Il
fut

Il
it

On the other hand, since 112)1, = Ip, and Ip, - Ip, = 0, i # m, we obtain

W)} : LZ x; P(A; | @)1

k i
P LZXJ'P(Alem)} p, ()

E€]2)

Il I
1~ LD~
= =
= &
—~
&€
N—
|

which, with (19), establishes (17).

We shall establish another important property of conditional expectations. Let
21 and P, be two decompositions, with ) < Py (P is “finer” than 2;). Then
the following “telescopic” property holds:

E[E(E]22)| 21] = E(§| Z1). (20
For the proof, suppose that
P21 = {D11,...,Din}, Do = {Day1,...,Da,}.
Then if { = ijl xjly,, we have
E(¢|2:) = 2 X P(Aj| D),
j=1
and it is sufficient to establish that

E[P(Aj| Z2) | 21] = P(A;| 21). 20
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Since .
P(Aj| Z) = > P(Aj| Dag)lp,,,
g=1

we have

[ (A |@2 |@1 Z A |D2q D2q|@1)

=

P(Aj | D2q) LZ P(D2q | Dlp)]Dlp]

=1

<
Il
—

Ip,, - Z P(Aj |D2q) P(D2q | Dlp)

Il
=

p=1 gq=1
m
=D, D, P(A4;| Do) P(Day | Dyy)
p=1 {q: D2,=Dy,}

P(A;D2) . P(D2)
2 P(D2q) P(Dlp)

Il
=

Dy, °

b
L

{q: D2y=D1,}

Ip,, - P(Aj| D1y) = P(A;| 21),

1p

Il
M=

<
Il
—

which establishes (21).

When Z is induced by the random variables 71,...,7m (i.e., Z = Dy, .. n.)
the conditional expectation E(£| 2, . ) Will be denoted by E(&|n1,...,m),
or E(¢|n1,...,m)(w), and called the conditional expectation of £ with respect to
Myeees ke

It follows immediately from the definition of E(¢ | 7)) that if £ and ) are indepen-
dent, then

E(¢[n) = E¢. (22)
From (18) it also follows that
E(nln) =n. (23)

Using the notation E(§ | n) for E(¢| 2,), formula (16), which restates the for-
mula for total probability (4), can be written in the following widely used form:

EE(|n) = E¢ (24)

(See also property (27) in Problem 3.)
Property (22) admits the following generalization. Let £ be independent of &
(i.e., for each D; € Z the random variables & and Ip, are independent). Then

E(¢|7) =E¢.
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As a special case of (20) we obtain the following useful formula:

E[E( | n1,m2) |m] = E(€|m)- (25)

Example 3. Let us find E(¢ + 1 | n) for the random variables ¢ and ) considered in
Example 1. By (22) and (23),

E€+nln)=E{+n=p+n.
This result can also be obtained by starting from (8):

2

E(€+nln) =D kP(E+n=4kln) =p(l—n)+qn+2pn=p+n.
k=0

Example 4. Let ¢ and 7 be independent and identically distributed random vari-

ables. Then
&+

E€IE+n) =EM|{+n) = 5 (26)

In fact, if we assume for simplicity that £ and 7 take the values 1,2, ..., m, we
find (1 <k<m, 2<1<2m)

PE=k&+n=10) PlE=kn=1-k

P =k|lE+n=1)

P&+n=1) —  Pl+n=10
_PE=kPm=1-k _Pu=kPE=1-k
P+n=1) P+n=1)

Pin=k[{+n=1).

This establishes the first equation in (26). To prove the second, it is enough to notice
that

2E|E+n) =EE[E+n) +EM[E+n) =EE+n[{+n) =E+n.

3. We have already noticed in Sect. 1 that to each decomposition 2 = {D1, ..., Dy}
of the finite set {2 there corresponds an algebra «(2) of subsets of 2. The converse
is also true: every algebra % of subsets of the finite space ) generates a decompo-
sition (% = «a(2)). Consequently there is a one-to-one correspondence between
algebras and decompositions of a finite space €2. This should be kept in mind in con-
nection with the concept, which will be introduced later, of conditional expectation
with respect to the special systems of sets called o-algebras.

For finite spaces, the concepts of algebra and o-algebra coincide. It will turn out
that if 4 is an algebra, the conditional expectation E(¢ | #) of a random variable
& with respect to Z (to be introduced in Sect.7, Chap. 2) simply coincides with
E(¢] 2), the expectation of £ with respect to the decomposition & such that =
a(Z). In this sense we can, in dealing with finite spaces in the future, not distinguish
between E(¢ | #) and E(£| 2), understanding in each case that E(£ | £) is simply
defined tobe E(¢ | 2).
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4. PROBLEMS.

1. Give an example of random variables £ and n which are not independent but
for which

E(¢[n) =ES.

(Cf. (22).)
2. The conditional variance of £ with respect to & is the random variable

Var(¢| 2) = E[(€ ~ E(€]12))*| 2].

Show that
Var¢ = EVar(¢| 2) + VarE(¢| 2).

3. Starting from (17), show that for every function f = f(n) the conditional ex-
pectation E(¢ | i) has the property

E[f(n) E(&[n)] = E[&f(n)]- @27

4. Let ¢ and 7 be random variables. Show that infy E(n — £(€))? is attained for
F*(&) = E(n]&). (Consequently, the best estimator for n in terms of &, in the
mean-square sense, is the conditional expectation E(7 | £)).

5. Let &y, ..., &,, T be independent random variables, where &1, . . ., &, are iden-
tically distributed and 7 takes the values 1,2,...,n. Show that if S; = & +
- + & is the sum of a random number of the random variables, then

E(S:|t) =tE&, Var(S; | 1) = tVar&;

and
ES.=Et E¢, VarS, = E1- Var¢;, + Vart- (E£;)?.

6. Establish equation (24).

9 Random Walk: I—Probabilities of Ruin and Mean
Duration in Coin Tossing

1. The value of the limit theorems of Sect.6 for Bernoulli schemes is not just
that they provide convenient formulas for calculating probabilities P(S, = k) and
P(A < S, < B). They have the additional significance of being of a universal na-
ture, i.e., they remain useful not only for independent Bernoulli random variables
that have only two values, but also for variables of much more general character.
In this sense the Bernoulli scheme appears as the simplest model, on the basis of
which we can recognize many probabilistic regularities which are inherent also in
much more general models.
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In this and the next section we shall discuss a number of new probabilistic regu-
larities, some of which are quite surprising. The ones that we discuss are again based
on the Bernoulli scheme, although many results on the nature of random oscillations
remain valid for random walks of a more general kind.

2. Consider the Bernoulli scheme (2, &7, P), where Q = {w: w = (x1,...,x,), i =
+1}, o/ consists of all subsets of 2, and P({w}) = p*@ ¢« with v(w) =
(X xi + n)/2. Let &(w) = x;, i = 1,...,n. Then, as we know, the sequence
&, ..., & is a sequence of independent Bernoulli random variables,

P&=1)=p, PE&=-1)=q, p+q=1

LetusputSo =0, Sy =& + -+ + &, 1 < k < n. The sequence Sp, S1, .. .,S,
can be considered as the path of the random motion of a particle starting at zero.
Here Sy11 = Sk + &, i.e., if the particle has reached the point S at time k, then at
time k + 1 it is displaced either one unit up (with probability p) or one unit down
(with probability g).

Let A and B be integers, A < 0 < B. An interesting problem about this random
walk is to find the probability that after n steps the moving particle has left the
interval (A, B). Tt is also of interest to ask with what probability the particle leaves
(A,B) at A or at B.

That these are natural questions to ask becomes particularly clear if we interpret
them in terms of a gambling game. Consider two players (first and second) who start
with respective bankrolls (—A) and B. If §; = +1, we suppose that the second player
pays one unit to the first; if §; = —1, the first pays the second. Then Sy = &1+ - -+&
can be interpreted as the amount won by the first player from the second (if S; < 0,
this is actually the amount lost by the first player to the second) after & turns.

At the instant k < n at which for the first time Sy = B (Sy = A) the bank-roll of
the second (first) player is reduced to zero; in other words, that player is ruined. (If
k < n, we suppose that the game ends at time k, although the random walk itself is
well defined up to time n, inclusive.)

Before we turn to a precise formulation, let us introduce some notation.

Let x be an integer in the interval [A, B] and for 0 < k < nlet §§ = x + Sy,

T =min{0 </ <k: S =Aor B}, (1)

where we agree to take T; = kif A < §7 < Bforall0 <[ <k

For each kin 0 < k < n and x € [A, B], the instant T}, called a stopping time
(see Sect. 11), is an integer-valued random variable defined on the sample space €2
(the dependence of T; on w is not explicitly indicated).

It is clear that for all [ < k the set {w: T} = I} is the event that the random walk
{87, 0 < i < k}, starting at time zero at the point x, leaves the interval (A, B) at
time /. It is also clear that when [ < k the sets {w: T} = [, S = A} and {w: T} =
1, S} = B} represent the events that the wandering particle leaves the interval (A, B)
at time / through A or B respectively.
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For 0 < k < n, we write

A= Y v =15 = A},
0<I<k
B= > {w:t=1 8 =B},

0<I<k

2

and let
ax(x) = P(&),  Bulx) = P(%)

be the probabilities that the particle leaves (A, B) through A or B respectively, during
the time interval [0, k]. For these probabilities we can find recurrent relations from
which we can successively determine o1 (x), . . ., a,(x) and 51 (x), ..., B.(x).

Let, then, A < x < B. It is clear that ap(x) = SBo(x) = 0. Now suppose
1 <k < n. Then by (3) of Sect.3

Prx) = P(F) = P(F|S1 =x +1)P(& = 1)
+P(F|S1 =x —1)P(& = -1)
PP(Z |81 = x+1) +qP(%[S1 =x —1). 3)

We now show that
P(%|Si =x+1) =P(#Z]), P(Z|Si=x-1)=P(Z).
To do this, we notice that %} can be represented in the form
By ={w: (5, x +&, ..., x +& + -+ &) € B,
where By is the set of paths of the form
(6, x+ X1, x+x1 4+ +x%)

with x; = +1, which during the time [0, k] first leave (A, B) at B (Fig. 15).

We represent B} in the form B;™"' + By ™', where By**" and B! are the
paths in By for which x; = +1 or x; = —1, respectively.

Notice that the paths (x,x + 1,x + 1 +x2,...,x + 1+ xg + - - 4+ x) in BP*
are in one-to-one correspondence with the paths

(x+1x+14x,...,x+14+x0,...,x+1+x0+ 4+ xz)

in Bf_r% The same is true for the paths in Bxk’x_l. Using these facts, together with
independence, the identical distribution of &1, . . . , &, and (6) of Sect. 8, we obtain
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Fig. 15 Example of a path from the set B}

P(% | $§=x+1)
=P(# &6 =1)
=P{(x,x+&,....x+ &+ -+ &) eEB & =1}
=P{(x+1Lx+1+&, ..., x+1+&+-+&) e BT}
=P{(x+1Lx+1+&,... . x+1+&+-+& 1) eB}
= P(#1)).
In the same way,
P(#|S} =x—1) = P(%)).
Consequently, by (3), for x € (A, B) and k < n,

Br(x) = pBr—1(x + 1) + gfr—1(x — 1),

where
Bi(B) =1, Bi(A)=0, 0<I<n.
Similarly
ag(x) = pag—1(x + 1) + gag_1(x — 1)
with

a(A)=1, oB)=0, 0<I <n.

“)

®)

(6)

Since a(x) = Bo(x) = 0, x € (A, B), these recurrent relations can (at least in

principle) be solved for the probabilities

a1 (x),...,au(x) and Bi(x),...,B.(x).

Putting aside any explicit calculation of the probabilities, we ask for their values for

large n.
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For this purpose we notice that since %;_, < %5, k < n, we have Bi—1(x) <
Bi(x) < 1.1t is therefore natural to expect (and this is actually the case; see Subsec-
tion 3) that for sufficiently large n the probability 3, (x) will be close to the solution
B(x) of the equation

Bx) =pBx+1) +4¢Bx—1) )
with the boundary conditions
BB)=1,  pA)=0 ®)

that result from a formal approach to the limit in (4) and (5).

To solve the problem in (7) and (8), we first suppose that p # g. We see easily
that the equation has the two particular solutions a and b(q/p)*, where a and b are
constants. Hence we look for a general solution of the form

B(x) = a+ b(q/p)". )

Taking account of (8), we find that forA < x < B

~ (a/p)* — (a/p)*
PO = (@l (10

Let us show that this is the only solution of our problem. It is enough to show
that all solutions of the problem in (7) and (8) admit the representation (9).

Let ((x) be a solution with 3(A) = 0, 5(B) = 1. We can always find constants
a and b such that

a+blg/p)* = B(A),  a+blg/p)*t =BA+1).
Then it follows from (7) that
B(A+2) =a+b(g/p)***

and generally ~ R
Blx) = a+b(g/p)".
Consequently the solution (10) is the only solution of our problem.
A similar discussion shows that the only solution of

a(x) =pa(x+1)+qga(x—1), xe (A, B), (11)
with the boundary conditions

a(A)=1, «B)=0 (12)

ax) = % A<x<B. (13)
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Ifp=gq-= %, the only solutions S(x) and «(x) of (7), (8) and (11), (12) are
respectively

—A
B = 5 (14)
and B
—x
alx) = 3 A (15)
We note that
a(x)+ B(x) =1 (16)

for0 <p<1.

We call a(x) and B(x) the probabilities of ruin for the first and second players,
respectively (when the first player’s bankroll is x — A, and the second player’s is
B — x) under the assumption of infinitely many turns, which of course presupposes
an infinite sequence of independent Bernoulli random variables &1, &o, . . ., where
& = +11is treated as a gain for the first player, and & = —1 as a loss. The probabil-
ity space (2, 7, P) considered at the beginning of this section turns out to be too
small to allow such an infinite sequence of independent variables. We shall see later
(Sect. 9, Chap. 2) that such a sequence can actually be constructed and that 8(x) and
a(x) are in fact the probabilities of ruin in an unbounded number of steps.

We now take up some corollaries of the preceding formulas.

If we take A = 0, 0 < x < B, then the definition of S(x) implies that this is
the probability that a particle starting at x arrives at B before it reaches 0. It follows
from (10) and (14) (Fig. 16) that

x/B, p=q=1/2,
Blx) = { (g/p)*—1 4 an
(@pr=1 P74

| -
L

Fig. 16 Graph of §(x), the probability that a particle starting from x reaches B before reaching 0

Now let ¢ > p, which means that the game is unfavorable for the first player,
whose limiting probability of being ruined, namely o = «(0), is given by



9 Random Walk: [—Probabilities of Ruin and Mean Duration in Coin Tossing 89

(¢/p)” —1
(a/p)E — (g/p)*

Next suppose that the rules of the game are changed: the original bankrolls of the
players are still (—A) and B, but the payoff for each player is now %, rather than 1

o =

as before. In other words, now let P(& = 1) = p, P(& = —1) = ¢. In this case let
us denote the limiting probability of ruin for the first player by v ;. Then
(a/p)** —1

2T (g /p)? — (g/p)*

and therefore R
(¢/p)” +1

Qi =0 ————7 > Q,
/ (¢/p)® + (q/p)*
if g > p.
Hence we can draw the following conclusion: if the game is unfavorable to the
first player (i.e., q > p) then doubling the stake decreases the probability of ruin.

3. We now turn to the question of how fast «,(x) and 3, (x) approach their limiting
values «(x) and 5(x).
Let us suppose for simplicity that x = 0 and put

Qp = art(O)a ﬂn = 6n<0)a TYn = 1-— (an + ﬂn)

It is clear that
Yu=P{A <S8 <B, 0<k<n},

where {A < S; < B, 0 < k < n} denotes the event

ﬂ {A < S, < B}.

0<k<n

Let n = rm, where r and m are integers and

=6t
<2:£m+1+"‘+£2m3

Then if C = |A| + B, it is easy to see that
A<S<B 1<k<m}e{|al<C...|¢|<Cl,

and therefore, since (1, . . ., (, are independent and identically distributed,

W <P{al<Co Gl <y =] ]PlGl < €} = (P{lal < cp. (18)
i=1
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We notice that Var (; = m[1 — (p — ¢)?]. Hence, for 0 < p < 1 and sufficiently
large m,

P{IG] < C} <&y, (19)

where £ < 1, since Var (; < C?if P{|¢;| < C} = 1.
If p = 0orp = 1, then P{|(1] < C} = 0 for sufficiently large m, and conse-
quently (19) is satisfied for 0 < p < 1.
It follows from (18) and (19) that for sufficiently large n
Yo < € (20)
where ¢ = £1/" < 1.
According to (16), a + 8 = 1. Therefore

(a - an) + (ﬁ - Bn) = Tn
and since o > «,, 8 > 3,, we have

OSC){*OAHS’WLSF:”,
Ogﬁ_ﬁn§7n§€n7 e <l

There are similar inequalities for the differences a(x) — o, (x) and B(x) — B,(x).

4. We now consider the question of the mean duration of the random walk.
Let my(x) = E 1} be the expectation of the stopping time T}, k < n. Proceeding
as in the derivation of the recurrent relations for G (x), we find that, for x € (A, B),

mx) =Et = Y IP(t=10)

1<i<k

= 3 1 [pP( =116 = 1) + qP(t = 1] = ~1)]

1<I<k

= > Pt =1-1)+qP(g_} =1-1)]
1<I<k

= >, (+D[pPEm =0 +qP | =)
0<i<k—1

=pmg_1(x + 1)+ gmp_1(x — 1)
+ >, PP =0 + 4¢P =)
0<I<k—1
=pmy_1(x+ 1) + gm_1(x — 1) + L.

Thus, for x € (A,B) and 0 < k < n, the functions my(x) satisfy the recurrent
relations
mp(x) =1+ pmy_1(x+ 1) + gmy—1(x — 1), 21
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with mg(x) = 0. From these equations together with the boundary conditions
mi(A) = my(B) =0, (22)

we can successively find mq (x), ..., m,(x).
Since my(x) < my41(x), the limit

m(x) = nli»nolo my(x)

exists, and by (21) it satisfies the equation
m(x) =1+ pm(x+ 1) + gm(x — 1) (23)
with the boundary conditions
m(A) = m(B) = 0. (24)
To solve this equation, we first suppose that
m(x) <o, x¢€(A,B). (25)

Then if p # ¢ there is a particular solution of the form x/(¢ — p) and the general
solution (see (9)) can be written in the form

m(x)—_x+a+b(">x.

pP—9q p
Then by using the boundary conditions m(A) = m(B) = 0 we find that
1

= - (B5() + Aa(x) ~ ], 26)

m(x)

where 3(x) and «(x) are defined by (10) and (13).Ifp = g = %, the general solution
of (23) has the form

m(x) = a+bx —x*,

and since m(A) = m(B) = 0 we have
m(x) = (B—x)(x —A). 27

It follows, in particular, that if the players start with equal bankrolls (B = —A),
then
m(0) = B?.

If we take B = 10, and suppose that each turn takes a second, then the (limiting)
time to the ruin of one player is rather long: 100 seconds.

We obtained (26) and (27) under the assumption that m(x) < o, x € (A, B). Let
us now show that in fact m(x) is finite for all x € (A, B). We consider only the case
x = 0; the general case can be analyzed similarly.
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Letp=¢g = % We introduce the random variable S;, = Sy, (w) defined in terms
of the sequence Sy, S1, . . ., S, and the stopping time T, = T° by the equation

Z Si(w)lr, =) (w)- (28)

The descriptive meaning of Sy, is clear: it is the position reached by the random
walk at the stopping time 7,. Thus, if T, < n, then S;, = A or B; if T, = n, then
A<S, <B.

Let us show that whenp = ¢ = 3,

ES. =0, (29)
ES? =ET,. (30)

To establish the first equation we notice that

T, T Z E[Skl{‘fn:k} (w)]

k=0
= D E[Sul g, ()] + Y E[(Sk = Su)l gz, 1 ()]
k=0 k=0
= ESy+ D E[(Sk = Si)l(r,—1y ()], (31

k=0

where we evidently have E §,, = 0. Let us show that

ZE Sk — Su)l(z,=x3 (w)] = 0.

To do this, we notice that {t, > k} = {A < S; < B,...,A < S¢ < B} when
0 <k <n Theevent {A < S; < B,...,A < S; < B} can evidently be written in
the form

{w: (51,...,fk)€Ak}, (32)
where Ay is a subset of {—1, +1}*. In other words, this set is determined by just the
values of &1, . .., & and does not depend on &1, . .., &,. Since

{t, =k} ={t, > k—1}\{1, > k},

this is also a set of the form (32). It then follows from the independence of
&, ..., & and from Problem 10 of Sect.4 that for any 0 < k < n the random
variables S, — Sy and I, are independent, and therefore

E[(Ss — Si)(r,=x}] = E[Su — S| - Elg,—iy = 0.

Hence we have established (29).
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We can prove (30) by the same method:

ES‘%,, = 2 ES}%I{Tn:k} = Z E([Sn + (Sk — Sn>]21{7:,,:k})
k=0 k=0

= 2 [E Sﬁl{rn:k} + 2 ESn(Sk — Sn)l{r,l:k}
=0

+E(Sy = S0 r,—iy] = ESy — > E(Sy — S0 I, -1
k=0

=n— Y. (n—k)P(t, =k) = zn:kP(r,,=k) —E1,.

k=0

Thus we have (29) and (30) whenp = g = % For generalpand g (p +¢g = 1) it
can be shown similarly that
ES;, =(p—q) En,, (33)
E[S;, —T.-E&]? = Varg - En,, (34)
where E& =p — g, Varéy =1— (p — ¢)%
With the aid of the results obtained so far we can now show that lim,,_,, m,,(0) =

m(0) < co.
If p =g =1, then by (30)

Et, < max(A?, B?). (35)
If p # g, then by (33),
1, < 22x(Al.B) (36)
lp — 4

from which it is clear that m(0) < co.
We also notice that when p = g = %

Et, = ES%U = A2O¢n + BQﬁn + E[SZI{A<S,,<B}I{Tn:n}]
and therefore
A, + B%B, < Et, < A%, + B%B, + maX(AQ, Bz)'yn.

It follows from this and (20) that as n — oo, E T, converges with exponential rate

to
B A
0) =A%a +B*3 =A% —— —B?>. —— = |AB].
m(0) = A% + B B A 54— A8l
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There is a similar result when p # g:

_ aA+ B

Et, — m(0
(0) g

exponentially fast.

5. PROBLEMS

1. Establish the following generalizations of (33) and (34):

ESh =x +(p—q)ET,
E[S; — 7T, - E&]? = Varg, - Ety + 4%

2. Investigate the limits of a(x), 3(x), and m(x) when the level A | —c0.

3. Letp = g = 3 in the Bernoulli scheme. What is the order of E|S,| for large
n?

4. Two players toss their own symmetric coins, independently. Show that the
probability that each has the same number of heads after n tosses is
272030 (CK)%. Hence deduce the equation »;_,(Cf)? = C3, (see also
Problem 4 in Sect. 2).

Let o, be the first time when the number of heads for the first player coin-
cides with the number of heads for the second player (if this happens within n
tosses; 0, = n + 1 if there is no such time). Find E min(o,, n).

10 Random Walk: II—Reflection Principle—Arcsine Law

1. As in the preceding section, we suppose that &1, &o, ..., &, iS a sequence of
independent identically distributed Bernoulli random variables with

P(gl:]') =p, P(glzil) =4,
Se=8+ +& 1<k<2n  Sp=0.

We define
o9n = min{l <k < 2n: S =0},

putting o, = 0 if S # 0 for 1 < k < 2n.

The descriptive meaning of o9, is clear: it is the time of first return to zero.
Properties of this time are studied in the present section, where we assume that the
random walk is symmetric,i.e.,p = g = 1

5-
For 0 < k < n we write
usy = P(Sox = 0), Sfox = P(o2, = 2k). e9)

It is clear that ug = 1 and
Ugy = Cgk . 272k.
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Our immediate aim is to show that for 1 < k < n the probability fo is given by

1
Su = o l2tk=1)- 2
It is clear that
{oon =2k} = {S1 #0, 8, #0, ..., So—1 # 0, Sox = 0}
for 1 < k < n, and by symmetry

for = P{S1 #0, ..., Sye—1 # 0, Sor = 0}
= 2P{S1 > O, ey S2k_1 > O, S2k = 0} (3)

A sequence (S, ...,Sy) is called a path of length k; we denote by Li(A) the
number of paths of length k having some specified property A. Then

S =2 Z Loy(S1>0,...,8%—1>0,S% =0,

(a2k+17~“gan)

Sok41 = A2ty -y Son = ogy1 + - + azy) - 272"
= 2Lo(S1 > 0,..., 891 > 0,8y =0)-27% 4)
where the summation is over all sets (agx+1, . . . ,ds,) With a; = £1.

Consequently the determination of the probability fo; reduces to calculating the
number of paths Lgk(Sl >0,...,85%1>0,5; = 0)

Lemma 1. Let a and b be nonnegative integers,a — b > 0 and k = a + b. Then

—b
Li(S1>0,...,8.1>0,S =a—b) = “Tcg. (5)

PROOE. In fact,

Lk(Sl > 0,...,Sk,1 > 07Sk :a—b)
=L(S1=1,8>0,...,85%_1>0,S=a—>b)
:Lk(Sl = I,Sk :a—b) —Lk(Sl = 1,Sk :a—b;
and3i,2 <i<k—1,suchthat §; <0). (6)
In other words, the number of positive paths (S1,Sa, ..., S) that originate at (1, 1)

and terminate at (k,a — b) is the same as the fofal number of paths from (1, 1) to
(k,a — b) after excluding the paths that touch or intersect the time axis.*

* A path (S1,...,S) is called positive (or nonnegative) if all S; > 0 (S; > 0); a path is said to
touch the time axis if §; > O orelse §; < 0, for 1 < j < k, and there is an i, 1 < i < k, such that
Si = 0; and a path is said to intersect the time axis if there are two times i and j such that S; > 0
and §; < 0.
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We now notice that

Li(S1 =1,8 = a—b;3i, 2<i<k—1, suchthat S; <0)
= L(S1 = —1, Sc =a—b), (7

i.e., the number of paths from o = (1,1) to 8 = (k, a—b), which touch or intersect

the time axis, is equal to the total number of paths that connect o* = (1, —1)

with (. The proof of this statement, known as the reflection principle, follows

from the easily established one-to-one correspondence between the paths A =

(S1,---,84,8a+1,---,5) joining o and 3, and paths B = (—S1,...,—S4,Su+1,

..., Sk) joining o* and S (Fig. 17); a is the first point where A and B reach zero.
From (6) and (7) we find

Lk(Sl >0,...,Sk_1>O,Sk=l1—b)

=Lk(S1=1, Sk=a—b)—Lk(S1=—1, Sk=a—b)
a— a a—b a
= Ckf% — Y1 T Tk ok

which establishes (5).
m]

Fig. 17 The reflection principle

Turning to the calculation of fo, we find that by (4) and (5) (witha =k, b =
k—1),

for = 2Log(S1 > 0,...,Sop—1 > 0,89 = 0) - 27 %
= 2L 1(S1>0,...,89%1 =1)- 2%
1, 1

— Uy

—2k
T2 gy G T gy,

Hence (2) is established.
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We present an alternative proof of this formula, based on the following observa-
tion. A straightforward verification shows that

1
oEl2l=1) = U2(k—1) ~ U2k 3)
At the same time, it is clear that

(0om = 2K} = {oan > 2(k — )}\{oan > 2K,
{o9n > 21} = {S1 #0,...,59 # 0}

and therefore
{o9n = 2k} = {S1 #0,..., 8541y # O}\{S1 #0,..., 8o # 0}.
Hence
for = P{S1 #0,...,Sou_1) # 0} —P{S1 #0,...,8x # 0},

and consequently, because of (8), in order to show that fo, = (1/2k)u2(k_1) it is
enough to show only that

Lok(S1 #0,...,8% # 0) = Lo (S = 0). 9
For this purpose we notice that evidently
sz(Sl #* O7 . ,SQk #* 0) = 2L2k(Sl > 07 . ,SQk > 0)

Hence to verify (9) we need only to establish that

2L2k(51 > 0, . ,SQk > 0) = Lgk(Sl > 0, e ,SQk > 0) (10)
and
Loi(S1 > 0,...,8% > 0) = Ly (Sor = 0). (11)
A

Fig. 18
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Now (10) will be established if we show that we can establish a one-to-one cor-

respondence between the paths A = (S7, . .., So) for which at least one S; = 0, and
the positive paths B = (S1, ..., S2%).
Let A = (Sy,...,52) be a nonnegative path for which the first zero occurs

at the point a (i.e., S, = 0). Let us construct the path, starting at (a, 2), (S, +
2,841+ 2,...,82% + 2) (indicated by the broken lines in Fig. 18). Then the path
B=(S1,...,8-1,8 +2,...,89% + 2) is positive.

Conversely, let B = (S1, ..., So) be a positive path and b the last instant at
which S, = 1 (Fig. 19). Then the path

A= (Sla"'aSbvsbJrl_23"'3Sk_2)

is nonnegative. It follows from these constructions that there is a one-to-one corre-
spondence between the positive paths and the nonnegative paths with at least one
S; = 0. Therefore formula (10) is established.

Fig. 19

We now establish (11). From symmetry and (10) it is enough to show that

Lgk(Sl >0,...,8 > O) +L2k(51 >0,...,8 >0and 3i, 1 < i < 2k, such that
S; = 0) = Lo (Sox = 0).

The set of paths (So; = 0) can be represented as the sum of the two sets %7 and
%>, where € contains the paths (S, . .., Sa) that have just one minimum, and 5
contains those for which the minimum is attained at at least two points.

Let Cy € %1 (Fig. 20) and let «y be the minimum point. We put the path C; =
(So,81, . - .,S9%) in correspondence with the path C§ obtained in the following way
(Fig. 21). We reflect (So, S1, . . . ,.S;) around the vertical line through the point /, and
displace the resulting path to the right and upward, thus releasing it from the point
(2k, 0). Then we move the origin to the point (I, —m). The resulting path C§ will
be positive.

In the same way, if C € 6, we can use the same device to put it into correspon-
dence with a nonnegative path C%.

Conversely, let C¥ = (S1 > 0,...,S9% > 0) be a positive path with Sox = 2m
(see Fig. 21). We make it correspond to the path C; that is obtained in the following



10 Random Walk: [I—Reflection Principle—Arcsine Law 99

Fig. 20

Fig. 21

way. Let p be the last point at which S, = m. Reflect (S, ..., S2,) with respect
to the vertical line x = p and displace the resulting path downward and to the left
until its right-hand end coincides with the point (0, 0). Then we move the origin to
the left-hand end of the resulting path (this is just the path drawn in Fig. 20). The
resulting path C; = (Sg, ..., So) has a unique minimum and So; = 0. A similar
construction applied to paths (S1 > 0,...,8% > 0and 34, 1 < i < 2k, with S; = 0)
leads to paths for which there are at least two minima and So; = 0. Hence we have
established a one-to-one correspondence, which establishes (11).

Therefore we have established (9) and consequently also the formula fo, =
Ug(k—1) — ar = (1/2k)ugy_1).

By Stirling’s formula

1
vk’

uy = Ck - 27% ~ k — oo.
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Therefore
k — o0.

1
f 2k ~ Wa
Hence it follows that the expectation of the first time when zero is reached,
namely

E min(oy,, 2n) = 2 2k P(oan = 2k) + 2nus,
k=1

n
= Z Up(k—1) + 2nuzy,
k=1

can be arbitrarily large.

In fact, 212021 Uusk—1) = 0, and consequently the limiting value of the mean time
for the walk to reach zero (in an unbounded number of steps) is 0.

This property accounts for many of the unexpected properties of the symmetric
random walk under consideration. For example, it would be natural to suppose that
after time 2n the mean value of the number of zero net scores in a game between two
equally matched players (p = g = %), i.e., the number of instants i at which S; = 0,
would be proportional to 2n. However, in fact the number of zeros has order v/2n
(see (17) in Sect. 9, Chap. 7, Vol. 2). Hence it follows, in particular, that, contrary to
intuition, the “typical” walk (Sp, S1, ..., S,) does not have a sinusoidal character
(so that roughly half the time the particle would be on the positive side and half
the time on the negative side), but instead must resemble a stretched-out wave. The
precise formulation of this statement is given by the arcsine law, which we proceed
to investigate.

2. Let Py 2, be the probability that during the interval [0, 2n] the particle spends 2k
units of time on the positive side.*

Lemma 2. Let ug = 1 and 0 < k < n. Then
Pok,2n = Uy - Uzp_2k. (12)

PROOF. It was shown above that for = uy(4—1) — ua. Let us show that

k
ok = ) for - Ua(k—r). (13)

r=1

* We say that the particle is on the positive side in the interval [m — 1, m] if one, at least, of the
values S,,—1 and S,, is positive.
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Since {Sor = 0} < {02, < 2k}, we have

{Sok = 0} = {Sox = 0} n {2y <2k} = D {Soi = 0} N {0 = 21}
1<I<k

Consequently

Uy = P(Sok = 0) = > P(Syu = 0, 03 = 21)

1<I<k

D7 P(Sy = 0] o9 = 20) P03, = 21).
1<i<k

But

P(Sor =0]09, =21) =P(So =081 #0,...,891 # 0,89 =0)
= P(Sy + (ar41 + -+ &) = 0[S #0,...,81 # 0,59 = 0)
= P(Sar + (o141 + -+ + &) = 0] S = 0)
= P(&rv1 + - + & = 0) = P(Sa4—p) = 0).

Therefore
ugg = Z P{Sa—1y = 0} P{o2, = 21},

1<I<k

which proves (13).

We turn now to the proof of (12). It is obviously true for k = 0 and k = n. Now
let 1 <k < n— 1. If the particle is on the positive side for exactly 2k < 2n instants,
it must pass through zero. Let 2r be the time of first return to zero. There are two
possibilities: either S; > 0 forall 0 </ < 2r,or §; < Oforall0 < < 2r.

The number of paths of the first kind is easily seen to be

(32%£,) 2270 Py oy = 5 22, Poy a(ner)-

The corresponding number of paths of the second kind is

% ' 22”‘]“2rp2k,2(n7r)'

Consequently, for 1 <k <n-—1,

k k
1 1
P2k,2n = 5 ;erPQ(k—r),Q(n—r) + 5 ;erPW(,Q(n—r)' (14)



102 1 Elementary Probability Theory

Let us suppose that Poy o, = Uy - Ugu—2k holds form = 1,...,n — 1. Then we
find from (13) and (14) that

k k
1 1
Poron = sUzn—ok D, forltor—2, + 5Uk D forllon—2r—2k
r=1 r=1

1 1
= FUop—2klUok + GUARU—2k = U2AU2p—2k-

This completes the proof of the lemma.
O

Now let v(2n) be the number of time units that the particle spends on the positive
axis in the interval [0, 2n]. Then, when x < 1,

1 2
P {2 < 7(2 ") SX} = Z Pok 2.
n {k: 1/2<(2k/2n)<x}

Since
1

vk

Ugg ~

as k — oo, we have

1
Poi on = Usplta(_jy ~ ——,
2,2 2kU2 (n—k) /k(n — 1)
ask —-ooandn — k — 0.
Therefore
1 [k K\ M2
Poron — Z [<1>] -0, n— o,

T | n n
{k: 1/2<(2k/2n)<x} {k: 1/2<(2k/2n)<x}
whence

1M dt
P2k,2n_*J 7*07 n — 0.
™

(ks 1/2<(2k/2n)<x} 12 /1(1 —1)

But, by symmetry,

1
2 Poy o, — 3
{k: k/n<1/2}

and

1 dt 2 1
ff ———— = = arcsiny/x — —.
Thptl—1) ™ 2

Consequently we have proved the following theorem.
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Theorem (Arcsine Law). The probability that the fraction of the time spent by the
particle on the positive side is at most x tends to 2m ! arcsin 1/x:

Z Poyon — 21~ ! arcsin y/x. (15)
{k: k/n<x}

We remark that the integrand u(r) = (£(1 — £))~'/? in the integral
1 Jx dt
T Jo A/t(1 —1)

represents a U-shaped curve that tends to infinity as ¢t — O or 1.
Hence it follows that, for large n,

P O<V(2n)§A > P 1<7(2n)§1—|—A ,
2n 2 2n 2

i.e., it is more likely that the fraction of the time spent by the particle on the positive
side is close to zero or one, than to the intuitive value %
Using a table of arcsines and noting that the convergence in (15) is indeed quite

rapid, we find that

P {7(22”) < 0.024} ~ 0.1,

n

P{V(Q") §01} ~ 0.2,
2n

p 20 §0.2} ~ 0.3,
2n

Hence if, say, n = 1000, then in about one case in ten, the particle spends only 24
units of time on the positive axis and therefore spends the greatest amount of time,
976 units, on the negative axis.

3. PROBLEMS

1. How fast does E min(o9,, 2n) — 00 asn — o0?

2. Let 1, = min{l < k < n: S = 1}, where we take 1, = 0 if § < 1
for 1 < k < n. What is the limit of Emin(t,, n) as n — oo for symmetric
(p = q = 3) and for asymmetric (p # q) walks?
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3. Using the ideas and methods of Sect. 10, show that the symmetric (p = g =
1/2) Bernoulli random walk {Sy, k < n} with Sp = 0, Sy = & + -+ + &
fulfills the following equations (N is a positive integer):

P{ max S; > N, S, < N} = P{S, > N},
1<k<n

R

P{max Sk=N} = P{S, =N} +P{S, =N+ 1}.

1<k<n

11 Martingales: Some Applications to the Random Walk

1. The Bernoulli random walk discussed above was generated by a sequence
&, ..., & of independent random variables. In this and the next section we intro-
duce two important classes of dependent random variables, those that constitute
martingales and Markov chains.

The theory of martingales will be developed in detail in Chapter 7, Vol. 2. Here
we shall present only the essential definitions, prove a theorem on the preservation
of the martingale property for stopping times, and apply this to deduce the “ ballot
theorem.” In turn, the latter theorem will be used for another proof of the statement
(5), Sect. 10, which was obtained above by applying the reflection principle.

2. Let (9, o7, P) be a finite probability space and 1<%, < --- < %, a sequence
of decompositions.

Definition 1. A sequence of random variables &1, . . ., &, is called a martingale (with
respect to the decompositions 21 < %o < -+ < Z,) if

(1) & is D-measurable,
() E(§k1 | %) =& 1 <k<n-—1

In order to emphasize the system of decompositions with respect to which the
random variables £ = ({1, . ..,&,) form a martingale, we shall use the notation

&= (& Di)1<i<n, (1)

where for the sake of simplicity we often do not mention explicitly that 1 <k < n.
When % is induced by &1, ..., &, i.e.,

D = Dey,...&00

instead of saying that & = (&, %) is a martingale, we simply say that the sequence
& = (&) is a martingale.
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Here are some examples of martingales.
Example 1. Let 4, . .., n, be independent Bernoulli random variables with
Pl =1) =Pl = —1) =

Sk =1 + e 4 Mk and -@k = _@nhmﬂlk'

)

N|—=

We observe that the decompositions Z; have a simple structure:
2, ={D",D"},
where Dt = {w:m = +1}, D = {w: m = —1};
Dy ={D"T, D", D", D™},

where DT+ = {w: m =+1,n = +1}7 ..., DT = {w: m =—1,1n = —1},
etc.

It is also easy to see that Dy, ., = Ds,....s,-
Let us show that (S, Z)1<k<n form a martingale. In fact, Sy is Z-measurable,
and by (12) and (18) of Sect. 8

E(Str1 | %) = E(Sk + kv | Z1)
= E(Sk| %) + E(is1 | D) = Sk + Empyr = Sk

If we put So = 0 and take Dy = {2}, the trivial decomposition, then the sequence
(Sks Dr)o<k<n also forms a martingale.

Example 2. Let 7;,...,7, be independent Bernoulli random variables with
P(ni = 1) = p, P(n; = —1) = q. If p # ¢, each of the sequences £ = (&)
with
a\"
§k=(p> ) & =Sk —k(p—q), where Sp=mn1+-- +n

is a martingale.
Example 3. Let 1 be a random variable, 1 < - -+ < %,, and
& =EM| Z). 2

Then the sequence & = (&, Zk)1<k<n is a martingale. In fact, it is evident that
E(n| %) is Dr-measurable, and by (20) of Sect. 8

E(+11%) = E[E(| Zis1) | Zk] = E(n] Zk) = &

In this connection we notice that if £ = (&, %) is any martingale, then by (20)
of Sect. 8
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& = E(&r1 | Zk) = E[E(Skr2| Dhr1) | %]
= E(&r21%) = =E(&| %) 3)
Consequently the set of martingales & = (&, %) is exhausted by the martingales

of the form (2). (We note that for infinite sequences & = (&, Zk)k>1 this is, in
general, no longer the case; see Problem 6 in Sect. 1 of Chap. 7, Vol. 2.)

Example 4. Let 7y, .. ., 7, be a sequence of independent identically distributed ran-
dom variables, Sy = m1 + -+, and Dy = Ds,, Do = Ds, 5, 1> ---r Dn =
Ds, 8, 1.....5, - Let us show that the sequence £ = (&, %) with
n 1 Sl’H-l—k
= G e =S
5 a£2 n_1’ afk n+1_k7 7§ 1

is a martingale. In the first place, it is clear that Z; < Z41 and & is Z-measurable.
Moreover, we have by symmetry, forj <n —k + 1,

E(ni| Z) = E(m | Z) “)
(compare (26), Sect. 8). Therefore

n—k+1
(n—k+DEm|2) = D E0yl %) = E(Suis1 | Z) = Szt
j=1
and consequently

Sn—k+1
— Onk4l
&= g1 Bl

and it follows from Example 3 that £ = (&, %) is a martingale.

Remark. From this martingale property of the sequence & = (&, Zk)1<k<n. it is
clear why we will sometimes say that the sequence (Sx/k)1<k<, forms a reversed
martingale. (Compare Problem 5 in Sect. 1, Chap. 7, Vol. 2).

Example 5. Let 7y, . . ., 7, be independent Bernoulli random variables with

Pii = +1) = P(ni = =1) =

b

=

St =11 + -+ + m. Let A and B be integers, A < 0 < B. Then with 0 < \ < 7/2,
the sequence § = (&, %) with D = P, ... s, and

& = (cos \)™ exp{z)\ (Sk—>}7 1<k<n, (5)

is a complex martingale (i.e., the real and imaginary parts of &, 1 < k < n, form
martingales).
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3. It follows from the definition of a martingale that the expectation E & is the same
for every k:

E& =E¢.

It turns out that this property persists if time & is replaced by a stopping time. In
order to formulate this property we introduce the following definition.

Definition 2. A random variable T = T(w) that takes the values 1,2, ..., nis called
a stopping time (with respect to decompositions (% )1<k<n, 21 < Z2 < -+ < D)
if, forany k = 1,. .., n, the random variable I{;_y, (w) is Z;-measurable.

If we consider Z; as the decomposition induced by observations for k steps (for
example, Zx = Py, ,...n,, the decomposition induced by the variables 71, ..., 7),
then the Z;-measurability of /;—; (w) means that the realization or nonrealization
of the event {T = k} is determined only by observations for k steps (and is indepen-
dent of the “future”).

If B = a(%), then the Z;-measurability of I(;_i (w) is equivalent to the as-
sumption that

{T = k} € . 6)

We have already encountered specific examples of stopping times: the times T and
09, introduced in Sects. 9 and 10. Those times are special cases of stopping times
of the form

™ = min{0 <k <n: & e A},

7
o =min{0 <k <n: & € A}, v

which are the times (respectively the first time after zero and the first time) for a
sequence &g, &1, . . ., &, to attain a point of the set A.

4. Theorem 1. Let & = (&, Zk)1<k<n be a martingale and © a stopping time with
respect to the decompositions (Di)1<k<n. Then

E(5‘5|'@1) =£1a (8)
where )
&= D) &y (W) ©)
k=1
and
Eé& =E&. (10)

PROOF (compare the proof of (29) in Sect.9). Let D € &;. Using (3) and the prop-
erties of conditional expectations, we find that
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E(&|D) =
- % Z E(& - Igzepy - Ip)
= 5757 2L EIEG | Z) - Iy - Ip]
-5 2 E[E(&lemyy - Ip | 2)]

= P(D) Z E[gnl{‘r=l} . ID]

= m E(ntD) = E(gn |D>7

and consequently
E(&|21) = E(& | 21) = &

The equation E £, = E &; then follows in an obvious way.
This completes the proof of the theorem.
|

Corollary. For the martingale (Sk, Zi)1<k<n of Example 1, and any stopping time
T (with respect to (%)) we have the formulas

ES. =0, ES? =En, (11)

known as Wald’s identities (cf. (29) and (30) in Sect.9; see also Problem 1 and
Theorem 3 in Sect. 2, Chap. 7, Vol. 2).

Let us use Theorem 1 to establish the following proposition.

Theorem 1 (Ballot Theorem). Let 11, . .., 0, be a sequence of independent identi-
cally distributed random variables taking finitely many values from the set (0,1, .. .)
and

Sk=m+-+m 1<k<n

Then (P-a.s.)
SN\t
P{Sk<kf0rallk,1<k<n|Sn}—(1—n> ; (12)
n

where a* = max(a, 0).

PROOF. On the set {w: S, > n} the formula is evident. We therefore prove (12) for
the sample points at which S, < n.
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Let us consider the martingale § = (&, Zk)1<k<n introduced in Example 4, with
fk = S,hLl,k/(n +1-— k) and @k = 25u+1—1<7---,5n'
We define
t=min{l <k <n: & > 1},

taking T = non the set {& < 1forallk, 1 <k <n} = {maxi<;<,(S;/]) < 1}.Itis
clear that & = £, = S1 = 0 on this set, and therefore

{maxS’<1}:{maxsl’<1,sn<n}§{&=0}. (13)

1<i<n [ 1<I<n

Now let us consider the outcomes for which simultaneously maxs <<, (S;/1) > 1
and S, < n. Write 0 = n+ 1 — 1. It is easy to see that

o=max{l <k <n:S >k}

and therefore (since S, < n) we have 0 < n, S, > o0, and S,41 < o + 1. Con-
sequently y41 = So41 — So < (0 +1) — 0 = 1, ie, ny4+1 = 0. Therefore
0 <8, =8,+1 <o+ 1, and consequently S, = ¢ and

Sn+1—1: Sa
=T =27 1.
& n+l—n1 o
Therefore g
l
LS =1},
{1H<1?<Xn ] >1, Sn<n}§{§r 1} (14)
From (13) and (14) we find that
S sy ent = 6 =1} A {Sh <}
lnél%xnl_,nn—r—mnn.

Therefore, on the set {S,, < n}, we have

P{max St >1
1<i<n [

sn} S P{& = 1]S,) = E(& ]S,

where the last equation follows because &; takes only the two values 0 and 1.
Let us notice now that E(&; | S,,) = E(& | 21), and (by Theorem 1) E(&; | 21) =
&1 = S,/n. Consequently, on the set {S, < n} we have

P{Sx <k forallk suchthatl <k <n|S,} =1— (S,/n).

This completes the proof of the theorem.
|

We now apply this theorem to obtain a different proof of Lemma 1 of Sect. 10,
and explain why it is called the ballot theorem.
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Let &y, ..., &, be independent Bernoulli random variables with

Sk = &1 + -+ + & and a, b nonnegative integers such thata —b > 0, a + b = n.
We are going to show that

a—>b

P{$1>0,....8, > 0[S, =a~b} = ——.
a

15)

In fact, by symmetry,

P{S; >0,...,8 >0[S =a—b)
=P{$; <0,...,5,<0|S,=—(a—b)}
=P{S1+1<1,....8,+n<n|S,+n=n—(a—b)}
=Pm<l,...om+-+m<nlm+--+n,=n—(a—>b)}
_[1_n—(a—b)]+_a—b a—>b

n

n a+b’

where we have put 7, = & + 1 and applied (12).

Now formula (5) of Sect. 10 established in Lemma 1 of Sect. 10 by using the
reflection principle follows from (15) in an evident way.

Let us interpret £; = +1 as a vote for candidate A and & = —1 as a vote for B.
Then Sy, is the difference between the numbers of votes cast for A and B at the time
when k votes have been recorded, and

P{S; >0,...,5,>0|S, =a—b}

is the probability that A was always ahead of B given that A received a votes in all,
B received b votes, and a — b > 0, a + b = n. According to (15) this probability is

(a—b)/n.
5. PROBLEMS

l. Let 9 < %1 < -+ < 9, be a sequence of decompositions with Zy = {2},
and let 7, be Z-measurable variables, 1 < k < n. Show that the sequence

g = (fka @k) with
k

&= Y [m—E(m| 21)]

=1

is a martingale.
2. Letthe random variables 7y, . . ., g satisfy E(ne| 1, .. ., mi—1) = 0,2 < k < n.
Show that the sequence & = (&)1<k<, With & = 7 and

k
Gerr = Y miafilmsom), 1<k<n—1,

i=1

where f; are given functions, is a martingale.
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3.

Show that every martingale £ = (&;, %) has uncorrelated increments: if a <
b < ¢ < dthen

Cov(&s — &, & — &) = 0.

Let £ = (&1,...,&,) be a random sequence such that & is Z;-measurable
(D < Do < -+ < 9,). Show that a necessary and sufficient condition
for this sequence to be a martingale (with respect to the system (%)) is that
E & = E¢&; for every stopping time T (with respect to (Z)). (The phrase “for
every stopping time” can be replaced by “for every stopping time that assumes
two values.”)

Show that if £ = (&, Zk)1<k<n is @ martingale and 7 is a stopping time, then

E [gnl{t:k}] = E[fkl{'r:k}]

for every k.

. Let§ = (&, %) and p = (i, Zk) be two martingales, & = 71 = 0. Show

that .
E & = Z E(& — &—1)(m — me—1)
k=2

and in particular that
n

E& = D E(&— &)

k=2

. Let m1,...,m, be a sequence of independent identically distributed random

variables with E7; = 0. Show that the sequences & = (&) with

k 2
& = <Z77i) —kEni,
i-1

exp{A(m + -+ )}

& = (E exp Amp )¥

are martingales.

Let n1,...,n, be a sequence of independent identically distributed random
variables taking values in a finite set Y. Let fo(y) = P(my = y) > 0,y €Y,
and let f1(y) be a nonnegative function with }; _, fi(y) = 1. Show that the
sequence & = (&, Z,') with 4! = D, .,

Silm) - fi(me)
Jolm) -+ folm)’

is a martingale. (The variables &, known as likelihood ratios, are extremely
important in mathematical statistics.)

&=
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12 Markov Chains: Ergodic Theorem, Strong
Markov Property

1. We have discussed the Bernoulli scheme with
Q={w:w=(x1,...,%), x =0,1},
where the probability P({w}) = p(w) of each outcome is given by

p(w) =px1) - plx), )]

with p(x) = p*q' ~*. With these hypotheses, the variables &1, . . ., &, with &(w) = x;
are independent and identically distributed with

P =x)=- =P =x) =px), x=0,1
If we replace (1) by
pw) =pi(x1) - pulxa),
where p;(x) = pr(1 — p;)'™, 0 < p; < 1, the random variables &1, . . ., &, are still

independent, but in general are differently distributed:

P(gl = X) = pl(x)v KRR P(gn = x) = pn(x)‘

We now consider a generalization that leads to dependent random variables that
form what is known as a Markov chain.
Let us suppose that

Q={w: w= (x0,%1,...,%), X; € X},

where X is a finite set. Let there be given nonnegative functions pg(x), p1(x,), ...,
pn(x,y) such that

ZPO(X) = ]-7

xeX

Zpk(x,y)zl, k=1,...,n;xeX. 2)
yeX

For each w = (xg,x1,...,%,), put P({w}) = p(w), where

p(w) :pO(XO)pl(x(hxl)'"pn(xnflaxn) (3)

It is easily verified that >} _, p(w) = 1, and consequently the set of numbers p(w)
together with the space €2 and the collection of its subsets defines a probabilistic
model (2, <7, P), which it is usual to call a model of experiments that form a Markov
chain.
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Let us introduce the random variables &y, &1, . .., &, with &(w) = x; forw =
(x1,...,%,). A simple calculation shows that
P& =a) = po(a),

P(§o = ao,...,& = ax) = polao)pi(ao,ar) - prlak—1,ar). “)

We now establish the validity of the following fundamental property of condi-
tional probabilities in the probability model (€2, <7, P) at hand:

Plkri = a1 |G =a,. .. & = a0} = P& =@ |G =ay (5)

(under the assumption that P(& = ax, ..., & = ag) > 0).
By (4) and the definition of conditional probabilities (Sect. 3)

P{&+1 = ary1 & = ar, ..., §0 = ao}
. P{§k+1 = Ak41y- - ,fo = ao}
- P&=ar,... 6 =ao)
_ polao)pi(ao,ai) - pry1(ax, ary1)
B po(ao) - - - pr(ax—1, ax)

:pk+1(akaak+1)'

In a similar way we verify

P{&+1 = ars1 | & = ar} = prs1(ak, ags1), (6)

which establishes (5).
Let Q,f = Y,,....c, be the decomposition induced by &p, ..., &, and %’,f =

(7).
Then, in the notation introduced in Sect. 8, it follows from (5) that
Pt = i | 21} = Pl = ain | &) (7)
or

P{&t+1 = aks1 10y -5 &} = P{&s1 = ars1 | &}

Remark 1. We interrupt here our exposition in order to make an important comment
regarding the formulas (5) and (7) and events of zero probability.

Formula (5) was established assuming that P{¢;, = ay,...,& = ag} > 0 (hence
also P{& = a} > 0). In essence, this was needed only because conditional proba-
bilities P(A | B) have been defined (so far!) only under the assumption P(B) > 0.

Let us notice, however, that if B = {& = a,...,& = ap} and P(B) = 0 (and
therefore also P(C) = 0 for C = {£; = a}), then the “path” {{y = aq, ..., & = ai}
has to be viewed as unrealizable one, and then the question about the conditional
probability of the event {&;1 = a;} given that this unrealizable “path” occurs is of
no practical interest.

In this connection we will for definiteness define the conditional probability
P(A | B) by the formula
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P(4B) .
P(A[B) = ZOR if P(B) > 0,
0, if P(B) = 0.

With this definition the formulas (5) and (7) hold without any additional assump-
tions like P{& = a, ..., & = ap} > 0.

Let us emphasize that the difficulty related to the events of zero probability is very
common for probability theory. We will give in Sect. 7, Chap. 2, a general definition
of conditional probabilities (with respect to arbitrary decompositions, o-algebras,
etc.), which is both very natural and “works” in “zero probability” setups.

Now, if we use the evident equation
P(AB|C) =P(A|BC)P(B|C),
we find from (7) that

P{& =t Gp1 = @ | B} =Pl =an,. ., G = @ |&) (8)

or

P{gn =dpy « -y £k+1 = Qk+1 ‘50; sy gk}
=P{&=an, ..., &1 = a1 [ &) 9)
This equation admits the following intuitive interpretation. Let us think of &
as the position of a particle “at present,” with (&g, ..., &—1) being the “past,” and
(&k+1, - - -, &) the “future.” Then (9) says that if the past and the present are given,
the future depends only on the present and is independent of how the particle arrived

at &, i.e., is independent of the past (&, ..., &—1).
Let *

P = {ékfl = Qk—1y--- 750 = (l()},
N = {é-k = ak}a

F={§=an....&+1 = a1}
Then it follows from (9) that
P(F|NP) = P(F|N),
from which we easily find that
P(FP|N) = P(F|N)P(P|N). (10)

In other words, it follows from (7) that for a given present N, the future F and the
past P are independent. It is easily shown that the converse also holds: if (10) holds
forallk =0,1,...,n— 1, then (7) holds for every k = 0,1,...,n — 1.

* “Present” is denoted by N (“Now”) to distinguish from P = “Past”.—Translator.
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The property of the independence of future and past, or, what is the same thing,
the lack of dependence of the future on the past when the present is given, is
called the Markov property, and the corresponding sequence of random variables
o, - - -, &y 1s a Markov chain.

Consequently if the probabilities p(w) of the sample points are given by (3), the
sequence (&, . . ., &) with &(w) = x; forms a Markov chain.

We give the following formal definition.

Definition. Let (2, o7, P) be a (finite) probability space and let £ = (&, ..., &,) be
a sequence of random variables with values in a (finite) set X. If (7) is satisfied, the
sequence & = (&, ..., &,) is called a (finite) Markov chain.

The set X is called the phase space or state space of the chain. The set of prob-
abilities (po(x)), x € X, with po(x) = P(£§o = x) is the initial distribution, and the
matrix |pe(x,¥)|, x,y € X, with pr(x,y) = P{& = y|&-—1 = x} is the matrix of
transition probabilities (from state x to state y) attime k = 1,...,n.

When the transition probabilities py(x,y) do not depend on k, that is, py(x,y) =
p(x,y), the sequence & = (&, ...,&,) is called a homogeneous Markov chain with
transition matrix |p(x,y)|.

Notice that the matrix |p(x,y)| is stochastic: its elements are nonnegative and
the sum of the elements in each row is 1: 3} p(x,y) = 1, x€ X.

We shall suppose that the phase space X is a finite set of integers (X =
{0,1,...,N}, X = {0,£1,...,£N}, etc.), and use the traditional notation p; =
po(i) and p; = p(i,j).

It is clear that the properties of homogeneous Markov chains are completely de-
termined by the initial probabilities p; and the transition probabilities p;;. In specific
cases we describe the evolution of the chain, not by writing out the matrix |p;| ex-
plicitly, but by a (directed) graph whose vertices are the states in X, and an arrow
from state i to state j with the number p;; over it indicates that it is possible to pass
from point i to point j with probability p;. When p; = 0, the corresponding arrow
is omitted.

Pij

A,

I J

Example 1. Let X = {0,1, 2} and

o

Pyl =

Wl pof=
o
Wl = O
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The following graph corresponds to this matrix:

1
3 }

; Om |
0 I 2 :
i
Here state O is said to be absorbing: if the particle gets into this state it remains there,
since pgp = 1. From state 1 the particle goes to the adjacent states 0 or 2 with equal
probabilities; state 2 has the property that the particle remains there with probability
% and goes to state 0 with probability %

Example 2. Let X = {0, £1, ..., #N}, po = 1, pww = p—n,—~ = 1, and, for
li| <N,
p, Jj=it]
pj=N4 Jj=i-1 an
0  otherwise.
The transitions corresponding to this chain can be presented graphically in the fol-
lowing way (N = 3):

q 4 q P P P
QT ST O
-3 =< p =l p q q ° 3

This chain corresponds to the two-player game discussed earlier, when each player
has a bankroll N and at each turn the first player wins + 1 from the second with
probability p, and loses (wins —1) with probability g. If we think of state i as the
amount won by the first player from the second, then reaching state N or —N means
the ruin of the second or first player, respectively.

In fact, if 1, 72, . . ., ), are independent Bernoulli random variables with P(r; =
+1) =p,P(pi = —1) = g, So = 0 and Sy = m + --- + 7 the amounts won by
the first player from the second, then the sequence Sg, S1, ..., S, is a Markov chain

with pg = 1 and transition matrix (11), since

P{Sk+1 =Jj|Sk = i, Sk—1 = ig—1,...,81 = i1}
= P{Sk + M1 =Jj| Sk = ik, Ske1 = k=1, .., 81 = i1}
= P{Sk + mt1 =J | Sk = ix} = P{my1 = J — ix}.

This Markov chain has a very simple structure:

Si41 =Sk + My, 0<k<n—1,

where 11,12, ..., 1, is a sequence of independent random variables.
The same considerations show thatif £y, 71, . . . , 17, are independent random vari-
ables then the sequence &g, &1, - . . , &, with
§k+1 :ﬁc(fk7nk+1)a 0 < k <n-— 1; (12)

is also a Markov chain.



12 Markov Chains: Ergodic Theorem, Strong Markov Property 117

It is worth noting in this connection that a Markov chain constructed in this way
can be considered as a natural probabilistic analog of a (deterministic) sequence
x = (xo,...,x,) generated by the recurrent equations

X1 = fi(x)-

We now give another example of a Markov chain of the form (12); this example
arises in queueing theory.

Example 3. At a taxi stand let taxis arrive at unit intervals of time (one at a time). If
no one is waiting at the stand, the taxi leaves immediately. Let 7, be the number of
passengers who arrive at the stand at time k, and suppose that 7, ..., 7, are inde-
pendent random variables. Let & be the length of the waiting line at time k, £y = 0.
Then if & = i, at the next time k + 1 the length &1 of the waiting line is equal to

. T]k"v‘l lfl:O7
T= Vi 14 ifi> 1

In other words,
&1 = (& —1)" +my1, 0<k<n-—1,

where at = max(a, 0), and therefore the sequence & = (&, ..., &) is a Markov
chain.

Example 4. This example comes from the theory of branching processes. A
branching process with discrete time is a sequence of random variables &y, &1, . . ., &,
where ¢ is interpreted as the number of particles in existence at time k, and the pro-
cess of creation and annihilation of particles is as follows: each particle, indepen-
dently of the other particles and of the “prehistory” of the process, is transformed
into j particles with probability p;, j = 0,1,...,M. (This model of the process
of creation and annihilation is called the Galton—Watson model, see [6] and Prob-
lem 18 in Sect. 5, Chap. VIII of [90]).

We suppose that at the initial time there is just one particle, §; = 1. If at time k
there are & particles (numbered 1,2, ..., &), then by assumption &1 is given as a
random sum of random variables,

o =)+ 772’:),

(k)

where 7, is the number of particles produced by particle number i. It is clear that

if & = 0 then &1 = 0. If we suppose that all the random variables nj(k), k>0, are
independent of each other, we obtain

P{&+1 = kg1 | & = ks &1 = ik—1,- .-} = P{&41 = 1 | & = ix}

=P+ g = i)

It is evident from this that the sequence &, &1, . . ., &, is a Markov chain.
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A particularly interesting case is that in which each particle either vanishes with
probability g or divides in two with probability p, p + g = 1. In this case it is easy
to calculate that

pij = P{&1 =jl& =i}

is given by the formula

_ [ dPpirg=iz j=0,2, ..., 2,
Pi = 0 in all other cases.

2. Let & = (&, p,P) be a homogeneous Markov chain with initial vector (row)
= ||p;| and transition matrix P = |p;]|. It is clear that

pi=Pl&i=jléo=i}=-=P{&=jl{-1 =i}
We shall use the notation
p,, =P{&=jléo =1} (=P{&u=jl&=1})

for the probability of a transition from state i to state j in k steps, and

P = P& =}

for the probability of the particle to be at point j at time k. Also let

(k
p® = pf, PO =|p|.

Let us show that the transition probabilities p(»k)

i satisfy the Kolmogorov—Chapman

equation
k+1) K (1
P =3Pl (13)
or, in matrix form,
pk+d — pt)  pd) (14)

The proof is extremely simple: using the formula for total probability and the
Markov property, we obtain

P = PG =jl&o = i) = Y. P = J, & = alé = i)
=Y P& =jl& = a)P(& =& =) Zpa,l?la :

The following two cases of (13) are particularly important:
the backward equation

Py = pianll (15)
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and the forward equation
k+1 k
P =3 ppa; (16)

(see Figs. 22 and 23). The forward and backward equations can be written in the

following matrix forms
pé+t) — p) . p, (17)

pk+D) — p.pH), (18)

o/

+

N

0 I+ 1

Fig. 22 For the backward equation

f") that

ptY =3 ppl), (19)

Similarly, we find for the (unconditional) probabilities p

or in matrix form
p(k+1) - p(k) PO,

In particular,

p(k+1) — p(k) P (forward equation)

and
pth) = p() . pk) (backward equation).

Since P = P, p(® — p, it follows from these equations that
PO — Pt p® = B

Consequently for homogeneous Markov chains the k-step transition probabilities
pl-{jk) are the elements of the kth powers of the matrix PP, so that many properties of

such chains can be investigated by the methods of matrix analysis.
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0

Fig. 23 For the forward equation

Example 5. Consider a homogeneous Markov chain with the two states 0 and 1 and

the transition matrix
p— (P00 Poi
Pio P11

P2 = Po + PoiP1o po1(poo + p11)
pio(poo +p11) P31+ Poipio

It is easy to calculate that

and (by induction)

P = L (1—1911 1—1700)
2—poo—p11 \1—pP11 1—poo
(poo +p11 —1)" < 1—poo —(1— Poo))

+
2 — poo — p11 _(1—1911) 1-pnu

(under the assumption that |pgo + p11 — 1| < 1).
Hence it is clear that if the elements of P satisfy |pgg +p11 — 1| < 1 (in particular,
if all the transition probabilities p;; are positive), then as n — 0

P 1 (1—1711 1—1700), (20)
2—poo—p11 \1=pP11 1= poo

and therefore

. 1—pn ) 1 — poo .
lim (") — , limp: = — 1= O, 1.
b= —Poo — P11 nP Ty —Poo — P11

Consequently if |poo + p11 — 1| < 1, such a Markov chain exhibits regular

behavior of the following kind: the influence of the initial state on the probability
(n)

of finding the particle in one state or another eventually becomes negligible (pl-j
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approach limits 7;, independent of i and forming a probability distribution: 7y > 0,
m > 0, mg + m = 1); if also all p;; > 0 then 7y > 0 and 7; > 0. (Compare with
Theorem 1 below.)

3. The following theorem describes a wide class of Markov chains that have the
property called ergodicity: the limits ; = lim,, p;; not only exist, are independent of
i, and form a probability distribution (7; > 0, > = 1), but also 7; > 0 for all
J (such a distribution 7r; is said to be ergodic, see Sect. 3, Chap. 8, Vol. 2 for more
detail).

Theorem 1 (Ergodic Theorem). Let P = ||pjj|| be the transition matrix of a Markov

chain with a finite state space X = {1,2, ..., N}.
(a) If there is an ng such that
mi‘npl.(]-no) > 0, (21
ij .
then there are numbers 1, ..., wy such that
m > 0, ij =1 (22)
J
and
P,(,n) — ﬂ-ja n— o0 (23)
foreveryje XandieX.
(b) Conversely, if there are numbers 1, ..., my satisfying (22) and (23), there is
an ng such that (21) holds.
(c) The numbers (w1, ..., Ty) satisfy the equations
M= Y \TaPajy  J=1,...,N. (24)
PROOF. (a) Let
(m) _ s (m) (n) _ (n)
m; 7mi1npl-j , Mj 7mlaxpl-j .
Since
n+1 n
p,(J 1) = Zpiap((lj)v (25)
we have
m"* = miinpfj”l) = mlianiapg}) > min > pia mgnpffj) =m",

whence m_(”) < m"Y and similarly Mj(") > A/1]('1+1). Consequently, to establish
(23) it will be enough to prove that

%K”)_m](")_,o’ n— oo, ]:1,7N
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Let ¢ = min;; P,(] ") > 0. Then

pun0+n) Zp,;ﬁ“)pgj) Z[p(no Epja pa/ Te EP/a paj

Zpﬁ’ e e
sp( ") > 0; therefore

no+n n n n 2n n 2n
gt = m Z[p D — e+ epy = m" (1 —e) +epy,

and consequently

m](noJrn) Z Wl’(n)(1 _ E) + 517](]2”)-

In a similar way

(no+n) (n) (2n)
Mj ’ < MJ (1-¢)+ cPjj

Combining these inequalities, we obtain
(no+n) (no-+n) (n) (n)
M = < (MY —m) (1 —€)
and consequently

Mi(kng +n) ’njgknoJrn)

IN

(n) (n) k
M;" —m;7)(1—¢)" |0, k — o0.

Thus M; (na) _ ]("’3 ) 0 for some subsequence ng, ng — 0. But the difference
(n)

M; ) _ ( ) is monotonic in n, and therefore M () _ — 0, n — c0.

( )

If we put mj = lim, m;"’, it follows from the precedlng inequalities that

Py =l < M = < (1 gl

for n > ng, that is, p( ")
geometric progresswn)

It is also clear that mf") > m}"") > ¢ > 0 for n > no, and therefore 7; > 0.

(b) Inequality (21) follows from (23) since the number of states is finite and
™ > 0.

(c) Equations (24) follow from (23) and (25).

This completes the proof of the theorem. m]

converges to its limit m; geometrically (i.e., as fast as a

4. The system of equations (compare with (24))

X = XaPoj, Jj=1,...,N, (24%)
«
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plays a major role in the theory of Markov chains. Any nonnegative solution
q = (q1,-..,qn) of this system satisfying >, g, = 1 is said to be a stationary or
invariant probability distribution for the Markov chain with transition matrix |p;].
The reason for this terminology is as follows.

Take the distribution g = (g1, .. .,qy) for the initial one, i.e., let p; = ¢;,j =
1,...,N. Then

1
pj( ) = anpaj =(q;
[e%
and in general p]g") = g;. In other words, if we take q = (¢1,...,gn) as the initial
distribution, this distribution is unchanged as time goes on, i.e., for any k

P& =Jj) =P =J), j=1,....N.

Moreover, with initial distribution q = (g1, . . ., gy) the Markov chain £ = (£, q, P)
is stationary: the joint distribution of the vector (&, {1, - - -, §k1) 1s independent
of k for all / (assuming that k + [ < n).

Property (21) guarantees both the existence of limits m; = lim pfj"), which are
independent of i, and the existence of an ergodic distribution, i.e., of a distribution
(m1,...,my) with m; > 0. The distribution (71, ..., my) is also a stationary distri-
bution. Let us now show that the set (7y, ..., my) is the only stationary distribution.

In fact, let (71, . .., y) be another stationary distribution. Then

7~Tj = Zﬁ'apaj == Zﬁal’g}),
«@ «@

") _, 7; we have

and since p,,;

= O (Fo - m) = m;.

(03

We note that a stationary probability distribution (even unique) may exist for a
nonergodic chain. In fact, if
0 1
(1 0)

on_ (01 a1 _ (10
IP)_<10)’ =10 1)

and consequently the limits lim pi(j”) do not exist. At the same time, the system

then

4= qoboj  J=1,2,

[0
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reduces to

q1 = 42,
q2 = q1,
of which the unique solution (g1, ¢2) satisfying q1 + g2 = 1is (1, 1).
We also notice that for this example the system (24*) with x; = g; has the form

qo = qoPoo + q1pP10,
q1 = qopo1 + q1pP11,

from which, by the condition gg + g1 = 1, we find that the unique stationary distri-
bution (go, ¢1) coincides with the one obtained above:

1—pn 1 —poo

qo = ’ q1 = .
2 — poo — p11 2 — poo — P11

We now consider some corollaries of the ergodic theorem.
Let A X be a set of states, and

1, xeA,
lal) = {0 x¢A.

Consider
]A(go) +oe IA(&H)
n+1

which is the fraction of the time spent by the particle in the set A. Since

va(n) =

E[Ia(&) &0 =] = P& eAl&o =) = Dpl  (=pP(4)),

JEA
we have
E I (k)
an) |60 = 11 = — 2,,
and in particular

Elvyy(n) |6 =] = +1Zp(k)-

It is known from analysis (see also Lemma 1 in Sect. 3, Chap. 4, Vol. 2) that if

a, — athen (ap + -+ +a,)/(n+1) - a, n > . Hencelfp()
then

—>7Tj,k—>OO,

Eviy(n) — m;, Eva(n) — ma, where w4 = ij.
jeA
For ergodic chains one can in fact prove more, namely that the following result holds
for Iy (&), - - - 1a(&n), - - .

Law of Large Numbers. If &y,&1, . .. form an ergodic Markov chain with a finite
state space, then
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P{|VA(n) - 7TA| > E} - 07 n— o, (26)
for every e > 0, every set A < X and every initial distribution.

Before we undertake the proof, let us notice that we cannot apply the results
of Sect. 5 directly to I4(&p), - .. , I4(&,), - . ., since these variables are, in general,
dependent. However, the proof can be carried through along the same lines as for
independent variables if we again use Chebyshev’s inequality, and apply the fact
that for an ergodic chain with finitely many states there is a number p, 0 < p < 1,
such that

Py —ml < Cp Q27)
Let us consider states i and j (which might be the same) and show that, for ¢ > 0,
P{lvip(n) —mj| > e|& =i} — 0, n— . (28)
By Chebyshev’s inequality,
Elvg () — 16 =1}

2

P{lvgy(n) = ml > e[ & = i} <
Hence we have only to show that
E{vgy(n) —ml* & =i} -0, n— .

A simple calculation shows that

Eflvgy (n) — w2 & = i} = —— -E [Z(lﬂ}(&‘ 7 ] =i

(n+1) =
kl)
T L2 2 2 m;
(n+1) k=01=0
where
! .
>:Ewmmm@m@:&
E[l(3(&) | &0 =il —m - E[I;3,(&) | & = i] + ]
_ PI(JS) Py p® — oy p 42,
s=min(k,l) and t=|k—1I.
By (27),
) =mte, leI<Cpn
Therefore

&,/ s
mi < Calp* + o' + o + 4],
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where C; is a constant. Consequently

1 by (k,1) Gy SEN s 1 k I
—— 3 i < o NI 4+ o+ )]
(I’l + 1) k=01=0 ’ (I’l + 1) k=01=0

4Cq 2(11 + 1) 8Cy

ShrE 1oy ana-p 0 "T®

Then (28) follows from this, and we obtain (26) in an obvious way.

5.1In Sect. 9 we gave, for arandom walk Sy, S1, . .. generated by a Bernoulli scheme,
recurrent equations for the probability and the expectation of the exit time at either
boundary. We now derive similar equations for Markov chains.

Let £ = (&,..., &) be a Markov chain with transition matrix |p;|| and phase
space X = {0, +1,...,+N}. Let A and B be two integers, —N <A <0< B <N,
and x € X. Let %1 be the set of paths (xg,x1,...,X), x; € X, that leave the

interval (A, B) for the first time at the upper end, i.e., leave (A, B) by going into the
set (B,B+1,...,N).
ForA < x < B, put

Bi(x) = P{(&o,---,&) € Bri1 |60 = x}.

In order to find these probabilities (for the first exit of the Markov chain from (A, B)
through the upper boundary) we use the method that was applied in the deduction
of the backward equations.

We have

Bi(x) = P{(&0;---,&) € Brv1|&o = x}
= pry : P{(é-()v e 76/{) € %k+1 |§0 =X, 61 = )’}7
y

where, as is easily seen by using the Markov property and the homogeneity of the
chain,

P{(%0,.--,&) € Bir1|&o =x, & =y}
=P{(x, 5, §2,.--,&) € Bry1 |0 = x, &1 =y}
=P{(y, &, &) € B | & =y}
=P{(y, &1, &-1) € Bi|&o =y} = B (9)-

Therefore

Bi(x) = pryﬁkq )

y

forA < x < Band 1 < k < n. Moreover, it is clear that

B(x)=1, x=B,B+1,...,N,
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and
Bi(x) =0, x=—N,... A

In a similar way we can find equations for o (x), the probabilities for first exit
from (A, B) through the lower boundary.

Lett, = min{0 <[ <k: & ¢ (A, B)}, where 1, = kif the set {-} = &. Then the
same method, applied to mg(x) = E(t|£o = x), leads to the following recurrent
equations:

mi(x) =1+ Z mj—1 (}’)ny
y

(here 1 <k <n, A <x < B). We define
mi(x) =0, x¢ (A, B).

It is clear that if the transition matrix is given by (11) the equations for oy (x), Si(x)
and my(x) become the corresponding equations from Sect. 9, where they were ob-
tained by essentially the same method that was used here.

These equations have the most interesting applications in the limiting case when
the walk continues for an unbounded length of time. Just as in Sect. 9, the corre-
sponding equations can be obtained by a formal limiting process (k — o0).

By way of example, we consider the Markov chain with states {0, 1, ..., B} and
transition probabilities

Poo =1, pee =1,
and
pi>0, j=i+1,
Pij = Ti, .] = ia
qi > O, ] =1i— 1,
for1 <i<B—1,wherep;,+¢q; +r = 1.
For this chain, the corresponding graph is

ry

e S¢S,

0 1 2
4 P

It is clear that states 0 and B are absorbing, whereas for every other state i the
particle stays there with probability r;, moves one step to the right with probability
pi, and to the left with probability g;.

Let us find a(x) = limg_, ax(x), the limit of the probability that a particle
starting at the point x arrives at state zero before reaching state B. Taking limits as
k — oo in the equations for oy (x), we find that

a(j) = gaj = 1) + rja(j) + pja(j + 1)
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when 0 < j < B, with the boundary conditions

Since r; = 1 — g; — pj;, we have

pila+1) —a(j) = g(a(j) —ali—1))

and consequently

a(j+1) —afj) = pi(a(l) - 1),

where
. ql e ql .
Pj= y PO = 1.
pP1-:-Dj

But

J

a(j+1) — 1= > (ali+ 1) — a(i)).

i=0

Therefore

a(i+1)—1=(a(l) =1)- > p;.
i=0

Ifj = B—1, we have a(j + 1) = a(B) = 0, and therefore

1
al) = 1=———5—,
Z,‘:o Pi
whence
B—1 B—1
o ; . Pi
a(l):Z%—_llp’ and oa(j):zjg_fl l’ j=1,...,B.
Zi:() Pi Zi:O Pi

(This should be compared with the results of Sect.9.)
Now let m(x) = limy my(x), the limiting value of the average time taken to arrive
at one of the states 0 or B. Then m(0) = m(B) = 0,

m(x) = 14 ) m(y)py

and consequently for the example that we are considering,
m(j) = 1+ gm(j — 1) + rym(j) + pjm(j + 1)
forallj = 1,2,...,B — 1. To find m(j) we put

M(j) = m(j) —m(j — 1), j=1,...,B.
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Then
ij(j-f'].):qj'M(]')—]., jzl,...,B—l,

and consequently we find that

M(j+1) =pM(1) — Ry,

where
Pj=q1 CIJ’ Rj:[1+%+...+M].
P pj Pj Pj-1 Pj-1-P1

Therefore

j—1
m(j) = m(j) = m(0) = 3 M(i + 1)

i=0
Jj—1

=) (pm(1) — R)) = m(1) 2 Pi _i Ri.
i=0 i=0

i=0

It remains only to determine »2(1). But m(B) = 0, and therefore

B—1
. R;
(1) = 20k
Zi=o Pi
and for 1 <j <B,
j—1 23_1 Rt
m(j) = Zpi' =5 _ZRi~
i=0 Yo Pi izo

(This should be compared with the results in Sect.9 for the case r; = 0, p; = p,
gi =q.)

6. In this subsection we consider a stronger version of the Markov property (8),
namely that it remains valid if time k is replaced by a random time (see Theorem 2
below). The significance of this, the strong Markov property, will be illustrated in
particular by the example of the derivation of the recurrent relations (38), which
play an important role in the classification of the states of Markov chains (Chapter 8,
Vol. 2).

Let & = (&1,...,&) be a homogeneous Markov chain with transition matrix
|piills let 28 = (ZF)o<k<n be a system of decompositions, ZF = Z¢, ¢, Let B
denote the algebra o _@k{ ) generated by the decomposition Qf .

We first put the Markov property (8) into a somewhat different form. Let B € %,f
Let us show that then

P{& =an, .. &1 = a1 | B (G = ar)}
= P{gn =dp, ... 7§k+1 = Qj+1 |£k = ak} (29)
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(assuming that P{B n (& = at)} > 0). In fact, B can be represented in the form

*
B:Z {50 :agv"'vgk:al’ck}v
where >* extends over some set of collections (af, ..., a}). Consequently

P{&w = an,...,Gr1 = ar11|Bn (& = ar)}
_ P{(& = an,...,& = ax) n B}
P{(& = ax) n B}
_ SEP{&=an,....=a)n (b =ab,....& =af)}
P{(& = a) n B} '

(30)

But, by the Markov property,

P{(gn :ana~~~7£k =ak)ﬁ(€o :az)kw",gk:a;ck)}

P& =an, ... 041 = a1 & =af,....& = a}
= xP{& =af,....& =af} ifa = af,
0 if ax # aff,

P{fﬂ :an7"'7€k+1 :ak+1|§k :ak}P{EO :aga"'vgk :a];k}

= if ay = aff,

0 if ax # aff,

P{& = an, - &1 = ary1 | & = ar} P{(& = ax) n B}
= if ay = aff,

0 if ax # af.

Therefore the sum >.* in (30) is equal to

P{& = an, ... &1 = akgr1 | & = ar} P{(& = ax) n B}.

This establishes (29).
Let T be a stopping time (with respect to the system 2¢ = (Q,f Jo<k<n; See
Definition 2 in Sect. 11).

Definition. We say that a set B in the algebra %S belongs to the system of sets %’f
if, foreach k, 0 < k <n,
Bn{t=k}e A (31)

It is easily verified that the collection of such sets B forms an algebra (called the
algebra of events observed at time 7).

Theorem 2. Let £ = (&, - .., &) be a homogeneous Markov chain with transition
matrix |p;|, T a stopping time (with respect to 2%), B € Bt andA = {w: 1+ 1 <n}.
Then if P{A n B n (& = ag)} > 0, the following strong Markov properties hold:

P{§T+l =as,...,541 = ay |A NBN (gr = ao)}
=P{&=a,....G1=a1|An (& = ao)}, (32)
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and if P{A n (& = ao)} > 0 then

P{€T+l =day... )f‘f"’l = |A N (g'f = ao)} = paou1 . -pu/,la,- (33)

PROOF. For the sake of simplicity, we give the proof only for the case / = 1. Since
Bn(t=k)€ %’f, we have, according to (29),

P{&+1 =a1, AnBn (& = ao)}
= 2 P{&+1 = a1, & = ao, T=k, B}

k<n—1
= Z P{&+1 = a1 |& = ao, T =k, B} P{& = ao, T =k, B}
k<n—1
= Z P{&+1 = a1 |& = ao} P{& = ao, 1=k, B}
k<n—1
= Papar Z P{ﬁk =dap, T= k, B} = Pagay P{A NBn (&; = aO)}7
k<n—1

which simultaneously establishes (32) and (33) (for (33) we have to take B = ().
O

Remark 2. When / = 1, the strong Markov property (32), (33) is evidently equiva-
lent to the property that

P{E‘H-l EC|AﬁBF\ (gt :(10)} :Pao(c)a (34)

for every C < X, where

Pao (C) = Z Paga; -

a1eC

In turn, (34) can be restated as follows: on the set A = {t < n — 1},
P{&i1 € C| B5} = Pe,(C), (35)

which is a form of the strong Markov property that is commonly used in the general
theory of homogeneous Markov processes.

Remark 3. If we use the conventions described in Remark 1, the properties (32) and
(33) remain valid without assuming that the probabilities of the events An{&,; = ap}
and A n B n {&; = ap} are positive.
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7.Let& = (&, . .., &) be ahomogeneous Markov chain with transition matrix |p;||,
and let

O =Pl =i G+i1<I<k-1|&=1i) (36)
and .

Y =Pla=j g #j 1<I<k—1]& =i} (37)

for i # j be respectively the probability of first return to state i at time k and the
probability of first arrival at state j at time k.
Let us show that

p,(j" = Zfl(k) (n— k), where p;jo) = 1. (38)
k=1

The intuitive meaning of the formula is clear: to go from state i to state j in n
steps, it is necessary to reach state j for the first time in & steps (1 < k < n) and then
to go from state j to state j in n — k steps. We now give a rigorous derivation.

Let j be given and

t=min{l <k <n: & =j},

assuming thatt =n+ 1if {:} = @. Thenf(k) =P{t=k|& =i} and

pl(]n) P{& =Jjl& =i}
M Pl =j t=k|& =i}

1<k<n

D P{ni =, T=k|& = i}, (39)

1<k<n

where the last equation follows because &1, = &, on the set {T = k}. Moreover,
the set {1 = k} = {t = k, {& = j} forevery k, 1 < k < n. Therefore if P{¢, =
i, T =k} > 0, it follows from Theorem 2 that

P{€T+n—k :j|50 = i, T= k} = P{£T+n—k :j|50 = i> T= k 5‘: :]}
= Pléerni=jl&=j} =pI "

and by (37)
py = Z P{éorni =il =i 1=k P{t=k|& =i}

:2 (”k)fl ,

k=1

which establishes (38).
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8. PROBLEMS

1. Let& = (o, ..., &) be a Markov chain with values in X and f = f(x) (x € X)
a function. Will the sequence (f (&), ...,f(&;)) form a Markov chain? Will
the “reversed” sequence

(57”511—17 s 750)

form a Markov chain?
2. LetP = |p;|, 1 <i,j < r, be a stochastic matrix and X an eigenvalue of the
matrix, i.e., a root of the characteristic equation det [P — AE| = 0. Show that

A1 = 1 is an eigenvalue and that all the other eigenvalues have moduli not
(k)

exceeding 1. If all the eigenvalues Ay, ..., A, are distinct, then p;;* admits the
representation
k
p,(j) = Tj + ai(2)Ns + - + ay(r) AL,
where 7, a;;(2), ..., a;(r) can be expressed in terms of the elements of IP. (It

follows from this algebraic approach to the study of Markov chains that, in

particular, when |Ao| < 1,... |\ < 1, the limit limy pfjk)
and is independent of i.)

3. Let& = (&, ..., &) be ahomogeneous Markov chain with state space X and

transition matrix P = |p,,||. Let us denote by

exists for every j

Teo(x) = E[p(61) | & = x] <= Zwy)pxy)

the operator of transition for one step. Let the nonnegative function ¢ satisfy
To(x) = ¢(x), xeX.
Show that the sequence of random variables

¢= (G Z5) with Go= (&)

is a martingale.
4. Let £ = (&,p,P) and ¢ = (fn,f),]P’) be two Markov chains with differ-
ent initial distributions p = (p1,...,p,) and p = (p1,...,p,). Let p(") =
g"), . ,pS")) and p = (jig"), e ,[75")). Show that if min;jp; > € > 0
then .
2B =" | <201 —rey.
i=1
5. Let P and Q be stochastic matrices. Show that PQ and aP + (1 — o)Q with
0 < a < 1 are also stochastic matrices.
6. Consider a homogeneous Markov chain (&, . . ., §,) with values in X = {0, 1}

and transition matrix
( )
q 1 q ’
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where 0 <p <1,0 < g <1l LetS, =& + -+ &, As a generalization of
the de Moivre-Laplace theorem (Sect. 6) show that

S, %n
P{ —L%_ <x; - ®x), n— o

npg(2—p—q)
(p+9)°

Check that when p + ¢ = 1, the variables &, . . ., &, are independent and the
above statement reduces to

P{Sz/%n < x} — ®(x), n— .

13 Generating Functions

1. In discrete probability theory, which deals with a finite or countable set of out-
comes, and more generally, in discrete mathematics, the method of generating func-
tions, going back to L. Euler (eighteenth century), is one of the most powerful alge-
braic tools for solving combinatorial problems, arising, in particular, in probability
theory.

Before giving formal definitions related to generating functions, we will formu-
late two probabilistic problems, for which the generating functions provide a very
useful method of solving them.

2. Galileo’s problem. Three true dice with faces marked as 1,2,...,6 are thrown
simultaneously and independently. Find the probability P that the sum of the scores
equals 10. (It will be shown that P = $.)

3. Lucky tickets problem. We buy a ticket chosen at random from the set of tickets
bearing six-digits numbers from 000 000 to 999 999 (totally 10° tickets). What is
the probability P that the number of the ticket we bought is such that the sum of
the first three digits equals the sum of the last three? (The random choice of a ticket
means that each of them can be bought with equal probability 1076.)

We will see in what follows that the method of generating functions is useful
not only for solving probabilistic problems. This method is applicable to obtaining
formulas for elements of sequences satisfying certain recurrence relations. For ex-
ample, the Fibonacci numbers F,, n > 0, satisfy the recurrence F,, = F,_1 + F,,_2
for n > 2 with Fy = F; = 1. We will obtain by the method of generating functions
(Subsection 6) that

w0597 (597)
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It will also be shown how this method can be used for finding integer-valued solu-
tions of equations
X1+ +X,=r

under various restrictions on X;, i = 1,...,n, and a given r from the set {0, 1,2, .. .}.

4. Now we will give the formal definitions.
LetA = A(x) be areal-valued function, x € R, which is representable, for [x| < A,
A > 0, by a series
A(x) = ag + arx + agx* + - - (1)

with coefficients
a = (ap,a1,as,...).

It is clear that the knowledge of A(x), |x| < A, enables us to uniquely recover
the coefficients @ = (ao,das,as,...). This explains why A = A(x) is called the
generating function of the sequence a = (ap,ay,az, .. .).

Along with functions A = A(x) determined by series (1), it is often expedient to
use the exponential generating functions

2
X X
E(x)=ao+a1ﬂ+a2§+---, 2)
which are named so for the obvious reason that the sequence (ag,a1,dz,...) =
(1,1,1,...) generates the exponential function exp(x) (see Example 3 in Sect. 14).
In many problems it is useful to employ generating functions of two-sided infinite
sequences
a= ( c.,4-2,4-1,00,01,02, .. )
(see the example in Subsection 7).
If ¢ = ¢(w) is a random variable taking the values 0,1, 2, ... with probabilities
Po,P1,D2, - - (i€, pi = P(§ = i), Y72 pi = 1), then the function

G(x) = Zp,»xi (3)
i=0

is certainly defined for |x| < 1.

This function, which is the generating function of the sequence (po, p1,p2,--.),
is nothing but the expectation E x¢, which was defined in Sect. 4 for finite sequences
(po,P1,P2, - - -), and will be defined in the general case in Sect. 6, Chap. 2.

In the probability theory the function

G(x) = Ext (— Zp,-x’>, @
i=0

for obvious reasons, is called the generating function of the random variable § =

£(w).
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5. Let us indicate some useful properties, which follow from the bijective (one-to-
one) correspondence

(an)nZO <« A(.X), (5)

where A(x) is determined by the series (1).
If along with (5) we have

(bu)nz0 < B(x), (0)
then for any constants ¢ and d
(cay + dbp)p>0 < cA(x) + dB(x); @)

moreover, A(x) and B(x) fulfill the convolution property

(2} aibn—i)n>0 < A(x)B(x). (8)

Besides the convolution operation we point out the following ones:

— the composition (or substitution) operation
(Ao B)(x) = A(B(x)), )

which means that if A and B satisfy (5) and (6), then

e = Y an( Do) (10)

n>0 i>0

— the (formal) differentiation operation acting on A(x) by the formula
[e¢]
D(A(x)) = Y (n+ Day1x". (11)
n=0

The operator D has the following properties, which are well known for the or-
dinary differentiation:

D(AB) = D(A)B + AD(B), D(AoB) = (D(A)oB)D(B). (12

6. To illustrate the method of generating functions we start with the example of
finding the number N(r; n) of solutions (X1, ..., X,) of the equation

X1+...+X”=r (13)
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with nonnegative integer-valued X;’s subject to the constraints

X, e {62,
................. (14)
X, e {KV kP, ..},

where 0 gkj(l) <kj(2) <...<rj=1,...,n,andre {0,1,2,...}.
For example, if we ask for integer-valued solutions X7, X, X3 of the equation

X1 +Xo+X35=3

subject to the constraints 0 < X; < 3,i = 1,2, 3, then we can find by exhaustive
search all the 10 solutions: (1,1,1), (0,1,2), (0,2,1), (1,0,2), (1,2,0), (2,0,1),
(2,1,0), (0,0,3), (0,3,0), (3,0,0). But of course such a search becomes very time
consuming for large »n and r.

Let us introduce the following generating functions:

Aq(x) = 4 +xk§2) +oee
....................... (15)
An(x) = PR )

constructed in accordance with conditions (14), and consider their product A(x) =
Ap(x) A (x):

A(x) = (xk(ll) +xk§2) + ) (xk;sl) + xkrEQ) 4. ) (16)
When we multiply out the expressions in parentheses, there appear terms of the form

x* with some coefficients. Take k = r. Then we see that x” is the sum of the products

(i1) Gn) .
of the terms xA1 .- - %" with

A (17)

But the number of different possibilities of obtaining (17) is exactly the number
N(r;n) of solutions to the system (13)—(14). Thus we have established the following
simple, but important lemma.

Lemma. The number N(r;n) of integer-valued solutions to the system (13)-(14) is
the coefficient of x" in the product A1 (x) - - - A, (x) of generating functions (15).

7. Examples. () Let all the sets {k\",k>), .. .} have the form {0,1,2,...}. Then
Ar(x) - Ay(x) = (1 +x+x%+---)"

and the coefficient N(r; n) of x” in the expansion of (1 + x + x? + - -+ )" equals the
number of integer-valued solutions of (13) subject to the condition X; > 0.
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Since
A4xt+a? ) = Cr ¥, (18)
r>0

in this case the number of solutions is
N(r;n) =Cy, .y (19)

(see Problem 7).

(b) Now we turn to Galileo’s problem formulated in Subsection 1.

If the ith die falls on the number X; (X; = 1,...,6),i = 1, 2, 3, then the number
of all possibilities of summing them to 10 is the number N(10; 3) of integer-valued
solutions of the equation

X; +Xs+ X3 =10

suchthat 1 < X; <6,i=1,2,3.
The total number of possibilities (X7, X2, X3) when throwing three dice is 6% =
216. Therefore the probability of interest equals

N(10;3)
216

P=

By the Lemma, N(10; 3) equals the coefficient of x'° in the expansion of (x + x* +
o+ x6)3 in powers of x. In order to find this coefficient, notice that

x4+ =l x o +X) = x (1A x5 ).
Consequently

xA+x2 4 28 =1 =3 a2 )3 (20)

As we have seen in (18),
(I+x+x*+ )P =Cy+Cax+Cix* + -+~ Q1)

By the binomial formula
(a+Db)" = Z Chd b+ (22)

k=0

we find that
(1-x%)% = C§ — Cx° + C3x'? — C3x'%.
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Thus using (20) and (21) we obtain
(x4 283 = x3(1 +3x +6x% + -+ +36x7) (1 — 3x5 + 3x12 — x'8).

Hence we see that the coefficient of x!° is equal to 36 — 9 = 27. Therefore the
required probability is
27 1
-~ 216 8
(c) The problem on lucky tickets is solved in a similar manner.
Indeed, let the vector (X1, ...,Xs) consist of independent identically distributed

random variables such that

forallk =0,1,...,9andi=1,...,6.
The generating function of X; is

N 5,1 or 1 1—x!0
G . == E = = — ]_ e _ — .
¥, (%) ];)pkx 10( +x+--+x) 0 1%
Since X1, ..., Xg are assumed independent, we have

1 (1 _ x10)3

G, +Xz+Xs (%) = Gxyaxs 4% () = 108 (1—x)3"°

and the generating function Gy (x) of Y = (X1 + X2 + X3) — (X4 + X5 + X) is given
by the formula

1 1 1 /1—x10\6
Gy (x) = Gy +x5 43 (%) Gxy4X5+X (;) = 106 27 (ﬁ) - (23)
Writing Gy (x) as
o0
Gy(x) = >, @, (24)
k=—00

we see that the required probability
P(X1 +Xo+ X3 =X4 + X5 +X6),

i.e., P(Y = 0), equals the coefficient gg (of x°) in the representation (24) for Gy (x).
We have

1 /1—x10\6 1
7( al ) R () LS I R L)
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It is seen from (18) that

(Ldxta4-)0 = > Ol px. (25)
r>0

The binomial formula (22) yields

6

(1—x' Z 1)%Chx!oF, (26)
k=0
Thus
11 6 ©
Gy(x) = 106 27 <2 C;+5xr) <2(—1)kcléxmk) <: Z quk) 27
>0 k=0 k=0

Multiplying the sums involved we can find (after simple, but rather tedious calcula-
tions) that the coefficient asked for is equal to
55252
=" = 0.055252, (28)
which is the required probability P(Y = 0) that X; + X5 + X3 = X4 + X5 + Xg (i.e.,
that the sum of the first three digits equals the sum of the last three).

(d) Now we apply the method of generating functions to obtaining the solutions
of difference equations, which appear in the problems of combinatorial probability.

In Subsection 1 we mentioned the Fibonacci numbers F,,, which first appeared
(in connection with counting the number of rabbits in the nth generation) in the book
Liber abacci published in 1220 by Leonardo Pisano known also as Fibonacci.

In terms of the number theory F, is the number of representations of n as an
ordered sum of 1s and 2s. Clearly, F; = 1, Fo =2 (since2 =1+1=2),F3 =3
(since3=14+1+1=14+2=2+1).

Using this interpretation one can show that F,’s satisfy the recurrence relations

Fnan71+Fn727 n>2 (29)
(Wlth FO = Fl = 1) Let
o0
=D B (30)
=0
be the generating function of the sequence {F,,n > 0}. Clearly,

G(x) =1+x+ )] Fppad"2. 31)
n>0
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By (29) we have
FpyoxX"2 = x(F, 1) 4+ x%(F0"),

and therefore

2 FpioxX" ™2 = x Z Fpo X" 4+ 42 2 F.x".

n>0 n>0 n>0
This equality and (31) yield

G(x) — 1 —x = x[G(x) — 1] + ¥*G(x).

Hence 1
G(x) = Tt (32)
Note that
1—x—x*=—(x—a)(x—b), (33)
where 1 1
azi(—l—\/g), bzi(—1+\/5). (34)
Now (32) and (33) imiply
1 1 1 1 1 x\" 1 x\"
G(x)= a—b[a—x_b—x] =ab[ar;)(a) _br;)<b) ]
A 1 1 1
=Zx |:ab(an+1_bn+1>:|' (35)

n>0

Since G(x) = ano x"F,, we obtain from (35) that

R 1
Fn_a—b a o prtl |

Substituting for a and b their values (34) we find that

(G R

where

S

1-+/5

1+
=1,6180..., 5 =—0,6180..

2

(e) The method of generating functions is very efficient for finding various prob-

abilities related to random walks. We will illustrate it by two models of a simple
random walk considered in Sects. 2 and 9.
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Let So = 0 and Sy = & + -+ + & be a sum of independent identically dis-
tributed random variables, k > 1, where each &; takes two values +1 and —1 with
probabilities p and g. Let P, (i) = P(S, = i) be the probability that the random walk
{Sk,0 < k < n} occurs at the point i at time n. (Clearly, i € {0, +1, ..., +n}.)

In Sect. 2 (Subsection 1) we obtained by means of combinatorial arguments that

atl a4 op—i

P,()=C2pzqz (37)

(for integer "T“). Let us show how we could arrive at this solution using the method
of generating functions.
By the formula for total probability (see Sects. 3 and 8)

P(Sn = i) =P(S, = i|Sn71 =i- 1) P(Snfl =i—1)
A P(Sy =] Sy1 =i+ 1) P(Sy_ =i+1)
= P(gl = 1) P(Sn_l =i— ].) + P(€1 = 71) P(Sn_l =i+ 1)
=p P(Sn_l =1i— 1) +q P(Sn_l =i+ 1).

Consequently, for i = 0, £1, +2, ..., we obtain the recurrence relations
Pn(l) :an—l(lf]')+an—1(l+1)v (38)

which hold for any n > 1 with P(0) = 1, Py(i) = 0 fori # 0.
Let us introduce the generating functions

0 . k )
Gi(x) = D] Pili) (: > Pk(i)x’). (39)

i=—00

By (38)

Ga(x) = D pPaca(i—1x'+ > qPua(i+1)x

i=—00 iI=—00
= px Z Poq(i—1)x 4 gx? Z P, (i 4 1)xtt
i=—00 i=—00
= (px+ g )G 1 (x) = ... = (px + gx 1)"Go(x)
= (px+agx )",

since Go(x) = 1.
The Lemma implies that P, (i) is the coefficient of x’ in the expansion of the
generating function G, (x) in powers of x. Using the binomial formula (22) we obtain
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n
(px +gx1)" = Z Ca(px) (gx= )"

n+ti n+1 n—i
_chknk2kn:ZCp 6]2)6

i=—n

Hence the probability P, (i), which is the coefficient of X!, is given by (37).

Let now So = 0, Sy = & + ... + & be again the sum of independent iden-
tically distributed random variables &; taking in this case the values 1 and 0 with
probabilities p and q.

According to formula (1) of Sect. 2,

Pu(i) = Cp'q"™". (40)

This formula can be obtained by the method of generating functions as follows.
Since fori > 1

Poli) = pPaci(i— 1) + gP, 1 (i)

and P,(0) = ¢", we find for the generating functions

that
G,(x) = (px+ q)Gu—1(x) = ... = (px + q)"Go(x) = (px + q)",

because Go(x) = 1.

The formula G,(x) = (px + g)" just obtained and the binomial formula (22)
imply that the coefficient of x' in the expansion of G,(x) is Cip'q"~', which by the
Lemma yields (40).

(f) The following example shows how we can prove various combinatorial iden-
tities using the properties of generating functions (and, in particular, the convolution
property (9)).

For example, there is a well-known identity:

(C)?+(Cr)P + -+ (Cp)? = C3,. (41)

Let us prove it using the above Lemma.
By the binomial formula (22),

(1+x)*"=CY +Chx+Cox®+ -+ Cox"+---+C. (42)

Hence
Gon(x) = (1 + x)*" (43)

is the generating function of the sequence {C%,,0 < k < 2n} with C%, being the
coefficient of X" in (42).
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Rewrite (1 + x)?" as
(1+2)*" = (1+x)"(1+x)" (44)
Then
Gau(x) = GV ()G (x)
with

n n
GO(x)=(1+x)" = Z ax* and GV (x) = (1 +x)" = Z b,
k=0 k=0

where, obviously, using again (22)
ay = bk = Cﬁ

We employ now the convolution formula (9) to find that the coefficient of x" in the
product G\ (%) G (x) equals

agby + arb,_1 + - +aybg = COC" + CIC 4 MY
=@+ (G +-+ () (49

because C"~* = Ck,

Since at the same time the coefficient of x” in the expansion of G, (x) is C%, and
Gan(x) = () (%) G (x), the required formula (41) follows from (45).

If we examine the above proof of (41), which relies on the equality (44), we can
easily see that making use of the equality

(1+x)"(1+x)" = (1+x)""

instead of (44) and applying again the convolution formula (9), we obtain the fol-
lowing identity:

Yook =ct,,, (46)
j=1

which is known as “Wandermonde’s convolution.”

(g) Finally, we consider a classical example of application of the method of gen-
erating functions for finding the extinction probability of a branching process.

We continue to consider Example 4 of Sect. 12 assuming that the time parameter
k is not limited by 7, but may take any value 0,1, 2, .. ..

Let &, k > 0, be the number of particles (individuums) at time k, £, = 1.
According to Example 4 of Sect. 12 we assume that

1=+, k>0 @7)
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(the Galton—Watson model; see [6] and Problem 18 in Sect. 5, Chap. VIII of [90]),
where {ni(k),i > 1,k > 0} is a sequence of independent identically distributed
random variables having the same distribution as a random variable 7, with proba-
bilities

o8]
pe=Pin=k, k>0, D p=1
k=0

It is also assumed that for each k the random variables ni(k) are independent of

&1, ..., &. (Thus the process of “creation—annihilation” evolves in such a way that
each particle independently of others and of the “prehistory” turns into j particles
with probabilities p;, j > 0.)

Let 7 = inf{k > 0: & = 0} be the extinction time (of the family). It is customary
toletT =0 if & > 0forallk > 0.

In the theory of branching processes the variable & 1 is interpreted as the num-
ber of “parents” in the (k + 1)th generation and nl-(k) as the number of “children”
produced by the ith parent of the kth generation.

Let

[o0]

G(x) = Y. pedt, <1,

k=0

be the generating function of the random variable 7 (i.e., G(x) = Ex") and Fi(x) =
E x% the generating function of &.
The recurrence formula (47) and the property (16) (Sect. 8) of conditional expec-
tations imply that
Fk+1(x) = E &+ = E E(xfkﬂ | fk)

We have by the independence assumption

E(é+ & = i) = E(x”gk)+"'+n"(k)) = [G(x)]i’

and therefore
Fipr(x) = E[GW)]¥ = Fu(G(x)).

According to (9) we may write
Fi1(x) = (Feo G)(x),

i.e., the generating function Fj 1 is a composition of generating functions Fy and G.
One of the central problems of the theory of branching processes is obtaining the
probability
q =P(r < ),

i. e. the probability of extinction for a finite time.
Note that since {& = 0} < {41 = 0}, we have

P(r <0) = P({Jt6 = 0}) = Jim Pl6n = 0)
k=1
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But P(§y = 0) = Fy(0). Hence

g = lim Fy(0).

N—o0
Note also that if £, = 1, then
Fo(x) =x, Fi(x) = (FooG)(x) = (Go Fo)(x),
Fa(x) = (F10G)(x) = (GoG)(x) = (Go F1)(x)
and, in general,

Fu(x) = (Fx-10G)(x) = [GoGo---0G](¥) = Go [Go - 0 G](x),
= _\1\7— - N—1

whence
Fn(x) = (GoFy_1)(x),

so that ¢ = limy_,, Fyy(0) satisfies the equation
q=G(q), 0<qg<l

The examination of the solutions to this equation shows that

(a) if En > 1, then the extinction probability 0 < g < 1;

(b) if En < 1, then the extinction probability ¢ = 1.
(For details and an outline of the proof see [10], Sect.36, Chap. 8, and [90],
Sect. 5, Chap. VIII, Problems 18-21.)

8. The above problems show that we often need to determine the coefficients a; in
the expansion of a generating function

G(x) = Z aix'.

i>0

Here we state some standard generating functions whose series expansions are
well known from calculus:

1 2
—— =1l+x+x 4
1—x

and therefore (1 — x)~! is the generating function of the sequence (1,1, ...);
(1+x)"=1+Cox' + C2x% + -+ + C¥";

1—.Xm+1

=1l+x+x"+ -+ 2"
1—x

T =1+Cx' +C2 P+ Ch X
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Many sequences well known in calculus (the Bernoulli and Euler numbers, and so
on) are defined by means of exponential generating functions:
Bernoulli numbers (by, by, .. .):

n=0
1 1 1
bo=1, by = —=, by==, by =0, by = ——. bs =0, )
<0 1 5 P2= 5 Ds 4 300 78
Euler numbers (eg, e1, . . .):
2e* S X!
e2x+1 :Zoen*'
(60:17 61207 62:_17 83:07 642_57 65:07

e = —617 er = 0, eg = 13857 . )

9. Let & and &5 be two independent random variables having the Poisson distribu-
tions with parameters A; > 0 and Ay > 0 respectively (see Sect. 6 and Table 1.2 in
Sect. 2, Chap. 2):

P(&=k) == . k=0,1,2,..., i=12. (48)

It is not hard to calculate the generating functions G¢, (x) (Jx| < 1):
Ge,(x) = Ex®% = Z P& = NI, (49)

Hence, by independence of {; and &>, we find that the generating function G¢, ¢, (x)
of the sum &; + &5 is given by

G51+§2()C) _ Ex€1+f2 _ E(xélx&) _ Ex& . Exfz
= Gg, (x) - Ge, (x) = e MA=x) = (1=x) = (Ar+A2)(1—x) (50)

(The equality E(x$1x%2) = Ex% - Ex%2, which was used here, follows from inde-
pendence of x5! and x2 due to the properties of expectation, see property (5) in
Subsection 5 of Sect. 4 and Theorem 6 in Sect. 6, Chap. 2.)

We see from (48)—(50) that the sum of independent random variables &; and &,
having the Poisson distributions with parameters A; and A2 has again the Poisson
distribution with parameter A1 + Ao.
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Obtaining the distribution of the difference £&; — & of the random variables &;
and &, at hand is a more difficult problem. Using again their independence we find
that

Ge,—e,(x) = Ge, (x) Ge, (1) = e~ M (1=x) ;A2 (1-1/x)
e~ ArFA) NN (1) — = (Ni42) VAR /D),

where 1 = x4/ A1/A2.

It is known from calculus that for A € R
oe]
AT = N A (2)),
k=—0o0

where I;(2)) is the modified Bessel function of the first kind of order k (see,
e.g. [40], vol. 2, pp. 504-507]):

0
/\2r
_ \k _
Ik(QA)_A;:Or!F(k " k=0,+1,+2,...

Thus

A\ M2
P&1 — & =k) = e Mt (/\2> L(2v/A1A2)

fork=0,+1,+£2,....
10. PROBLEMS
1. Find the generating functions of the sequences {a,, r > 0} with

@ a=r, &) a=272 () a,zg

2. Find the generating functions for the number of integer-valued solutions of the
systems

X1+Xo+---+X,<r with 1 <X; <4,
X1+2Xo+ -+ nX,=r with X; >0.

3. Using the method of generating functions compute

Zk cry? 2k2c’<.



13 Generating Functions 149

4.

®©

10.

Letay, ..., a; be different positive numbers. Show that the number N(k; n) of
partitions of the number » into a sum of the numbers from {ay, ..., a;} is the
coefficient of x" in the series expansion of the product

(14X 422 4 ) (42" 41202 ) (14 ™ 2% 4,

(The partitions allow for repeated a;’s, e.g.,8 =2+2+2+2 =3+ 3+ 2, but
the order of summation is immaterial, i.e., the representations 3 + 2 and 2 + 3
of the number 5 are counted as the same.)

Let a and b be two different positive numbers. Show that the number of non-
negative solutions of the system

aXi +bXs =n
is the coefficient of x" in the expansion of

(I+x+x% 4 )1+ +x%).

. Show that:

(a) The number of possible allocations of » indistinguishable balls over m
different boxes equals Cy, ,,,_1;
(b) The number of vectors (Xi,...,X,,) with nonnegative integer com-
ponents satisfying the equation X; + --- + X, = n, is also equal to
n+m—1>
() Th_:: number of possible choices of n balls when sampling with replace-
ment from an urn with m different balls is again equal to C},, ;.
Hint. Establish that in each of the cases (a), (b) and (c) the required number is
the coefficient of x" in the expansion of (1 + x + x2 + --- )™,
Prove the formula (18).
Establish the formula (28) for g.
(Euler’s problem.) There are loads of integer weight (in grams). The question
is which loads can be weighed using weights of 1,2,22,23, ... 2" ... grams
and in how many ways it can be done.
Let Ge(x) = Ex* (= Y},5,*px) be the generating function of a random
variable £. Show that

E¢ = GL(L),
E¢? = G{(1) + GL(1),
Varé = G£(1) + Ge(1) — (Ge(1))?,

where G (x) and G¢(x) are the first and second derivatives (with respect to x)
of Gf (x)
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11. Let £ be an integer-valued random variable taking values 0, 1,... . Define
mgy = BEEE—1)---(§—r+1),r =1,2,.... Show that the quantities
m(,y, which are called factorial moments (of order r), can be obtained from the
generating function G¢(x) by the formulas:

mgy = Gér)(1)7

where Gg) is the rth derivative of G¢ (x).

14 Inclusion—-Exclusion Principle

1. When dealing with subsets A, B, C, . . . of a finite set {2 it is very suitable to use the
so-called Venn diagrams, which provide an intuitively conceivable way of counting
the number of outcomes w € €2 contained in combinations of these sets such as, e.g.,
AuBuUC,AuUBnCetc.

If we denote by N(D) the number of elements of a set D, then we see from the
above diagrams that

N(A U B) = N(A) + N(B) — N(AB), (1)

where the term N(AB), i.e., the number of elements in the intersection AB = AnBis
subtracted (“exclusion”) because in the sum N(A) + N(B) (“inclusion) the elements
of the intersection of A and B are counted twice.

In a similar way, for three sets A, B, and C we find that

N(AUBUC)=[N(A) +N(B) +N(C)]
— [N(AB) + N(AC) + N(BC)] + N(ABC). )

99

The three terms appearing here correspond to “inclusion,” “exclusion” and “inclu-
sion.”
When using the classical method of assigning probabilities P(A) by the formula
N(4)

RO
(formula (10) in Sect. 1, Chap. 1), and in the general case (Sect. 2, Chap. 2), where
we employ the finite additivity property of probability, we obtain the following for-
mulas similar to (1) and (2):
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P(A uB) =P(A) + P(B) — P(AB), 3)

P(AuBUC) =[P(A) + P(B) + P(C)]
— [P(AB) + P(AC) + P(BC)|
+ P(ABC). 4)

If we use the (easily verifiable) De Morgan’s laws (see Problem 1 in Sect. 1)

AUB=ANB, ANB=AUB, 5)

which establish relations between the three basic set operations (union, intersection,
and taking the complement), then we find from (1) that

N(AB) = N(Q) — [N(A) + N(B)] + N(4B), (6)
and similarly

N(ABC) =N() — [N(A) + N(B) + N(C)]
+ [N(AB) + N(AC) + N(BC)]
— N(ABC). (N

The event A B (= A N B) consists of outcomes w which belong both to A and B, i.e.,
of those w which belong neither to A, nor to B. Now we give examples where this
interpretation allows us to reduce the problem of counting the number of outcomes
under consideration to counting the numbers of the type N(A B), N(A B C), which
may be counted using formulas (6) and (7). (An extension of these formulas to an
arbitrary number of sets is given in the theorem below.)

Example 1. Consider a group of 30 students (N (£2) = 30). In this group 10 students
study the foreign language A (N(A) = 10) and 15 students study the language B
(N(B) = 15), while 5 of them study both languages (N(AB) = 5). The question is,
how many students study neither of these languages. Clearly, this number is N(A B).
According to (6)

N(AB) =30 — [10 + 15 — 5] = 10.

Thus there are 10 students who do not study either of these languages.

Example 2 (From Number Theory). How many integers between 1 and 300
(A) are not divisible by 3?
(B) are not divisible by 3 or 5?
(C) are not divisible by 3 or 5 or 7?
Here N(€2) = 300.
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(A) Let N(A) be the number of integers (in the interval [1,...,300]) divisible
by 3. Clearly, N(A) = % - 300 = 100. Therefore the number of integers which are
not divisible by 3is N(A) = N(Q) — N(A) = 300 — 100 = 200.

(B) Let N(B) be the number of integers divisible by 5. Then N(B) = ¢ - 300 =
60. Further, N(AB) is the number of integers divisible both by 3 and 5. Clearly,
N(AB) = = - 300 = 20.

The required number of integers divisible neither by 3, nor by 5 is

N(AB) = N(Q2) —N(A) — N(B) + N(AB) = 300 — 100 — 60 + 20 = 160.
7

(C) Let N(C) be the number of integers divisible by 7. Then N(C) = [@J =42

21 35
Consequently by formula (7)

and N(AC) = [@J — 14, N(BC) = [@J — 8, N(AB) = 20, N(ABC) = 2.

N(ABC) = 300 — [100 + 60 + 42] + [20 4 14 + 8] — 2 = 138.

Thus the number of integers between 1 and 300 not divisible by any of 3, 5 or 7 is
138.

2. The formulas (1), (2), (6), and (7) can be extended in a natural way to an arbitrary
number of subsets A1, ...,A,, n > 2, of Q.

Theorem. The following formulas of inclusion—exclusion hold:
(a)
NA1U...UA) = Y NA)— > N(A, nAy)+--
1<i<n 1<iz<iz<n

+ (=1)m+t Z NA, n--nA)+ -

1<ip<...<ip<n

+ (=1)""'N(Ay A -0 AY), 8)

or, in a more concise form,

N(UA,) - ] (1)N<S>“N(ﬂA,-), )
i=1 D#SCT i€eS

where T = {1,...,n};
(b)

N@Ain...nA)= > NA)— D Ny UAy) + -

1<i<n 1<ii<iz<n

+(=D" YT N(A, U UA)

1<ip<...<ip<n

+ (=1)""IN(AL U - U A, (10)
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or, in a more concise form,

N(QA,») - ] (I)N(S)“N(UA,); (11)

@#SCT ies
(©
N(Ayu---UA,) =N(Q)—N@A1 NN Ay, (12)
N(A1n--nA,) =N(Q) —N@A; U---UA,), (13)

or, taking into account (11) and (8),

v(Ur) - Zevon(Us)

SST €S
(ﬂA ) D 1)N<S>N(ﬂA,->. (15)
SCST ieS

PROOF. It suffices to prove only formula (8) because all others can be derived from
it substituting the events by their complements (by De Morgan’s laws (5)).

Formula (8) could be proved by induction (Problem 1). But the proof relying on
the properties of indicators of sets is more elegant.

Let
1, weA,
Ih(w) =
0, we¢A,
be the indicator of the set A. If B =A; U --- U A, then by (5)

B=A1n---nNnA,
and

Ip=1-Iz=1-1L I =1—(1—1y) - (1—1I) =
n
- ZIA" o Z IA"1IAi2 o
i=1 1<iy<ia<n

+ (=" Y Ly ey e (S sy, (16)

1<ih<...<ip<n

All the indicators involved here are functions of w: Iy = Ig(w), Ia, = In, (W), I, =
I3 (w). Summing in (16) over all w € § and taking into account that
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S hyw) =N@B), Y (2 IA,<w>) YN,
i=1

weN weN Ni=1
S m@n,w) a7
weN M<ip<iz<n
=) ( D Iy, (W)> = >, N, nAL)
we M<ip<iz<n 1<iz<iz<n

etc., we arrive at (8). O

Remark. Itis worth to note that the summation 3}, ; _._; , in the above formu-
las is extended over all unordered subsets of cardinality m of the set {1,2,...,n}.
The number of such subsets is C)' (see Table 1.1 in Sect. 1.)

3. The above formulas were derived under the assumption that €2 consists of finitely
many outcomes (N(2) < o0). Under this assumption the classical definition of the
probability of an event A as

= AcQ, (18)

immediately shows that the theorem remains valid if we replace throughout N(A;)
by P(4)).
For example, formula (9) for the probability of the event | J/_, A; becomes

() p o) o

D#SCT i€S

where T = {1,...,n}.

In fact, all these formulas for the probabilities of events | J;_; A; [)_; Ai
Ui, A, ()7_, A; remain valid not only in the case of the classical definition of
probabilities by (18).

Indeed, the proof for N({2) < oo was based on relation (16) for the indicators of
events. If we take expectations of the left- and right-hand sides of this relation, then
in the left-hand side we obtain E Iy = P(B), while in the right-hand side we obtain
combinations of terms like EIA,.1 o dp,  Since Iy, Iy, = Ia 04y, WE have

EIA,.1 el = EIAilm”'mAim =P, n--nA;,).

From this formula and (16) we obtain the required inclusion—exclusion formula for
P(B) = P(A1 U ... UA,), which implies all other formulas for the events (|, A;,
Uzr'l=1 Ai, ﬂ?:l A

It is noticeable that in the proof just performed the assumption N(§) < oo was
not actually used, and this proof remains valid also for general probability spaces
(Q, .#,P) to be treated in the next chapter.
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4. In addition to the two examples illustrating the use of the inclusion—exclusion
formula consider the derangements problem.

Example 3. Suppose that € consists of n! permutations of (1,2,...,n). Consider
the permutations
1, 2, ...,n
(al, as, ..., Cl,,)

with the property that there is no number i such that a; = i.
We will show that the number D,,, n > 1, of such permutations (“the number of
derangements”) is given by the formula

no_ 1)k
D, = n!Z ( Ij) ~ %’ (n — o). (20)
k=0 :

(For n = 0 this formula yields Dy = 1.)
Let A; be the event that a; = i. It is clear that

N(A;) = (n—1)L

Similarly, for i # j

and, in general,
N(Aj Ay, -+ Ay) = (n—k). 21

Using (13) and (8), the number of interest,
D,=N(A1nAsn-NnA,),
can be represented as
Dy =N(Q) =81+ Sg+ -+ (=1)"Sp + -+ + (=1)"S,, (22)

where
S = > N(An A, -+ Ay (23)

1<iy <iz<...<ip<n

As was pointed out in the remark at the end of Subsection 2, the number of terms
in the sum (23) equals C)'. Hence, taking into account (21), we find that

Sm=m—m)C, (24)
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and therefore (22) implies

D,=nl—Cl - (n—1)!+C? (n—2)! +
+( nm-Crtin—m)!+---+ (=1)"Cy - 0!

We have here C”(n — m)! = . Consequently,
n _1ym
D,=n!) # (25)
m=0

so that the probability of the “complete derangement” is

P(Zl--in):N(A A Z LRI I

"1
Since Zm 0 m! e we have

and

The formula (25) could also be obtained by the method of (exponential) generat-
ing functions.

Namely, let Dy = 1 (according to (20)) and note that D; = 0 and D,, for any
n > 2 satisfies the following recurrence relations:

D, = (n—1)[Dy_1 + Dy_s] (26)
(the proof of this is left to the reader as Problem 3), which imply that
D, —nD,_y = —[Dy—1 — (n — 1)D,_2].
Hence by the downward induction we find that
D, =nD,_1 + (—1)",

whence we obtain for the exponential generating function E(x) of the sequence
{Dy,n > 0}
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0
BW = 3,05 =14 Y05 = 1 S b+ (-1}
n=0 n>2 n n>2
1 Y P [ (- )] = B + [ — (1— )]
n! '
n>0
Thus
e—x
E(x) = 27
(x) 1—x @7
and therefore
2 i3
E(x) = (1—x+5—§+ )(1+x+x2+~“)~ (28)

Writing the right-hand side of this formula as ), -, D,,fT'; one can derive that the
coefficients D, have the form (25). However, we see that this result obtains by the
method of inclusion—exclusion easier than by the method of generating functions.

8. PROBLEMS

1. Prove the formulas (8)-(9) and (10)—(11) by induction.
2. Let By be the event that exactly one of the events Ay, . .., A, occurs. Show that

SNP@A)-2 Y] P+ (1 Py A,
i=1

1<ii<ia<n

Hint. Use the formula
Z I = 1)
i=1 J#F

3. Prove the following generalization of (15): for any set I such that @ < [ <
T ={1,...,n}itholds

Y((QIN(00) = Z ()

4. Using the method of inclusion—exclusion find the number of all integer-valued
solutions of the equation X7 + Xo + X3 + Xy = 25 satisfying the constraints

—~10 < X; < 10.

Solve this problem also by the method of generating functions. Which method
gives the solution of this problem faster?

5. Prove the formula (26).

6. Using the formula (8) find the number of allocations of n different balls over
m different boxes subject to the constraint that at least one box remains empty.
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7.

8.
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Find the number of allocations of n different balls over m indistinguishable
boxes subject to the condition that neither box remains empty.

Let A = A(n) and B = B(m) be two sets consisting of n and m elements
respectively.

A mapping F: A — B is said to be a function if to each a € A it makes
correspond some b € B.

A mapping [: A — B is said to be an injection if to different elements of A it
makes correspond different elements of B. (In this case n < m.)

A mapping S: A — B is said to be a surjection (or onto function) if for any
b € B there is an a € A such that S(a) = b. (In this case n > m.)

A mapping B: A — B is said to be a bijection if it is both injection and
surjection. (In this case n = m.)

Using the inclusion—exclusion principle show that N(IF), N(I), N(S), and N(B)
(i.e., the number of functions, injections, surjections, and bijections) are given
by the following formulas:

N(F) = m",



Chapter 2
Mathematical Foundations of Probability
Theory

The theory of probability, as a mathematical discipline, can and should be developed
from axioms in exactly the same way as Geometry and Algebra. This means that after
we have defined the elements to be studied and their basic relations, and have stated the
axioms by which these relations are to be governed, all further exposition must be based
exclusively on these axioms, independent of the usual concrete meaning of these elements
and their relations.

A. N. Kolmogorov, “Foundations of the Theory of Probability” [51].

1 Probabilistic Model for an Experiment with Infinitely Many
Outcomes: Kolmogorov’s Axioms

1. The models introduced in the preceding chapter enabled us to give a probabilistic—
statistical description of experiments with a finite number of outcomes. For example,
the triple (€2, <7, P) with

Q={w:w=(ar,...,an), a; =0, 1}, & = {A: A< Q}
and p(w) = p¥“g"~*% is a model for the experiment in which a coin is tossed n
times “independently” with probability p of falling head. In this model the number
N(Q) of outcomes, i.e., the number of points in £2, is the finite number 2".

We now consider the problem of constructing a probabilistic model for the ex-
periment consisting of an infinite number of independent tosses of a coin when at
each step the probability of falling head is p.

It is natural to take the set of outcomes to be the set

Q= {w: w=(a1,as,...),a; = 0,1},

i.e., the space of sequences w = (a1, as, ...) whose elements are 0 or 1.

© Springer Science+Business Media New York 2016 159
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What is the cardinality N(€2) of © ? It is well known that every number a € [0, 1)

has a unique binary expansion (containing an infinite number of zeros)
a=%+;—§+-~ (a; =0,1).

Hence it is clear that there is a one-to-one correspondence between the points w

of §2 and the points a of the set [0, 1), and therefore 2 has the cardinality of the

continuum.

Consequently if we wish to construct a probabilistic model to describe exper-
iments like tossing a coin infinitely many times, we must consider spaces {2 of a
rather complicated nature.

We shall now try to see what probabilities ought reasonably to be assigned (or as-
sumed) in a model of infinitely many independent tosses of a fair coin (p +qg= %)

Since we may take € to be the set [0, 1), our problem can be considered as the
problem of choosing points at random from this set. For reasons of symmetry, it is
clear that all outcomes ought to be equiprobable. But the set [0, 1) is uncountable,
and if we suppose that its probability is 1, then it follows that the probability p(w) of
each outcome certainly must equal zero. However, this assignment of probabilities
(p(w) = 0, w € [0, 1)) does not lead very far. The fact is that we are ordinarily
not interested in the probability of one outcome or another, but in the probability
that the result of the experiment is in one or another specified set A of outcomes
(an event). In elementary probability theory we use the probabilities p(w) to find
the probability P(A) of the event A: P(A) = ] _, p(w). In the present case, with
p(w) = 0, w € [0,1), we cannot define, for example, the probability that a point
chosen at random from [0, 1) belongs to the set [0, %) At the same time, it is
intuitively clear that this probability should be %

These remarks should suggest that in constructing probabilistic models for un-
countable spaces {2 we must assign probabilities not to individual outcomes but to
subsets of €2. The same reasoning as in the first chapter shows that the collection
of sets to which probabilities are assigned must be closed with respect to unions,
intersections, and complements. Here the following definition is useful.

Definition 1. Let Q) be a set of points w. A system .27 of subsets of € is called an
algebra if

(a) Qe o,
(b)A, Be o/ = AUBeo/, AnBed,
Aed =Ae .

(Notice that in condition (b) it is sufficient to require only that either A U B € & or
that A n B € &, since by De Morgan’s laws (see (5) in Sect. 14, Chap. 1) A U B =

AnBandAnB=AuUB.)

The next definition is needed in formulating the concept of a probabilistic model.

Definition 2. Let <7 be an algebra of subsets of Q. A set function p = u(A), A € o,
taking values in [0, oo], is called a finitely additive measure defined on .« if
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(A + B) = p(A) + pu(B) (1
for every pair of disjoint sets A and B in 7.

A finitely additive measure p with p(§2) < oo is called finite, and when p(Q2) = 1
it is called a finitely additive probability measure, or a finitely additive probability.

2. We now define a probabilistic model (in the extended sense) of an experiment
with outcomes in the set 2.

Definition 3. An ordered triple (2, <7, P), where

(a) Q) is a set of points w;
(b) 7 is an algebra of subsets of 2;
(c) P is a finitely additive probability on A,

is a probabilistic model, or a probabilistic “theory” (of an experiment) in the ex-
tended sense.

It turns out, however, that this model is too broad to lead to a fruitful mathemat-
ical theory. Consequently we must restrict both the class of subsets of 2 that we
consider, and the class of admissible probability measures.

Definition 4. A system .% of subsets of ) is a o-algebra if it is an algebra and
satisfies the following additional condition (stronger than (b) of Definition 1):

b*ifA, e ¥, n=1,2,...,then
UA" € 7, ﬂAn eZ
(it is sufficient to require either that | JA, € .7 or that [ A, € Z).

Definition 5. The space 2 together with a o-algebra .% of its subsets is a measur-
able space, and is denoted by (2, .%).

Definition 6. A finitely additive measure p defined on an algebra <7 of subsets of
Q is countably additive (or o-additive), or simply a measure, if, for any pairwise
disjoint subsets Ay, As, ... of Q with YA, € o

[e¢] 0
1% (ZAI’I> = ZM(An)'
n=1 n=1
A measure p is said to be o-finite if {2 can be represented in the form

Q=>0, Qed,

with () <o, n=1,2,....
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If a measure (let us stress that we mean a countably additive measure) P on the
o-algebra A satisfies P(Q) = 1, it is called a probability measure or a probability
(defined on the sets that belong to the o-algebra 7).

Probability measures have the following properties.

If @ is the empty set then

P(o) =0.

If A,B € o then
P(AuB)=P(A) + P(B) —P(AnB).
If A,Be o/ and B < A then
P(B) < P(A).
IfA e, n=1,2,...,and | JA, € o, then
P(Ay Ay U --) < P(A1) + P(A2) +

The first three properties are evident. To establish the last one it is enough to
observe that | 2 | A, = Y7 | B,, where By = Ay, B, =A1n--nA,_1 A, n >
2, BinB; = &, i # j, and therefore

P(}QA,,):P(}; ) ZP nilPA

The next theorem, which has many applications, provides conditions under which
a finitely additive set function is actually countably additive.

Theorem. Let P be a finitely additive set function defined over the algebra <f , with
P(Q) = 1. The following four conditions are equivalent:

(1) P is o-additive (P is a probability);
(2) P is continuous from below, i.e., for any sets A1,As, ... € &/ such that A, <
A, 1 and Uf;lAn e,

lim P(A (UA)

(3) P is continuous from above, i.e., for any sets A1, Ao, ... such that A, 2 A, 41

and (1, Ay € o,
hmP (ﬂA )

(4) P is continuous at @, i.e., for any sets A1,As, ... € & suchthat A1 < A, and

NiZ14n = 2,
lim P(A,) = 0.
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PROOE. (1) = (2). Since

s

A, =A1 + (AQ\Al) + (Aj\AQ) + e,

n=1

we have

P (G A,,) = P(A1) + P(A2\A1) + P(A3\A2) +

=P(A1) + P(A2) — P(A41) + P(43) — P(A3) +

(2) = (3). Let n > 1; then
P(A,) = P(A1\(A1\A,)) = P(A1) — P(A1\A,).

The sequence {A1\A,},>1 of sets is nondecreasing (see the table below) and

o0

@A) = 41\ ﬂA

n=1

Then, by (2)
[e¢]
hIIl P Al\A < Al\An >
n=1

and therefore
limP(A,) = P(A;) — limP(4,\4,)

=P(A;) —P (G(Al\An)> =P(A,)-P (Al\ ﬁfh)
n=1

n=1

— P(4) ~ P(4y) + P (ﬁm) -P (ﬁm) -

(3) = (4). Obvious.
(4) = (1). Let A1, Aq, ... € &7 be pairwise disjoint and let ZZO:I A, € &/. Then

and since >} . A; | @, n — o0, we have

i=n+1
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S
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3. We can now formulate the generally accepted Kolmogorov’s axiom system, which
forms the basis for probability models of experiments with outcomes in the set €.

'M=

Il
8 =

EM&%

8 I

Fundamental Definition. An ordered triple (€2, .#, P) where

(a) Qis a set of points w,
(b) F is a o-algebra of subsets of (1,
(¢) P isa probability on F

is called a probabilistic model (of an experiment) or a probability space. Here (2
is the sample space or space of elementary events, the sets A in % are events, and
P(A) is the probability of the event A.

It is clear from the definition that the axiomatic formulation of probability theory
is based on set theory and measure theory. Accordingly, it is useful to have a table
(see Table 2.1) displaying the ways in which various concepts are interpreted in the
two theories. In the next two sections we shall give examples of the measurable
spaces that are most important for probability theory and of how probabilities are
assigned on them.

4. PROBLEMS

1. Let Q = {r: r € [0,1]} be the set of rational points of [0, 1], <7 the algebra
of sets each of which is a finite sum of disjoint sets A of one of the forms
{rra<r<bl,{rra<r<b} {rra<r<b} {ria<r<b>b},and
P(A) = b — a. Show that P(A), A € 7, is finitely additive set function but not
countably additive.

2. Let Q) be a countable set and .% the collection of all its subsets. Put (A) = 0
if A is finite and p(A) = oo if A is infinite. Show that the set function p is
finitely additive but not countably additive.

3. Let u be a finite measure on a o-algebra #, A, € %, n=1,2,...,and A =
lim, A, (i.e., A = liminf, A, = limsup, A,). Show that p(A) = lim, u(A,).

4. Prove that P(A A B) = P(A) + P(B) —2P(A n B). (Compare with Problem 4
in Sect. 1, Chap. 1.)

5. Show that the “distances” p1 (A, B) and p2(A, B) defined by

p1(A,B) = P(A A B),

P(AAB) .
p2(A,B) = { P(@ACH) if P(A U B) # 0,
0 if PAUB) =0

satisfy the triangle inequality.
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Table 2.1
Notation Set-theoretic interpretation Interpretation in probability theory
w Element or point Outcome, sample point, elementary
event
Q Set of points Sample space; certain event
F o-algebra of subsets o-algebra of events
Ae 7z Set of points Event (if w € A, we say that event
A occurs)
A= QA Complement of A, i.e., the set of Event that A does not occur
points w that are not in A
AuUB Union of A and B, i.e., the set of Event that either A or B (or both)
points w belonging either to A or to occurs
B (or to both)
A N B (or AB) Intersection of A and B, i.e., the set Event that both A and B occur
of points w belonging to both A and
B
%] Empty set Impossible event
AnB=g A and B are disjoint Events A and B are mutually exclu-
sive, i.e., cannot occur simultane-
ously
A+ B Sum of sets, i.e., union of disjoint Event that one of two mutually ex-
sets clusive events occurs
A\B Difference of A and B, i.e., the set Event that A occurs and B does not
of points that belong to A but not to
B
AAB Symmetric difference of sets, i.e., Event that A or B occurs, but not
(A\B) U (B\A) both
o0
U A Union of the sets A1,As, ... Event that at least one of A1, Ao, . ..
n=1 occurs
o0
> A Sum, i.e., union of pairwise disjoint Event that one of the mutually ex-
n=1 sets A1,Aq9, ... clusive events A1, Az, . .. occurs
ﬁ An Intersection of A1, Ao, ... Event that all the events A1, Ao, ...
n=1 occur
Ay, 1 A(orA = The increasing sequence of sets A, The increasing sequence of events
li;n 1T Ap) convergestoA,i.e.,,A] S Ay < --- converges to event A
o0
andA = (J A,
n=1
A, | A(orA = The decreasing sequence of sets A, The decreasing sequence of events
li’fn 1 Ayn) convergestoA,i.e.,,A] DA2 2 --- converges to event A
o0
andA = () A,
n=1
[colmee)
limsup A, Theset () U Ax Event that infinitely many of events
(or¥A, i.0.) n=Llk=n A1,As, ... occur
[colmve)
liminf A, Theset |J () Ax Event that all the events A1,As, ...

n=1k=n

occur with the possible exception
of a finite number of them

* 1.0. = infinitely often
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6.

10.
11.

12.

13.

2 Mathematical Foundations of Probability Theory

Let p be a finitely additive measure on an algebra /' , and let the sets
A1,As, ... € o be pairwise disjoint and satisfy A = Z?ilAi € /. Then
p(A) = 302 n(A).

. Prove that

limsupA, = lim inf A, liminfA, = lim supK,,7
liminf A, € limsupA,, limsup(A, v B,) =limsupA, U limsup B,,
limsup A, n liminf B, € limsup(A, n B,) € limsup A, n limsup B,.

IfA, 1 AorA, | A, then

liminfA, = limsupA,.

. Let {x,} be a sequence of numbers and A, = (—o0, x,). Show that x

limsupx, and A = limsup A, are related in the following way: (—o0, x) S
A < (—o0, x]. In other words, A is equal to either (—o0, x) or to (—o0, x].

. Give an example to show that if a measure takes the value +o0, countable

additivity in general does not imply continuity at &.

Verify the Boole inequality: P(A n B) > 1 — P(A) — P(B).

LetAq,...,A, be events in .%. This system of events is said to be exchange-
able (or interchangeable) if for any 1 < [ < n the probabilities P(A;, .. .A;)
are the same (= p;) for any choice of indices 1 < i; < --- < i; < n. Prove

that for such events the following formula holds:
P (UAi> =np1 — Copa + Caps — -+ + (=1)"'py.
i=1

Let (Ax)x>1 be an infinite sequence of exchangeable events, i.e., for any n > 1
the probabilities P(4;, ... A;,) are the same (= p,) for any set of indices 1 <
i1 < --- < i,. Prove that

= .hm Pj»
J—00

P (limian,,) =P (

I
—_

8
S
=
N———

k

P (limsupA,) = =1— lim (—1YA(py),

j—o

|
-
T~
s
b
2
N———

Whefepo = 1’ Al( n) = Pn+1 — Pn> Aj(pn) = Al(Ajil( n))7 ] Z 2.
Let (A,),>1 be a sequence of sets and let I(A,) be the indicator of A,, n > 1.
Show that

I(liminfA,) = liminfI(4,), I(limsupA,) = limsup/(4,),

n n

1 (GA,,) < iI(An).

n=1

A
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14. Show that

0 0
I <U A,,) = r}g:mf(](An), I (ﬂ A,,) = InIlZl{l](An).
15. Prove that
P(limsupA,) > limsupP(4,), P(liminfA,) <liminfP(4A,).

16. Let A* = limsupA, and A, = liminfA,. Show that P(4,\As) — 0 and
P(A*\A,) — 0.

17. Let (A,) be a sequence of sets such that A, — A (in the sense that A = A* =
Ay). Show that P(AAA,) — 0.

18. Let A, converge to A in the sense that P(AAA*) = P(AAA,) = 0. Show that
then P(AAA,) — 0.

19. Prove that the symmetric difference AAB of sets A and B satisfies the follow-
ing equality:

I(AAB) = I(A) + I(B) (mod 2).

Deduce from this equality that P(AAB) = P(A) + P(B) —2P(A n B). (Com-
pare with Problem 4.) Verify also the following properties of the symmetric
difference:

(AAB)AC = AA(BAC),  (AAB)A(BAC) = (AAC),
AAB = C < A = BAC.

2 Algebras and o-Algebras: Measurable Spaces

1. Algebras and o-algebras are the components out of which probabilistic models
are constructed. We shall present some examples and a number of results for these
systems.

Let € be a sample space. Evidently each of the collections of sets

T =1{2,Q), F*={A:AcQ)

is both an algebra and a o-algebra. In fact, .7, is trivial, the “poorest” o-algebra,
whereas .7 * is the “richest” o-algebra, consisting of all subsets of (2.

When (2 is a finite space, the o-algebra .#* is fully surveyable, and commonly
serves as the system of events in the elementary theory. However, when the space is
uncountable the class .%* is much too large, since it is impossible to define “proba-
bility” on such a system of sets in any consistent way.

If A € Q, the system

Fp = {A,K7 o, Q}

is another example of an algebra (and a o-algebra), the algebra (or o-algebra) gen-
erated by A.
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This system of sets is a special case of the systems induced by decompositions.
In fact, let
9 = {Dy,Ds, ...}

be a countable decomposition of €2 into nonempty sets:
Q:D1+D2+"'; D,’ﬁDjZQ, l?é]

Then the system &/ = «(2), formed by the sets that are finite or countable unions
of elements of the decomposition (including the empty set) is an algebra (and a
o-algebra).

The following lemma is particularly important since it establishes that in princi-
ple there is a smallest algebra, or o-algebra, containing a given collection of sets.

Lemma 1. Let & be a collection of subsets of §). Then there are the smallest algebra
(&) and the smallest o-algebra (&) containing all the sets that are in &.

PROOF. The class .7 * of all subsets of €2 is a o-algebra. Therefore there are at least
one algebra and one c-algebra containing &. We now define (&) (or o(&)) to
consist of all sets that belong to every algebra (or o-algebra) containing &. It is easy
to verify that this system is an algebra (or o-algebra) and indeed the smallest.

m]

Remark 1. The algebra «(E) (or o(E), respectively) is often referred to as the
smallest algebra (or o-algebra) generated by & .

As was pointed out, the concept of a o-algebra plays very important role in prob-
ability theory, being a part of the “fundamental definition” of the probability space
(Subsection 3 of Sect. 1). In this connection it is desirable to provide a constructive
way of obtaining the o-algebra o (/) generated, say, by an algebra <. (Lemma 1
establishes the existence of such o-algebra, but gives no effective way of its con-
struction.)

One conceivable and seemingly natural way of constructing o (<) from & is
as follows. For a class & of subsets of {2, denote by & the class of subsets of
consisting of the sets contained in &, their complements, and finite or countable
unions of the sets in &. Define &y = &7, &) = JA%, oy = .szfl etc. Clearly, for each
n the system .27, is contained in o (), and one might expect that <7, = (/) for
some 7 or, at least, | ] &%, = ().

However this is, in general, not the case. Indeed, let us take @ = (0,1] and
consider as the algebra <7 the system of subsets of {2 generated by the empty set &
and finite sums of intervals of the form (a, b] with rational end-points a and b. It is
not hard to see that in this case the class of sets | J.—, <7, is strictly less than /().

In what follows we will be mainly interested not in the problem of constructing
the smallest o-algebra o (<) out of, say, algebra <7, but in the question how to
establish that some given class of sets is a o-algebra.

In order to answer this question we need the important notion of a “monotonic
class.”



2 Algebras and o-Algebras: Measurable Spaces 169

Definition 1. A collection .# of subsets of 2 is a monotonic class if A, € M, n =
1,2,..., together with A, 1 Aor A, | A, implies thatA € .Z .

Let & be a system of sets. Denote by 1(&) the smallest monotonic class contain-
ing &. (The proof of the existence of this class is like the proof of Lemma 1.)

Lemma 2. A necessary and sufficient condition for an algebra <f to be a o-algebra
is that it is a monotonic class.

PROOF. A o-algebra is evidently a monotonic class. Now let &/ be a monotonic
classand A, € &/, n=1,2,....Itis clear that B, = U:’ZlAi € o and B, € B,+1.
Consequently, by the definition of a monotonic class, B, 1 U?i1 A; € &/. Similarly
we could show that ()2, A; € <.

m]

By using this lemma, we will prove the following result clarifying the relation
between the notions of a o-algebra and a monotonic class.

Theorem 1. Let of be an algebra. Then
() = o(). (M

PROOF. By Lemma 2, ;1(%/) < o(<7). Hence it is enough to show that p(<7) is a
o-algebra. But .# = u(<f) is a monotonic class, and therefore, by Lemma 2 again,
it is enough to show that ;(.7) is an algebra.

Let A € ./ ; we show that A € . . For this purpose, we shall apply a principle
that will often be used in the future, the principle of appropriate sets, which we now
illustrate.

Let

M ={B:Be #,Be M)}

be the sets that have the property that concerns us. It is evident that &7 < M M.
Let us show that .# is a monotonic class.
Let B, € 4 ;then B, € .#,B, € ./, and therefore

limtB,e.#, lim{B,e.#, lim|B,c.#, lim|B,c. /.
Consequently

lim1B,=1lim | B,e.#,lim|B,=1lm1B,e.#,
lim{B,=1lim|B,e.#,lim|B,=1lm1B,e.#,
and therefore ./ is a monotonic class. But M < M and A is the smallesti mono-
tonic class. Therefore .# = .#,andif A € .# = pu(</), then we also have A € A,

i.e., A is closed under the operation of taking complements.
Let us now show that .# is closed under intersections. Let A € .# and

My ={B:Be . M,AnBe H}.
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From the equations

lim | (AnB,) =Anlim| B,,
limt (AnB,) =Anlim1 B,

it follows that .#, is a monotonic class.
Moreover, it is easily verified that

(A € %B) < (B € //A) (2)

Now let A € &7, then since <7 is an algebra, for every B € o the set A " B € o/

and therefore
o S My M.

But .#, is a monotonic class and .# is the smallest monotonic class. Therefore
My = M for all A € o7. But then it follows from (2) that

(Ae Mp) <= (Be My = M)
whenever A € o7 and B € .# . Consequently if A € o7 then
A€ My
for every B € .. Since A is any set in &7, it follows that
o S Mp < M.

Therefore for every B € .4
Mp = M,

ie.,ifBe # and Ce .# thenCnBe .#.

Thus . is closed under complementation and intersection (and therefore under
unions). Consequently .# = (<) is an algebra, and the theorem is established.

m|

If we examine the above proof we see that when dealing with systems of sets
formed by the principle of appropriate sets, the important feature of these systems
was that they were closed under certain set-theoretic operations.

From this point of view, it turns out that in the “monotonic classes” problems
it is expedient to single out the classes of sets called “m-systems” and “\-systems,”
which were actually used in the proof of Theorem 1. These concepts allow us to
formulate a number of additional statements (Theorem 2) related to the same topic,
which are often more usable than the direct verification that the system of sets at
hand is a “monotonic class.”

Definition 2 (“7-A-systems”). Let € be a space. A system & of subsets of € is
called a m-system if it is closed under finite intersections, i.e., for any Ay, ..., A, €
P we have (), <, Ak € P,n> 1.
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A system .Z of subsets of (2 is called a A-system, if

(M) Qe &,

(M) (A,Be LandA € B) = (B\Ae€ %),

A) (AyeZ,n>1,andA, 1 A) = (Ae D).

A system Z of subsets of () that is both a 7-system and a A-system is called a
w-\-system or Dynkin’s d-system.

Remark 2. It is worth to notice that the group of conditions (X\,), (A), (A;) defining
a A-system is equivalent (Problem 3) to the group of conditions (\,), (A,), (AL),
where

(\,)ifAe Z, thenA e Z,

(A)ifA, e Z,n>1,A, nA, = Jform # n, then | JA, € Z.

Note also that any algebra is obviously a 7-system.

If & is a system of sets, then 7(&), A\(&) and d(&) denote, respectively, the
smallest -, A- and d-systems containing &.

The role of m-A-systems is clarified in Theorem 2 below. In order to better explain
the meaning of this theorem, note that any o-algebra is a \-system, but the converse
is, in general, not true. For example, if 2 = {1, 2, 3, 4}, then the system

2 = {@7 Q, (17 2)’ (L 3)7 (1a4)7 (2,3)7 (2’4)a (374)}

is a A-system, but not a o-algebra.
It turns out, however, that if we require additionally that a A-system is also a
m-system, then this 7-A-system is a o-algebra.

Theorem 2 (On 7-A-Systems).

(a) Any w-\-system & is a o-algebra.
(b) Let & be a w-system of sets. Then A\(&) = d(&) = o(&8).
(c) Let & be a w-system of sets, £ a A-system and & < £. Then o(&) < Z.

PROOF. (a) The system & contains €2 (because of (),)) and is closed under taking
complements and finite intersections (because of (A}) and the assumption that & is a
mw-system). Therefore the system of sets & is an algebra (according to Definition 1 of
Sect. 1). Now to prove that & is also a o-algebra we have to show (by Definition 4 of
Sect. 1) that if the sets By, B, ... belong to &, then their union [ J, B, also belongs
to &.

LetA; = By andA, = B, nA; n -+~ nA,_1. Then (\}) implies | JA, € &. But
\UB» = [JA,, consequently | B, € & as well.

Thus any 7-A-system is a o-algebra.

(b) Consider a A-system A(&) and a o-algebra o(&). As was pointed out, any
o-algebra is a A-system. Then since 0(&) 2 &, we have 0(&) = A(0(&)) 2 A(&).
Hence A\(&) <€ o(&).

Now if we show that the system A(&) is a w-system as well, then by (a) we obtain
that \(&) is a o-algebra containing &. But since o(&) is the minimal o-algebra
containing &, and we have proved that A(£) € o (&), we obtain A\(&) = o(&).
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Thus we proceed to prove that A\(&) is a w-system. As in the proof of Theorem 1,
we will use the principle of appropriate sets. Let

& ={BeA&):BnAe &) forany A € &}.

If Be &, then BnA € & (since & is a w-system). Hence & < &. But &7 is a
A-system (by the very definition of &)). Therefore A\(&) < A(&1) = &. On the
other hand, by definition of &1 we have & € A\(&). Hence &1 = A\(&).

Now let

& ={BeA(&): BnAe X&) forany A € \(&)}.

The system &3, like &1, is a A-system. Take a set B € &. Then by definition of &;
we find for any A € & = A (&) that B n A € A\(&). Consequently we see from
the definition of & that & < &5 and A\(&) S A(&) = &. But A(&) = &. Hence
AM&) = & and therefore A N B € (&) for any A and B in A(&), i.e., A(£) is a
m-system. Thus \(&) is a m-A-system (hence A\(&') = d(&)), and, as we pointed out
above, this implies that A\(&) = o(&).

This establishes (b).

(c) The facts that & < £ and .& is a A-system imply that A\(&) € \(.¥) = Z.
It follows from (b) that A\(&') = o(&). Hence o (&) < Z.

O

Remark 3. Theorem 2 could also be deduced directly from Theorem 1
(Problem 10).

Now we state two lemmas whose proofs illustrate very well the use of the prin-
ciple of appropriate sets and of Theorem 2 on 7-\-systems.

Lemma 3. Let P and Q be two probability measures on a measurable space (), 7).
Let & be a w-system of sets in F and the measures P and Q coincide on the sets
which belong to &. Then these measures coincide on the o-algebra o(&). In par-
ticular, if <7 is an algebra and the measures P and Q coincide on its sets, then they
coincide on the sets of o(<).

PROOF. We will use the principle of appropriate sets taking for these sets . =
{A € a(&): P(A) = Q(A)}. Clearly, Q € .Z.If A € &, then obviously A € &,
since P(A) =1 —P(A) = 1—Q(A) = Q(A). If A1, A, ... is a system of disjoint
sets in .Z, then, since P and Q are countably additive,

P(Un) - gro - Zaw -a(y)

Therefore the properties (A\,), (A}), (AL) are fulfilled, hence . is a A-system.

By conditions of the lemma & € £ and & is a w-system. Then Theorem 2 (c)
implies that (&) € .Z. Now P and Q coincide on (&) by the definition of .Z.

O
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Lemma 4. Let oty , 9, ..., 9, be algebras of events independent with respect to
the measure P. Then the o-algebras o (1), 0(h), . .., 0(<,) are also independent
with respect to this measure.

PROOF. Note first of all that independence of sets and systems of sets (algebras,
o-algebras, etc.) in general probabilistic models is defined in exactly the same way
as in elementary probability theory (see Definitions 2-5 in Sect. 3, Chap. 1).

Let Ao, ... A, be sets in o, . . ., <7, respectively and let

2= {Aea(dl): P(AmAgm-~-mA,,)—P(A)ﬁP(Ak)}. 3)
k=2

We will show that .7 is a A-system.
Obviously, 2 € .74, i.e., the property (\,) is fulfilled. Let A and B belong to .£;
and A € B. Then since

PAnALn---nA,) =P(A) ﬁ P(Ag)
k=2

and n
PBnAin---nA,) =PB) [ [P,
k=2

subtracting the former equality from the latter we find that
P((B\A) N Ay -+ n4,) = P(B\A) | [ P(Aw).
k=2

Therefore the property () is fulfilled.
Finally, if the sets By belong to o (% ), k > 1, and By 1 B, then

BinAsn---nA, 1 BnAsn---NA,.

Therefore by continuity from below of the probability P (see Theorem in Sect. 1)
we obtain from P(By n Ay n--- n A,) = P(By)[[._, P(A;) taking the limit as
k — oo that

PBnAyn---nA,) =P(B) ll[ P(A)),

which establishes the property (A.).

Hence the system .Z] is a A-system and .%} 2 7. Applying Theorem 2 (c) we
obtain that £} 2 o(24).

Thus we have shown that the systems o (47 ), %%, . . ., <, are independent. By
applying similar arguments to the systems %, . . ., 7, o (27 ) we arrive at indepen-
dence of the systems o (o), o4, ..., 9, 0(%), or equivalently, of 4, ..., .,
o(h),0(h).
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Proceeding in this way we obtain that the o-algebras o (), o(h), ..., 0(,)
are independent.
O

Remark 4. Let us examine once more the requirements that we have to impose on
a system of sets in order that it be a o-algebra.

To this end we will say that a system of sets & is a w*-system if it is closed under
countable intersections:

0
AI,AQ,“-Eé& - ﬂAnEg.

n=1

Then it follows from the definition of a o-algebra that if an algebra & is at the
same time a 7w*-system then it is a o-algebra as well.

The approach based on the notion of a “m-A-system” is somewhat different. Our
starting point here is the notion of a A-system rather than an algebra. And Theo-
rem 2 (a) implies that if this A-system is at the same time a 7-system, then it is a
o-algebra.

Let us clarify the difference between these approaches.

If we are to verify that a system of sets is a o-algebra and establish first that it is
an algebra, we start thereby our verification by taking into consideration only finite
sums (or intersections) of sets. And we begin to treat operations on countably many
sets (which is the key point here) when we proceed to verify that this system is also
a m*-system.

On the other hand, when we employ the “A-7"" approach we start to verify that
the system of sets at hand is a o-algebra with establishing that this is a A-system
whose properties () or (A.) involve “countable” operations. In return, when at the
second stage we verify that it is a m-system, we deal only with finite intersections or
sums of sets.

We conclude the exposition of the “monotonic classes” results by stating one of
their “functional” versions. (For an example of its application see the proof of the
lemma to Theorem 1 in Sect. 2, Chap. 8, Vol. 2.)

Theorem 3. Let & be a w-system of sets in F and € a class of real-valued
F -measurable functions satisfying the following conditions:
(h) ifA € &, then I, €
(ho) iff € A, he H, thenf + h e H and cf € H for any real number c;
(hs) ifhye #,n>1,0<h, 1 h thenhe .
Then ¢ contains all bounded functions measurable with respect to o(&).

PROOF. Let ¥ = {A € &: Iy € S}. Then (h;) implies that & < . But by (hs)
and (hs) the system .Z is a A-system (Problem 11). Therefore by Theorem 2 (c) we
see that 0(&) € . Hence if A € o(&) then Iy € 7. Consequently (h2) implies
that all the simple functions (i.e., the functions which are finite linear combinations
of indicators I4,, where A; € o(&)) also belong to #. Finally, we obtain by (h3)
that any bounded o (&’)-measurable function also belongs to 7.

O
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Remark 5. Let X1, ..., X, be random variables on (Q,.%), % = o(Xy,...,X,)
and f = f(w) an Z*-measurable function. Then there is a Borel function F =
F(x1,...,x,) such that f(w) = F(X1(w), ..., X,(w)).

To prove this statement it suffices to use Theorem 3 taking for the set of appro-
priate functions ¢ the set of nonnegative Borel functions F = F(x1,...,x,) and
for & the class of sets

={w: Xj(w) <xp,...,. X(w) <xpx eRi=1,...,n}.

Applying Theorem 3 we obtain that any nonnegative .%X-measurable function f =
f(w) can be represented as f(w) = F(X;(w),...,X,(w)). The general case of not
necessarily nonnegative functions f reduces to the one just considered by using the
representation f = ft — f~.

We next consider some measurable spaces (€2,.%) which are extremely impor-
tant for probability theory.
2. The measurable space (R, Z(R)). Let R = (—o0, ) be the real line and

(a,b] ={x€eR:a<x<b}

for all @ and b, —00 < a < b < o0. The interval (a,o0] is taken to be (a, o).
(This convention is required in order to the complement of an interval (—oo, b] be
an interval of the same form, i.e., open on the left and closed on the right.)

Let o7 be the system of subsets of R which are finite sums of disjoint intervals of
the form (a, b]:

Aed it A=>(anb], n<ow.
i=1

It is easily verified that this system of sets, in which we also include the empty
set &, is an algebra. However, it is not a o-algebra, since if A, = (0,1 — 1/n] € &,
we have | J, A, = (0, 1) ¢ &.

Let #(R) be the smallest o-algebra o (/) containing 2. This o-algebra, which
plays an important role in analysis, is called the Borel o-algebra of subsets of the
real line, and its sets are called Borel sets.

If .7 is the system of intervals of the form I = (a,b], and o(.#) is the smallest
o-algebra containing .7, it is easily verified that o(.#) is the Borel o-algebra. In
other words, we can obtain the Borel o-algebra from .# without going through the
algebra o7, since o(.#) = o(a(¥)).

We observe that

0]
U( b—f, a<b,

e}
ﬂ(a—b , a<b,

d Aot

=
—

=
—

=
=
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Thus the Borel o-algebra contains not only intervals (a, b] but also the singletons
{a} and all sets of the six forms

((1, b)7 [a7 b]v [av b)v (_007 b)v (_OO’ b]v ((l, OO) (4)

Let us also notice that the construction of %(R) could have been based on any of the
six kinds of intervals instead of on (a, b], since all the minimal o-algebras generated
by systems of intervals of any of the forms (4) are the same as Z(R).

Sometimes it is useful to deal with the o-algebra %(R) of subsets of the extended
real line R = [—o0, o0]. This is the smallest o-algebra generated by intervals of the
form

(a,b] ={xeR:a<x<b}, —w<a<b<om,

where (—o0, b] is to stand for the set {x e R: — o0 < x < b}.

Remark 6. The measurable space (R, Z(R)) is often denoted by (R, %) or (R, %).

Remark 7. Let us introduce the metric

lx — |

X,y) = ————
pl( y) ].+|)C—y|

on the real line R (this is equivalent to the usual metric |x — y|) and let %, (R) be
the smallest o-algebra generated by finite sums of disjoint open sets S, (x") = {x €
R: p1(x, x°) < p}, p >0, x° € R. Then %y (R) = %(R) (see Problem 7).

3. The measurable space (R", Z(R")). Let R* = R x --- x R be the direct, or
Cartesian, product of n copies of the real line, i.e., the set of ordered n-tuples x =
(x1,.-.,%,), where —00 < x; < 00, k =1,...,n. The set

I=1 x---x1I,,

where Iy = (ay, by, ie., the set {x € R": x, € I, k = 1,...,n}, is called a
rectangle, and I} is a side of the rectangle. Let .# be the collection of all sets which
are finite sums of disjoint rectangles /. The smallest o-algebra o (.#) generated by
the system .# is the Borel o-algebra of subsets of R" and is denoted by #(R"). Let
us show that we can arrive at this Borel o-algebra by starting in a different way.

Instead of the rectangles I = I; x --- x I, let us consider the rectangles B =
B; x - -+ x B, with Borel sides (By, is the Borel subset of the real line that appears in
the kth place in the direct product R x - -- x R). The smallest o-algebra containing
all rectangles with Borel sides is denoted by

BR)® - ® B(R)
and called the direct product of the o-algebras Z(R). Let us show that in fact

AR") = BR) Q- @ B(R).
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In other words, the smallest o-algebras generated by the rectangles I = I; x - - - x I,
and by the (broader) class of rectangles B = By x --- x B, with Borel sides are
actually the same.

The proof depends on the following proposition.

Lemma 5. Let & be a class of subsets of ), let B < €, and define
EnB={AnB:Ac&}. Q)

Then
o(& nB)=0(&)nB. (6)

PROOEF. Since & < (&), we have
EnBco(&)nB. (7N
But (&) n B is a o-algebra; hence it follows from (7) that
o(& nB) < o(&)nB.

To prove the conclusion in the opposite direction, we again use the principle of
appropriate sets.
Define
¢s={Aco(&):AnBead(&nB)}.

Since 0(&’) and o (& N B) are o-algebras, €5 is also a o-algebra, and evidently
E < C<o(8),

whence (&) € 0(6p) = €5 S 0(&) and therefore o (&) = €. Therefore
AnBeo(€&nB)

for every A € 0(&), and consequently o(&) N B < o(& n B).

This completes the proof of the lemma.

O

The proof that B(R") and B ® - - - ® B are the same. This is obvious for n = 1.
We now show that it is true for n = 2.

Since Z(R?) € % ® 4, it is enough to show that the Borel rectangle B; x Bs
belongs to Z(R?).

_Let R? = Ry X Ro, where Ry and Ry are the “first” and “second” real lines,
B = PB1 X Ry, By = Ry X PBo, where %1 X Ry (or Ri x PB>) is the collection of
sets of the form By x Ry (or Ry x Bz), with By € %1 (or By € %3). Also let .1 and
#5 be the sets of intervals in Ry and R», and %, = 4] X Ry, #5 = Ry X %5. Then,
by (6), with Bl = B; X Ry, BQ =Ry X By,
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B1 X By =Bl mB2€=@?1 ﬂ:%?g = O’(jl)ﬁég

O'(;ﬁ; ﬁBQ) - O'(jl N jg)

B O'(fl X fg),

as was to be proved.
The case of any n, n > 2 can be discussed in the same way. O

2

Remark 8. Let %, (R") be the smallest o-algebra generated by the open “balls
Sp(x) = {xe R": pu(x, x°) < p},  x"€eR", p>0,
in the metric

pn(x7 xO) = Z 27kp1(xkv xl(c))a
k=1

where x = (x1, ..., x,), x° = (2, ..., x9)

Then %, (R") = AB(R") (Problem 7).

4. The measurable space (R*, Z(R*)) plays a significant role in probability the-
ory, since it is used as the basis for constructing probabilistic models of experiments
with infinitely many steps.

The space R® is the space of sequences of real numbers,

x = (x1,X2,...), —o<xy<w, k=12,...

Let I; and By denote, respectively, the intervals (ay, b] and the Borel subsets of the
kth real line (with coordinate x;). We consider the cylinder sets

Sy x -+ x L) ={x:x=(x1,x2,...), x1 €1,...,x, € L,}, (8)
j(Bl X oo X Bn) = {XI X = (X1,X2,...), X1 eBl,...,xn EB,,}, (9)
S (B") = {x: (x1,...,x,) € B"}, (10)

where B" is a Borel set in (R"). Each cylinder .# (B; x -+ x B,), or .#(B"), can
also be thought of as a cylinder with base in R"*!, R"*2, .. since

I(By X+ xBy)=I(By X - xB, XR),
S (B") = 7 (B"),

where B"*1 = B" x R.

The sets that are finite sums of disjoint cylinders .# (I; X - - - x I,,) form an algebra.
And the finite sums of disjoint cylinders .# (B x - - - x B,,) also form an algebra. The
system of cylinders .# (B") itself is an algebra. Let Z(R*), %1 (R*) and %2 (R™)
be the smallest o-algebras containing, respectively, these three algebras. (The o-
algebra %1 (R®) is often denoted by Z(R) ® Z(R) ®- - - .) It is clear that B(R*) <
P1(R*) € PB(R™). As a matter of fact, all three o-algebras are the same.
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To prove this, we put
6 ={A<R": {x: (x1,...,x,) €A} € B(R®)}
forn=1,2,....Let B* € Z(R"). Then
B" € €,.
But %), is a o-algebra, and therefore
B(R") < () = Cn;

consequently
By(R*) < B(R”).
Thus B(R*) = B1(R*) = B2(R™).
From now on we shall describe sets in Z(R®) as Borel sets (in R®).

Remark 9. Let %, (R*) be the smallest o-algebra generated by the system of sets
formed by finite sums of disjoint open “balls”

S,(x%) = {x € R®: poo(x, x°) < p}, X" eR®, p>0,

in the metric

e}
pOO(xv xO) = Z 2_kp1(xk’ X]?),

where x = (x1,x2, ...) and x° = (x§, x9, ...). Then B(R*) = %y(R™)
(Problem 7).

Here are some examples of Borel sets in R*:

(@) {x e R*: supx, > a}, {xe R*: infx, < a};
(b) {x € R*: limsupx, < a}, {x € R*: liminfx, > a}, where, as usual,

limsup x, = inf sup x,,,, liminf x, = sup inf x,,;
m m>n n m>n

(¢) {x € R*: x, —}, the set of x € R* for which lim x,, exists and is finite;
(d) {x € R*: lim x, > a};

(e) {x eR®: Y7 | |xu| > a};

(f) {xeR®: >} _, xx = 0foratleast one n > 1}.

To be convinced, for example, that sets in (a) belong to the system Z(R), it is
enough to observe that

{x: supx, > a} = U{xt x, > a} € B(R™),

n

{x: infx, <a} = U{x: X, < a} € B(R®).

n
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5. The measurable space (RT, Z(R")), where T is an arbitrary set. The space RT
is the collection of real functions x = (x,) defined for 7 € T.* In general we shall be
interested in the case when T is an uncountable subset of the real line. For simplicity
and definiteness we shall suppose for the present that 7 = [0, ).

We shall consider three types of cylinder sets:

Iy x o x L) ={x:x, €, ..., x, €1}, (11)
Ftn(B1 X - x By) ={x:x,, €B1,...,x, € By}, (12)
I ,(B") = {x: (x4, x,,) € B"}, (13)

where I} is a set of the form (ay, by], By is a Borel set on the line, and B" is a Borel
setin R".

The set .7, .., (I1 x --- x I,) is just the set of functions that, at times 71, .. . , #,,
“get through the windows” Iy,...,I, and at other times have arbitrary values
(Fig. 24).

A

Fig. 24

Let Z(RT), %, (R") and %, (R") be the smallest o-algebras corresponding re-
spectively to the cylinder sets (11), (12) and (13). It is clear that

B(R") < B, (R") < B(R"). (14)

As a matter of fact, all three of these o-algebras are the same. Moreover, we can
give a complete description of the structure of their sets.

Theorem 4. Let T be any uncountable set. Then B(R") = %, (R") = $2(R"), and
every set A € B(RT) has the following structure: there are a countable set of points
t1,t2,...of T and a Borel set B in 8(R™) such that

A={x: (x,%,,...) €B}. (15)

* We shall also use the notation x = (x;),cgr and x = (x;), t € RT, for elements of R”.
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PROOF. Let & denote the collection of sets of the form (15) (for various aggregates
(t1,12,...) and Borel sets B in B(R*)). If A1,As,... € & and the corresponding

aggregates are T(1) — (tgl), tél), .. ) , T® = <t§2),t§2), . ) ,..., then the set

T(®) = Uk T™ can be taken as a basis, so that every A; has a representation
A; = {x: (Xg,, %1y, - . .) € Bi},

where B;’s are sets in one and the same o-algebra Z(R*), and 1; € T(®),

Hence it follows that the system & is a o-algebra. Clearly this o-algebra con-
tains all cylinder sets of the form (13) and, since %5(R") is the smallest o-algebra
containing these sets, and since we have (14), we obtain

BR") < B, (R") < #(R") c &. (16)

Let us consider a set A from &, represented in the form (15). For a given aggre-
gate (t1, 12, .. .), the same reasoning as for the space (R*, Z(R™)) shows that A is
an element of the o-algebra generated by the cylinder sets (11). But this o-algebra
evidently belongs to the o-algebra Z(R"); together with (16), this established both
conclusions of the theorem.

m]

Thus every Borel set A in the o-algebra %(R”) is determined by restrictions
imposed on the functions x = (x;), ¢ € T, on an at most countable set of points
11,12, . ... Hence it follows, in particular, that the sets

A1 = {x: supx, < Cforallte [0,1]},
Az = {x: x, = 0 for at least one 7 € [0, 1]},

Az = {x: x, is continuous at a given point #o € [0, 1]},

which depend on the behavior of the function on an uncountable set of points, cannot
be Borel sets. And indeed none of these three sets belongs to Z(RI%1).

Let us establish this for A;. If A; € %(R[Ofl]), then by our theorem there are
points (9,29, ...) and a set B € Z(R™) such that

{x: supx; < C, t € [0, 1]} = {x: (%0, xg,...) e B}.
t

It is clear that the function y, = C — 1 belongs to A;, and consequently
(¥0, Y9, - --) € BY. Now form the function

— Ci]‘? te (t(l)vtga"')a
“TVC+1, rg (9,0,

It is clear that
(yttl)myzgv e ) = (Z[?,Z,g, . .),
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and consequently the function z = (z;) belongs to the set {x: (X0, %0, -} € B°}.
But at the same time it is clear that it does not belong to the set {x: supx, < C}.
This contradiction shows that A; ¢ Z(R[:1).

Since the sets A1, A5 and As are nonmeasurable with respect to the o-algebra

2(RI911Y in the space of all functions x = (x;), ¢ € [0, 1], it is natural to consider a
smaller class of functions for which these sets are measurable. It is intuitively clear
that this will be the case if we take the initial space to be, for example, the space of
continuous functions.
6. The measurable space (C, #(C)). Let T = [0,1] and let C be the space of
continuous functions x = (x;), 0 < ¢ < 1. This is a metric space with the metric
p(x,y) = sup,er [x; — y:|. We introduce two o-algebras in C: Z(C) is the o-algebra
generated by the cylinder sets, and %, (C) is generated by the open sets (open with
respect to the metric p(x, y)). Let us show that in fact these o-algebras are the same:
B(C) = By(C).

Let B = {x: x;, < b} be a cylinder set. It is easy to see that this set is open. Hence
it follows that {x: x;, < b1,...,x;, < by} € %o(C), and therefore Z(C) < Hy(C).

Conversely, consider aset B, = {y: y € S,(x)} where x” is an element of C and
S,(x%) = {x € C: sup,y |x, — x| < p} is an open ball with center at x°. Since the
functions in C are continuous,

B,={yeC:yeS,x"} = {yeC: max [y, — x| <p}

=(veC:ily - <pte®(C), A7)

I

where 7, are the rational points of [0, 1]. Therefore %,(C) < Z(C).
The space (C, %y (C),p)) is a Polish space, i.e., complete and separable (see
[9, 43]).

7. The measurable space (D, #(D)), where D is the space of functions x =
(x;), t € [0,1], that are continuous on the right (x; = x,4 for all 7 < 1) and have
limits from the left (at every ¢ > 0).

Just as for C, we can introduce a metric d(x,y) on D such that the o-algebra
P (D) generated by the open sets will coincide with the o-algebra (D) generated
by the cylinder sets. The space (D, B(D),d) is separable (see [9, 43]). The metric
d = d(x,y), which was introduced by Skorohod, is defined as follows:

d(x,y) =inf{e > 0: IX € A: sup|x, —y | +sup |t = A(1)] <€},  (18)
t t

where A is the set of strictly increasing functions A = \(¢) that are continuous on
[0,1] and have A(0) = 0, A(1) = 1.

8. The measurable space ([ .., Q. [l,.;%:). Along with the space (R", Z(R")),
which is the direct product of T copies of the real line with the system of Borel
sets, probability theory also uses the measurable space ([ [,.; €, [l ,cr-%:), which
is defined in the following way.
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Let T be an arbitrary set of indices and let (£, .%;) be measurable spaces, 7 € T.
Let Q = [ [, € be the set of functions w = (w,), 7 € T, such that w, € Q, for each
teT.

The collection of finite unions of disjoint cylinder sets

teT

I ooty(By X - x By) ={w: wy, €B1,...,w, €B,},

where B, € .%#,, is easily shown to be an algebra. The smallest o-algebra con-
taining all these cylinder sets is denoted by [, ;.%;, and the measurable space
(T1T%%, Bl %) is called the direct product of the measurable spaces (€2, %), t€ T.

9. PROBLEMS

1. Let %, and %, be o-algebras of subsets of 2. Are the following systems of
sets o-algebras?

%1 ﬁggg = {AZ A E%l andAELQQ},
%1 U%Q = {AIAE%l OI'AGe%Q}.

2. Let 2 = {Dy,Ds, ...} be a countable decomposition of 2 and Z = ¢(2).
What is the cardinality of %?
3. Show that
B(R") ® B(R) = B(R").

Prove that the sets (b)—(f) (see Subsection 4) belong to %(R*).

Prove that the sets A2 and A3 (see Subsection 5) do not belong to %’(R[O’l] ).
Prove that the function (18) actually defines a metric.

Prove that %, (R") = #B(R"), n > 1, and By(R*) = B(R™).

Let C = C[0, o) be the space of continuous functions x = (x,) defined for
t > 0 endowed with the metric

PNk

o0
p(x,y) = Z 27" min [ sup |x — v, 1] , x,yeC.
n=1 0<r<n
Show that (like C = C[0, 1]) this is a Polish space, i.e., a complete separa-
ble metric space, and that the o-algebra %, (C) generated by the open sets
coincides with the o-algebra % (C) generated by the cylinder sets.
9. Show that the groups of conditions (\,), (Ap), (Ac) and (A,), (A}), (\.) (see
Definition 2 and Remark 2) are equivalent.
10. Deduce Theorem 2 from Theorem 1.
11. Prove that the system .Z in Theorem 3 is a A-system.
12. A o-algebra is said to be countably generated or separable if it is generated
by a countable class of sets.
Show that the o-algebra % of Borel subsets of & = (0,1] is countably
generated.
Show by an example that it is possible to have two o-algebras .%; and %5 such
that %1 € %5 and .%5 is countably generated, but .%; is not.
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15.

16.
17.

18.
19.

20.

21.

22.

23.

24.
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Show that a o-algebra ¢ is countably generated if and only if ¥ = o(X)
for some random variable X (for the definition of o(X) see Subsection 4 of
Sect. 4).

. Give an example of a separable o-algebra having a non-separable sub-o-

algebra.

Show that X7, X», ... is an independent system of random variables (Sects. 4,
5)if o(X,) and o(X1, ..., X,—1) are independent for each n > 1.

Show by an example that the union of two o-algebras is not a o-algebra.

Let 7 and % be two independent systems of sets each of which is a -
system. Show that then o (<7 ) and o (%) are also independent. Give an ex-
ample of two independent systems .¢7; and <%, which are not -systems, such
that o(¢7; ) and o (%) are dependent.

Let £ be a A-system. Then (A,Be X, AnB=0) = (AuBe¥).

Let %, and .%; be o-algebras of subsets of (2. Set

d(ﬁl,ﬁg) =4 sug | P(AlAQ) — P(Al) P(A2)|
A1eF
AxEFo

Show that this quantity describing the degree of dependence between %, and
F3 has the following properties:

(@ 0<d(F1,72) <1

(b) d(F#1,%5) = 0if and only if .#; and %, are independent.

(c) d(F1, F5) = 1if and only if F; N F, contains a set of probability

1/2.

Using the method of the proof of Lemma 1 prove the existence and uniqueness
of the classes A(&) and 7 (&) containing a system of sets &
Let <7 be an algebra of sets with the property that any sequence (A,),>1 of
disjoint sets A, € < satisfies Uzc:l A, € o/. Prove that o/ is then a o-algebra.
Let (%,),>1 be an increasing sequence of o-algebras, .%, < %,11,n > 1.
Show that UZO:1 Z, 18, in general, only an algebra.
Let % be an algebra (or a o-algebra) and C a set which is not in .%. Consider
the smallest algebra (respectively, o-algebra) generated by the sets in .# U{C}.
Show that all the elements of this algebra (respectively, o-algebra) have the
form (AN C) u (B C),where A,Be 7.
LetR = Ru{—o0} U {00} be the extended real line. The Borel o-algebra %(R)
can be defined (compare with the definition in Subsection 2) as the o-algebra
generated by sets [—0,x], x € R, where [—00,x] = {—00} U (—00,x]. Show
that this o-algebra is the same as any of the o-algebras generated by the sets

(a) [-o0,x),x € R, or

(b) (x,0],x € R, or

(c) all finite intervals with addition of {—oo} and {o0}.
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3 Methods of Introducing Probability Measures
on Measurable Spaces

1. The measurable space (R, Z(R)). Let P = P(A) be a probability measure de-
fined on the Borel subsets A of the real line. Take A = (—o0, x| and put

F(x) = P(—o0, x], x€R. (1)

This function has the following properties:
(i) F(x) is nondecreasing;
(ii) F(—©) =0, F(4+w) = 1, where

F(—0) = lim F(x), F(+0) = lim F(x);

x|—o0 xtoo

(iii) F(x) is continuous on the right and has a limit on the left at each x € R.

The first property is evident, and the other two follow from the continuity prop-
erties of probability measures (Sect. 1).

Definition 1. Every function F = F(x) satisfying conditions (i)—(iii) is called a
distribution function (on the real line R).

Thus to every probability measure P on (R, %(R)) there corresponds (by (1)) a
distribution function. It turns out that the converse is also true.

Theorem 1. Let F = F(x) be a distribution function on the real line R. There exists
a unique probability measure P on (R, B(R)) such that

P(a,b] = F(b) — F(a) @)
foralla, b, —o0 <a <b < 0.

PROOF. Let <7 be the algebra of the subsets A of R that are finite sums of disjoint
intervals of the form (a, b]:

A= Z(ak,bk].
k=1

On these sets we define a set function Py by putting

n

Po(A) = D [F(be) — Fa)], Ae. 3)

k=1

This formula defines, evidently uniquely, a finitely additive set function on 7.
Therefore if we show that this function is also countably additive on this algebra,
the existence and uniqueness of the required measure P on Z(R) will follow imme-
diately from a general result of measure theory (which we quote without proof to be
found in [39, 64]).
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Carathéodory’s Theorem. Let 2 be a space, o/ an algebra of its subsets, and
B = o() the smallest o-algebra containing <. Let py be a o-finite (Sect. 1)
and o-additive (Sect. 1) measure on (0, 7). Then there is a unique measure . on
(Q, 0(2)) which is an extension of g, i.e., satisfies

nA) = po(A), Aed.

We are now to show that P is countably additive (hence is a probability measure)
on /. By the theorem from Sect. 1 it is enough to show that P is continuous at &,
i.e., to verify that

Po(A,) | 0, Al @, Aed.

Let A1, Ao, ... be a sequence of sets from .o/ with the property A, | . Let us
suppose first that the sets A, belong to a closed interval [-N, N|, N < oo. Since
each A, is the sum of finitely many intervals of the form (a, ] and since

Po(d,b] = F(b) — F(d') — F(b) — F(a) = Po(a, b]

as @’ | a, because F(x) is continuous on the right, we can find, for every A,, a set
B, € o such that its closure [B,] < A, and

P()(A,,) - Po(B,,) S [ 2_’17

where € is a preassigned positive number.
By hypothesis, [ |A, = @ and therefore (| [B,] = <. But the sets [B,] are closed,
and therefore there is a finite ng = ng(e) such that

o

(B = 2. @)

n=1

(In fact, [-N, N] is compact, and the collection of sets {[—N, N]\[B,]},>1 is an
open covering of this compact set. By the Heine—Borel lemma (see, e.g., [52]) there
is a finite subcovering:

and therefore ()", [B,] = @).
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Using (4) and the inclusions A,, < Ap,—1 S - -+ S A1, we obtain

PO(A}’[()) = PO <A,,0\ ﬁ Bk> + PO (ﬁ Bk>

k=1 k=1
=Py (Ano\ ﬁ Bk) <Py (@(AAB,J)
k=1 k=1

no

< Y Po(A\BY) < Dl e-2F <
k=1

k=1

Therefore Py(A,) | 0, n — .
We now abandon the assumption that all A, < [—N, N] for some N. Take an
e > 0 and choose N so that Po[—N, N| > 1 — £/2. Then, since

A, = A, A [-N,N] + A, n [-N,N],

we have

PO(An) = PO(An N [_NvND + PO(AH[_N)ND
< Po(A, n[-N, N]) +¢/2

and, applying the preceding reasoning (replacing A, by A, N [—N, N]), we find that
Po(A, n [-N,N]) < /2 for sufficiently large n. Hence once again Py(4,) | 0,
n — co. This completes the proof of the theorem.

m]

Thus there is a one-to-one correspondence between probability measures P on
(R, #(R)) and distribution functions F on the real line R. The measure P constructed
from the function F is usually called the Lebesgue—Stieltjes probability measure
corresponding to the distribution function F.

The case when

0, x <0,
Fx)=<x, 0<x <1,
1, x >1,

is particularly important. In this case the corresponding probability measure (de-
noted by A) is Lebesgue measure on [0, 1]. Clearly A(a, b] = b — a. In other words,
the Lebesgue measure of (a,b] (as well as of any of the intervals (a, b), [a,b] or
[a,D)) is simply its length b — a.
Let
AB([0,1]) ={An[0,1]: Ac B(R)}

be the collection of Borel subsets of [0, 1]. It is often necessary to consider, besides
these sets, the Lebesgue measurable subsets of [0, 1]. We say that a set A < [0,1]
belongs to Z([0,1]) if there are Borel sets A and B such that A £ A < B and
A(B\A) = 0. It is easily verified that Z([0,1]) is a o-algebra. It is known as the

system of Lebesgue measurable subsets of [0,1]. Clearly %([0,1]) < %([0, 1]).
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The measure )\, defined so far only for sets in Z([0, 1]), extends in a natural way
to the system ([0, 1]) of Lebesgue measurable sets. Specifically, if A € ([0, 1])
and A € A C B, where A and B € %([0,1]) and A\(B\A) = 0, we define A\(A) =
A(A). The set function A = A\(A), A € %([0, 1]), is easily seen to be a probability

measure on ([0, 1], Z([0, 1])). It is usually called Lebesgue measure (on the system
of Lebesgue-measurable sets).

Remark 1. This process of completing (or extending) a measure can also be ap-
plied, and is useful, in other situations. For example, let (€2,.%, P) be a probability
space. Let .7 " be the collection of all the subsets A of 2 for which there are sets B;
and By of .% such that By € A By and P(B2\B;) = 0. The probability measure
can be defined for sets A € .#" in a natural way (by P(A) = P(B;)). The resulting
probability space (€2, %", P) is the completion of (2, .7, P) with respect to P.

A probability measure such that .#° = .7 is called complete, and the corre-
sponding space (2, %, P) is a complete probability space.

Remark 2. Here we briefly outline the idea of the proof of Carathéodory’s theorem
assuming that o (Q) = 1.

Let A be a set in 2 and Aq,As, ... sets in &7 which cover A in the sense that
A < U7, A,. Define the outer measure pi*(A) of the set A as

p*(A) = inf ) pro(An),

n=1

where the infimum is taken over all coverings (A1, A, ...) of A. We define also the
interior measure ji4(A) by

psx(A) = 1 — p*(A).

Denote by . the collection of all sets A =  such that *(A) = pus(A). It
is not hard to show that the system o is a o-algebra (Problem 12), and therefore
of < () o/ . We assign to the sets A in <7 the “measure” 11(A) equal to /i (A)
(= p*(A)). This set function u(A), A € <, is a measure indeed (Problem 13),
i.e., a countably-additive set function (being a probability measure, since () =
fo(2) = 1).

The correspondence between probability measures P and distribution functions
F established by the equation P(a, b] = F(b) — F(a) makes it possible to construct
various probability measures by specifying the corresponding distribution functions.

Discrete measures are measures P for which the corresponding distribution func-
tions F = F(x) change their values at the points x1,x2,... (AF(x;) > 0, where
AF(x) = F(x) — F(x—)). In this case the measure is concentrated at the points
X1, %2, . .. (Fig. 25):

P({x}) = AF(x) >0, Y P({x}) = 1.
k
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F(x)
A
| AF(x;)
I
]AF(XZ)
e
|AF(x,)
- + } t >
Xy X3 X3 X

Fig. 25

The set of numbers (py,pa,...), where p, = P({x¢}), is called a discrete prob-
ability distribution and the corresponding distribution function F = F(x) is called
discrete.

We present a table of the commonest types of discrete probability distribution,
with their names.

Table 2.2

Distribution Probabilities py Parameters

Discrete uniform 1/N, k=1,2,...,N N=1,2...

Bernoulli P1=p,Po=¢q 0<p<l,g=1-p

Binomial Ckpkq"=* k=0,1,...,n 0<p<l,g=1-p,
n=12...

Poisson e MK k=0,1,... A>0

Geometric ¢ p, k=1,2,... 0<p<l,g=1-p

Negative binomial Cwpd" k=rr+1,... 0<p<l,g=1-p,

(Pascal’s distribution) r=1,2,...

Remark. The discrete measure presented in Fig. 25 is such that its distribution
function is piecewise constant. However one should bear in mind that discrete mea-
sures, in general, may have a very complicated structure. For example, such a mea-
sure may be concentrated on a countable set of points, which is everywhere dense
in R (e.g., on the set of rational numbers).

Absolutely continuous measures. These are measures for which the corresponding
distribution functions are such that

o= [ s ®)

where f = f(t) are nonnegative functions integrated to one and the integral is at first
taken in the Riemann sense, but later (see Sect. 6) in that of Lebesgue.

(Note that if we have two functions f(#) and f(t) differing only on a set of zero
Lebesgue measure then the corresponding distribution functions F(x) = {* LS () dt

and F(x) = {* OOf(t) dt will be the same; it is useful to keep in mind this remark
when solving Problem 8 of the next Sect. 4.)
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The function f = f(x), x € R, is the density of the distribution function F = F(x)
(or the density of the probability distribution, or simply the density) and F = F(x)
is called absolutely continuous.

It is clear that every nonnegative f = f(x) that is Riemann integrable and such
that Sio o f(x)dx = 1 defines a distribution function of some probability measure on
(R, B(R)) by (5). Table 2.3 presents some important examples of various kinds of
densities f = f(x) with their names and parameters (a density f(x) is taken to be
zero for values of x not listed in the table).

Table 2.3
Distribution Density Parameters
Uniform on [a, b] 1/(b—a),a<x<b a,beRya<b
Normal or Gaussian (2ma2)~1/2e—(=m?/(20%) x e R meR, >0
Gamma %,320 a>0,8>0
Beta %,nggl r>0,5>0
r,s)

Exponential (gamma

witha =1, 8 =1/)) Xe ™M x>0 A>0
Bilateral exponential e M=ol xeR A>0,a€R
Chi-square, x2 with n degrees of

freedom (gamma with 2=12xn2=1=%/2 /T (n/2), x > 0 n=12 ...

. r(3(n+1)) 2\ —(+1)/2 _
Student, ¢ with n degrees of freedom WW ( 7) ,XER n=1,2 ...
(m/n)" /21 —

F B(m/2,n/2) (1+4mx/n){m+m)/2 mn=12, ...
Cauchy m, xXeR 0>0

Singular measures. These are measures whose distribution functions are continu-
ous but have all their points of increase on sets of zero Lebesgue measure. We do
not discuss this case in detail; we merely give an example of such a function.

We consider the interval [0, 1] and construct F(x) by the following procedure
originated by Cantor.

We divide [0, 1] into thirds and put (Fig. 26)

3 x5 3),
Fl(x) = 0, X IO,
1, x =1,

defining it in the intermediate intervals by linear interpolation.
Then we divide each of the intervals [0, 1] and [2, 1] into three parts and define
the function (Fig. 27)

Loxe( ),

%u X € (%77 %8)’
FQ(X) = 1 X € (57 g),

0, x =0,

1, x=1

with its values at other points determined by linear interpolation.
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Continuing this process, we construct a sequence of functions F,(x), n =
1,2,..., which converges to a nondecreasing continuous function F(x) (the Can-
tor function), whose points of increase (x is a point of increase of F(x) if F(x +
e) — F(x —¢) > 0 for every ¢ > 0) form a set of Lebesgue measure zero. In
fact, it is clear from the construction of F(x) that the total length of the intervals

(3, 2), (3, 2), (%, %),... on which the function is constant is

1 2 4 1& /2
44— 4. =2 ) =1.
3Tty ® 3Z<3) ©
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Let .4 be the set of points of increase of the Cantor function F(x). It follows
from (6) that A(.#") = 0. At the same time, if u is the measure corresponding to
the Cantor function F(x), we have u(.#") = 1. (We then say that the measure is
singular with respect to Lebesgue measure \.)

Without any further discussion of possible types of distribution functions, we
merely observe that in fact the three types that have been mentioned cover all pos-
sibilities. More precisely, every distribution function can be represented in the form
a1F1 + asFs + asFs, where F is discrete, F5 is absolutely continuous, and F is
singular, and «; are nonnegative numbers, oy + ag + a3 = 1 (Problem 18).

2. Theorem 1 establishes a one-to-one correspondence between probability mea-
sures on (R, (R)) and distribution functions on R. An analysis of the proof of the
theorem shows that in fact a stronger theorem is true, one that in particular lets us
introduce Lebesgue measure on the real line.

Let p be a o-finite measure on (€2, o7), where <7 is an algebra of subsets of
). It turns out that the conclusion of Carathéodory’s theorem on the extension of
a measure from an algebra .2/ to a minimal o-algebra o (/) remains valid with a
o-finite measure; this makes it possible to generalize Theorem 1.

A Lebesgue—Stieltjes measure on (R, %(R)) is a (countably additive) measure
 such that the measure (1) of every bounded interval I is finite. A generalized
distribution function on the real line R is a nondecreasing function G = G(x), with
values in (—o0, 00), that is continuous on the right.

Theorem 1 can be generalized to the statement that the formula

pla;b] = G(b) = Gla),  a<b,

again establishes a one-to-one correspondence between Lebesgue—Stieltjes mea-
sures /. and generalized distribution functions G.

In fact, if G(+o0) — G(—©) < oo, the proof of Theorem 1 can be taken over
without any change, since this case reduces to the case when G(+00) —G(—o0) = 1
and G(—o0) = 0.

Now let G(+0) — G(—w) = o0. Put

G(x), x| <n,
G,(x) =< G(n) X >n,
G(—n), x < -—n.

On the algebra <7 let us define a finitely additive measure 1o such that pg(a, b] =
G(b) — G(a), and let 1, be the countably additive measures previously constructed
(by Theorem 1) from G, (x).

Evidently p, T po on /. Now let Aj, Ao, ... be disjoint sets in ./ and A =
>'A, € . Then (Problem 6 of Sect. 1)
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If 7 po(A)) = oo then pg(A) = Y7, po(As). Let us suppose that
> po(A,) < co. Then

o0
po(A) = lim 10, (A) = lim Y g, (A
k=1

By hypothesis, > 110(A,) < 0. Therefore

[e¢] 0
0 < po(A Z 0(A) = lim lz tn(Ax) — o Ak))] <0,
k=1 k=1

since pt, < [o.

Thus a o-finite finitely additive measure p is countably additive on <7, and
therefore (by Carathéodory’s theorem) it can be extended to a countably additive
measure i on o ().

The case G(x) = x is particularly important. The measure A\ corresponding to
this generalized distribution function is Lebesgue measure on (R, Z(R)). As for the
interval [0, 1] of the real line, we can define the system %(R) by writing A € %(R)
if there are Borel sets A and B such that A € A < B, A(B\A) = 0. Then Lebesgue
measure \ on %(R) is defined by A\(A) = M\(A)ifA € A < B, A € Z(R) and
A(B\A) = 0.

3. The measurable space (R", Z(R")). Let us suppose, as for the real line, that P
is a probability measure on (R", Z(R")).
Let us write

Fu(x1,...,%,) = P((—o0, x1] x -+ x (=00, x,]),
or, in a more compact form,
Fy(x) = P(—o0, x],

where x = (x1,..., x,), (—00, x] = (=00, x1] X -+ x (=00, x].
Let us introduce the difference operator A, »,: R" — R defined by the formula
AahbiF,,(xl, N ,xn) = F,,(xl, N ,xi_l,bi,xi+1 N ,xn)
_Fn(xla ce ey Xim1, Q45 X4 1 - - axn)v
where a; < b;. A simple calculation shows that

Aalbl e Aa,lb,an(-xlv e ,Xn) = P(a7 b]7 (7)

where (a,b] = (a1,b1] x -+ x (a,, b,]. Hence it is clear, in particular, that (in
contrast to the one-dimensional case) P(a, b] is in general not equal to F,,(b)—F,(a).
Since P(a, b] > 0, it follows from (7) that

Aalbl et Aa,,b,,Fn()Cla cee 7xn) 2 0 (8)
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for arbitrary a = (as,...,a,), b = (b1,...,by), a; < b;.

It also follows from the continuity of P that F,(x,...,x,) is continuous on the
right with respect to the variables collectively, i.e., if x®) | x, x0) = (xgk), .. ,x,(lk)),
then

Fo(x®) | F(x), k — 0. 9)
It is also clear that
F.(+0, ..., +0) =1 (10)
and
liinF,l(xl,...,x,,) =0, (11)
xly

if at least one coordinate of y is —ao0.

Definition 2. An n-dimensional distribution function (on R") is a function F, =
F,(x1,...,x,) with properties (8)—(11).

The following result can be established by the same reasoning as in Theorem 1.

Theorem 2. Let F,, = F,,(x1, .. .,x,) be a distribution function on R". Then there is
a unique probability measure P on (R", B(R")) such that

P(a,b] = Aalbl ~--Aanann(x1, ey xn). (12)

Here are some examples of n-dimensional distribution functions.
Let F', ..., F" be one-dimensional distribution functions (on R) and

Fn(xla”'axn) = Fl(xl) "'F”(Xn).

It is clear that this function is continuous on the right and satisfies (10) and
(11). It is also easy to verify that

Aarpy - Doy, Falxr, . x) = [ [IF*(be) = F¥(ax)] > 0.

Consequently F,(x1, .. .,x,) is a distribution function.
The case when
O, X < 0,
Fig) =3 x, 0<x <1,
1, x> 1,
is particularly important. In this case
Fo(x1, «ooy Xp) = X1+ Xp.

The probability measure corresponding to this n-dimensional distribution function
is n-dimensional Lebesgue measure on [0, 1]".
Many n-dimensional distribution functions appear in the form

X1 Xn
Fn(xl,...,x,,)zj J f;1([1,...,ln)dtl"'dtn,
—00 —o0
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where f;,(t1, . . ., 1,) is a nonnegative function such that

o0 0
f J Sty o ty)dty - dty, = 1,
—o0 —0

and the integrals are Riemann (more generally, Lebesgue) integrals. The function

f = fult1,...,t,) is called the density of the n-dimensional distribution function,
the density of the n-dimensional probability distribution, or simply an n-dimensional
density.

When n = 1, the function

1
2w

Smm? et e R

f(X):(7

with o > 0 is the density of the (nondegenerate) Gaussian or normal distribution.
There are natural analogs of this density when n > 1.
Let R = ||r;|| be a positive semi-definite symmetric n x n matrix:

n
Z r,;,-)\,-)\jzo, )\,’ER, i:1, ceey By T =T
ij=1
= det R > 0 and consequently there is an
inverse matrix A = | a;;|. Then the function

| A|1/2
Salxe, .o x) = on n/2 Zau —m;)(xj —my)}, (13)
where m; € R, i = 1,...,n, has the property that its (Riemann) integral over the
whole space equals 1 (this will be proved in Sect. 13) and therefore, since it is also
positive, it is a density.

This function is the density of the n-dimensional (nondegenerate) Gaussian or
normal distribution (with mean vector m = (my,...,m,) and covariance matrix
R=A"1.

When n = 2 the density f>(x, x2) can be put in the form

1

2wo1094/ 1 — p?

: exp{‘m ip2> [(m 7 =

fo(x1, x2) =

_ _ _ 2
gy m;zsfj ma) | b2 02'"2) ]} (14)
2

where 0; > 0, |p| < 1. (The meanings of the parameters m;, o; and p will be
explained in Sect. 8.)
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Fig. 28 Density of the two-dimensional Gaussian distribution

Figure 28 indicates the form of the two-dimensional Gaussian density.

Remark 3. As in the case n = 1, Theorem 2 can be generalized to (similarly
defined) Lebesgue-Stieltjes measures on (R", #(R")) and generalized distribu-
tion functions on R". When the generalized distribution function G, (x1,...,x,) is

X1 - - - X, the corresponding measure is Lebesgue measure on the Borel sets of R". It

clearly satisfies
n

Ma, b) = H(bi —a),

i.e., the Lebesgue measure of the “rectangle”
(a, b] = (a1,b1] x -+ x (an, by]
is its “volume.”

4. The measurable space (R*, (R™)). For the spaces R", n > 1, the probability
measures were constructed in the following way: first for elementary sets (rectan-
gles (a,b]), then, in a natural way, for sets A = >(a;, b;], and finally, by using
Carathéodory’s theorem, for sets in Z(R").

A similar procedure of constructing probability measures also works for the
space (R*, Z(R*)).

Let

Iy(B) = {xe R*: (x1,...,x,) € B}, Be B(R"),

denote a cylinder set in R® with base B € Z(R"). As we will see now, it is natural
to take the cylinder sets for the elementary sets in R whose probabilities enable us
to determine the probability measure on the sets of (R%).

Let P be a probability measure on (R*, #(R*)). Forn = 1,2, ..., we take

P,(B) = P(4,(B)), Be A(R"). (15)
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The sequence of probability measures Pi,Ps,... defined respectively on
(R, #A(R)), (R*, B(R?)), ..., has the following evident consistency property: for
n=1,2,...and Be #A(R"),

P,+1(B x R) = P,(B). (16)
It is noteworthy that the converse also holds.

Theorem 3 (Kolmogorov’s Theorem on the Extension of Measures on
(R*, B(R™))). Let Py, P, . . . be probability measures on (R, B(R)), (R?, B(R?)),

. respectively, possessing the consistency property (16). Then there is a unique
probability measure P on (R*, 2(R*)) such that

P(#.(B)) = P,(B), Be AB(R"), a7
forn=1,2,....

PROOF. Let B" € #(R") and let .,(B") be the cylinder with base B". We assign
the measure P(.#,(B")) to this cylinder by taking P(.#,(B")) = P,(B").

Let us show that, in virtue of the consistency condition, this definition is con-
sistent, i.e., the value of P(.#,(B")) is independent of the representation of the set
Z,(B"). In fact, let the same cylinder be represented in two ways:

I,(B") = I 1 (B"HH).
It follows that, if (x1, ..., %,1x) € R"™*, we have
(X1,...,%,) € B" = (x1,...,%,4%) € B", (18)
and therefore, by (16)

Py(B") = Py ((x1, .- Xnt1)t (X1, ., X,) € B")
=... =Pu((x1,. . Xp18): (x1,...,%,) € B")
_ Pn+k(Bn+k)~

Let 7 (R®) denote the collection of all cylinder sets B* = .7,(B"),B" €
PA(R"), n=1,2,....1tis easily seen that o7 (R*) is an algebra.

Now let By, ..., By be disjoint sets in .7 (R®). We may suppose without loss of
generality that B; = .%,(B!'), i = 1, ...k, for some n, where B!, . .., B} are disjoint
sets in #(R"). Then

n

S £ k n
P (Z{B,) =P (; Jn(B;z)> =P, (;3?) = ;Pn(gy) — NP,

i=1

i.e., the set function P is finitely additive on the algebra <7 (R®).
Let us show that P is “continuous at zero” (and therefore o-additive on .2/ (R™),
see Theorem in Sect. 1), i.e., if a sequence of sets B, | &, n — oo, then P(B,) — 0,
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n — 0. Suppose the contrary, i.e., let lim P(Bn) = § > 0 (the limit exists due to
monotonicity). We may suppose without loss of generality that {B,} has the form

= {x: (x1,...,%,) € By}, B,€ B(R").

We use the following property of probability measures P, on (R", (R")) (see
Problem 9): if B, € B(R"), for a given § > 0 we can find a compact set A, € Z(R")
such that A,, < B,, and

P,(B,\A,) < 6/2"1.

Therefore if
={x: (x1,...,%,) €A},

we have o
P(B,\A,) = P.(B,\A,) < §/2""1.
Form the set C,, = My Ay and let C,, be such that

Cp={x: (x1,...,x,) € Gy}

Then, since the sets Bn decrease, we obtain
n\C Z P(B n\Ak Z (Bk\Ak) <4/2.

But by assumption lim, P(B,) = § > 0, and therefore lim, F’(C‘n) > /2 > 0. Let
us show that this contradicts the condition C,, | .
Let us choose a point i) = (x(") xé"), ...)in C,. Then (x%"), . (")) e C, for
n>1.
(n1)

Let (n1) be a subsequence of (n) such that x;"*’ — x{, where x
(m)

{ is a point in

Ci. (Such a sequence exists since x; ~ € C; and C; is compact.) Then select a

("2) (’lz) ) 0

subsequence (n2) of (n1) such that (x3 — (x0,xY) € Cs. Similarly let

xS 9. x0) € C Fmally form the diagonal sequence (my),
where my, is the kth term of (). Then xi(mk) — ¥ asmy — cofori=1,2,...,and
x0.x9,...)e C, forn = 1,2, ..., which evidently contradicts the assumption that
X1, X2 y Y

C, | @, n — co. Thus the set function P is o-additive on the algebra </ (R*) and
hence, by Carathéodory’s theorem, it can be extended to a (probability) measure on
(R*, (R*)). This completes the proof of the theorem.

O

Remark 4. In the present case, the space R* is a countable product of real lines,
R® = R x R x ---. It is natural to ask whether Theorem 3 remains true if
(R*, B(R™)) is replaced by a direct product of measurable spaces (2;,.%;), i =
1,2,....

We may notice that in the preceding proof the only topological property of the
real line that was used was that every set in %(R") contains a compact subset whose
probability measure is arbitrarily close to the probability measure of the whole set.
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It is known, however, that this is a property not only of spaces (R", (R")), but also
of arbitrary complete separable metric spaces with o-algebras generated by the open
sets.

Consequently Theorem 3 remains valid if we suppose that Py, Ps,... is a se-
quence of consistent probability measures on

(ley1>7 (Ql X 92791@9'?2)7"'1

where (§2;,.%;) are complete separable metric spaces with o-algebras .%; generated
by open sets, and (R*, Z(R*)) is replaced by

(U x Qx| FI@Fr® ).

In Sect.9 (Theorem 2) it will be shown that the result of Theorem 3 remains
valid for arbitrary measurable spaces (§2;,.%;) if the measures P, are constructed
in a particular way. However, Theorem 3 may fail in the general case (without any
hypotheses on the topological nature of the measurable spaces or on the structure of
the family of measures {P,}). This is shown by the following example.

Let us consider the space 2 = (0, 1], which is evidently not complete, and con-
struct a sequence .%; C %5 C --- of g-algebras in the following way. For n = 1,
2, ..., let

{1, 0<w<1/n,
en(@) =1 n<w<1,

6 ={AcQ: A={w: p,(w) e B} forsome Be HAR)}

andlet #,= o{&1, ..., €} be the smallest o-algebra containing the sets €7, . . . , €.
Clearly % € %5 < ---. Let & = o(U.%,) be the smallest o-algebra containing
all the .%,,. Consider the measurable space (2, .%#,) and define a probability measure
P, on it as follows:

P (1) e = { g B D EE

where B" = Z(R"). It is easy to see that the family {P,} is consistent: if A € %,
then P,1(A) = P,(A). However, we claim that there is no probability measure P
on (£2,.%) such that its restriction P |.%, (i.e., the measure P considered only on
sets in .%,) coincides with P, for n = 1,2, ... . In fact, let us suppose that such a
probability measure P exists. Then

Plo: p1(w) = =pu(w) =1} = Po{w: p1(w) = --- = pulw) = 1} = 1
19)

forn=1,2,....But

{w:pi(w) = =pulw) =1} = (0,1/n) | &,

which contradicts (19) and the hypothesis of countable additivity (and therefore
continuity at the “zero” &) of the set function P.
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We now give an example of a probability measure on (R*, Z(R™)). Let F1(x),
Fs(x), ... be a sequence of one-dimensional distribution functions. Define the func-
tions G(x) = F1(x), Ga(x1,x2) = F1(x1)F2(x2), ..., and denote the corresponding
probability measures on (R, Z(R)), (R?, %(R?)),... by P1,Ps,... . Then it fol-
lows from Theorem 3 that there is a measure P on (R*, 2(R™)) such that

P{xe R*: (x1,...,x,) € B} = P,(B), Be A[R"),
and, in particular,
P{xeR®: x1 <ai,...,x, <a,} = Fi(a1) - Fu(a,).

Let us take F;(x) to be a Bernoulli distribution,

0, x <0,
Fi(x): q, OSX<L
1 x>1.

3

Then we can say that there is a probability measure P on the space (2 of sequences
of numbers x = (x1,xa,...), x; = 0 or 1, together with the o-algebra of its Borel
subsets, such that

. _ _ _ 3Ya; n—Xa;
P{x:x1 =a1,...,x, = a,} = p~“q .

5. The measurable spaces (R”, Z(R")). Let T be an arbitrary set of indices t € T
and R, a real line corresponding to the index . We consider a finite unordered set
T = [t,...,t,] of distinct indices ;, t; € T, n > 1, and let P; be a probability
measure on (R*, Z(R")), where R* = R;, X --- X R, .

We say that the family {P} of probability measures, where T runs through all fi-
nite unordered sets, is consistent if, for any sets T = [t1,...,5,] and o = [s1,..., 5]
such that ¢ < T we have

Po{(xsyyvyXg): (XgyyevyXs) € BY = Pe{(xey5 .y %,) 0 (Xsy,--+,%5) € B}
(20)
for every B € (R°).

Theorem 4 (Kolmogorov’s Theorem on the Extension of Measures in
(RT, B(R))). Let {P+} be a consistent family of probability measures on (R*, B(R")).
Then there is a unique probability measure P on (R, 2(R")) such that

P((B)) = P«(B) 21

for all unordered sets T = |11, ...,t,] of different indices t; € T, B € B(R") and
I (B) = {x €R": (x,...,x,) € B}.
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PROOF. Let the set B € & (RT). By Theorem 3 of Sect. 2 there is an at most count-
able set S = {s1,52,...} © T such that B = {x: (x;,,%,,...) € B}, where
B € B(RS), R® = Ry, x Ry, x ---. In other words, B = .%5(B) is a cylinder
set with base B € Z(R5).

We can define a set function P on such cylinder sets by putting

P(75(B)) = Ps(B), (22)

where Py is the probability measure whose existence is guaranteed by Theorem 3.
We claim that P is in fact the measure whose existence is asserted in the theorem.
To establish this we first verify that the definition (22) is consistent, i.e., that it leads
to a unique value of P(f?) for all possible representations of B; and second, that this
set function is countably additive.

Let B = .7, (B;) and B = .7, (By). It is clear that then B = .75, s, (B3) with
some B3 € Z(R5152); therefore it is enough to show that if S < " and B € Z(R5),
then Ps/(B') = Pg(B), where

B = {(xy,Xg,. ) (X, %s,,.-.) € B}

with ' = {s},s5,...},S = {s1,52,...}. But by the assumed consistency condi-
tion (20) this equation follows immediately from Theorem 3. This establishes that
the value of P(B) is independent of the representation of B.

To verify the countable additivity of P, let us suppose that {B,,} is a sequence
of pairwise disjoint sets in Z(R”). Then there is an at most countable set S = T
such that B, = #5(B,) for all n > 1, where B, € %(R®). Since Py is a probability
measure, we have

P(X8,) =P (X s4(5)) = Ps(X8,) = Yos(B)
= D PUs(By) = > | P(By).

Finally, property (21) follows immediately from the way in which P was con-
structed. This completes the proof.
|

Remark 5. We emphasize that T is any set of indices. Hence, by the remark after
Theorem 3, the present theorem remains valid if we replace the real lines R, by
arbitrary complete separable metric spaces €2, (with o-algebras generated by open
sets).

Remark 6. The original probability measures {P;} were assumed defined for un-

ordered sets T = [t1,...,1t,] of different indices. In this connection it is worth to
emphasize that these measures {P;} as functions of T = [#1,...,1,] are actually
functions of sets consisting of n (distinct) points {t1}, ..., {t,}. (For example, the

unordered collections [a, ] and [b, a] should be regarded as the same, since they
determine the same set consisting of the points {a} and {b}.) It is also possible to
start from a family of probability measures {P.} where T runs through all ordered
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sets T = (11, ... ,1,) of different indices. (Then the collections (a, b) and (b, a) con-
sisting of the same points have to be treated as different, since they differ by the
order of their elements.) In this case, in order to have Theorem 4 hold we have to
adjoin to (20) a further consistency condition:

P(lla--<7[;x)(At1 XX Ay) = P([,17~--,lin)(Alil X X At,-,,)» (23)

where (i1,...,I,) is an arbitrary permutation of (1,...,n) and A, € ZA(R,,). The
necessity of this condition for the existence of the probability measure P follows
from (21) (with P, ., (B) replaced by P, . . \(B)).

From now on we shall assume that the sets T under consideration are unordered.
If T is a subset of the real line (or some completely ordered set), we may assume

without loss of generality that the set T = [f1,...,1,] satisfies 1 < f2 < -+ < f,.
Consequently it is enough to define “finite-dimensional” probabilities only for sets
T=[t,...,t;] forwhicht; <o <--- <1,

Now consider the case T = [0, o0). Then R is the space of all real functions x =
(x,)r>0- A fundamental example of a probability measure on (R(>:®), B(RI**))) is
Wiener measure, constructed as follows.

Consider the family {¢;(y|x)};>0 of Gaussian densities (as functions of y for
fixed x):

e 0072y e R

1
or(y]x) = \/ﬁ

and foreach T = [t1,...,4,], 1 <2 <--- <1y, and each set
B:[1><-~~><],17 Ik:(ak,bk),
construct the measure P;(B) according to the formula

Pi(I; X -+ x 1)
= S]l o S]n Pty (611 | O)‘)Dlz—ll (612 |(11) C Ply—ty—a (aﬂ |a’1—1) dal e da”
(24)

(integration in the Riemann sense). Now we define the set function P for each cylin-
derset &, (I x -+ x1L,)={xeR":x, €h,..., x, €1,} by taking

P(L’aflwwfn(ll XX In>) = P[fl,...,z,,](ll X X In)-

The intuitive meaning of this method of assigning a measure to the cylinder set
Iy (1 x -+ x 1) is as follows.

The set ., . (I1 x --- x I,) is the set of functions that at times 71, ...,1,
pass through the “windows” Iy, ..., I, (see Fig. 24 in Sect.2). We shall interpret
On—t_, (ak | ak—1) day. as the probability that a particle starting at a;_, arrives in
time #; — f;—1 at the da-neighborhood of a;. Then the product of densities that
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appears in (24) describes a certain independence of the increments of the displace-
ments of the moving “particle” in the time intervals

[Oa tl]a [tla t2]7 R [til—l’ tn]'

The family of measures {P;} constructed in this way is easily seen to be con-
sistent, and therefore can be extended to a measure on (R(O®), Z(RI%*))). The
measure so obtained plays an important role in probability theory. It was introduced
by N. Wiener and is known as Wiener measure.

6. PROBLEMS

1. Let F(x) = P(—o0, x]. Verify the following formulas:

P(a,b] = F(b) — F(a),  P(a,b) = F(b—) — F(a),
Pla,b] = F(b) = F(a=), Pla,b) = F(b—) — F(a~),
Plx} = Flx) = F(x—),

where F(x—) = limyy, F(y).

2. Verity (7).

Prove Theorem 2.

4. Show that a distribution function F = F(x) on R has at most a countable set
of points of discontinuity. Does a corresponding result hold for distribution
functions on R"?

5. Show that each of the functions

et

1, x+y>0,
G(W)_{a x+y<0,

G(x,y) = [x +y], the integral part of x + y,

is continuous on the right and nondecreasing in each argument, but is not a
(generalized) distribution function on R?.

6. Let u be the Lebesgue—Stieltjes measure generated by a continuous general-
ized distribution function. Show that if the set A is at most countable, then
u(A) = 0.

7. Let ¢ be the cardinal number of the continuum. Show that the cardinal number
of the o-algebra of Borel sets in R" is ¢, whereas that of the o-algebra of
Lebesgue measurable sets is 2¢.

8. Let (2, #, P) be a probability space and </ an algebra of subsets of {2 such
that o (/) = F. Using the principle of appropriate sets, prove that for every
€ > 0 and B € .7 there is a set A € 7 such that

PAAB)<e

9. Let P be a probability measure on (R", Z(R")). Show that, for every £ > 0
and B € #(R"), there are a compact Borel set A; and an open Borel set A,
such that Ay € B © Ay and P(A2\A1) < e. (This was used in the proof of
Theorem 3.)
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10.

12.
13.
14.

15.

16.

17.

18.

19.

20.

21.

2 Mathematical Foundations of Probability Theory

Verify the consistency of the family of measures {P.} constructed by means
of the formula P;(B) = P(.%;(B)), where P is a given probability measure.
(Compare with (21).)

. Verify that the “distributions” given in Tables 2.2 and 2.3 are probability dis-

tributions indeed.
Show that the system </ in Remark 2 is a o-algebra.
Show that the set function ©(A), A € o , introduced in Remark 2, is a measure.
Give an example showing that a finitely-additive (but not countably-additive)
measure /o on an algebra 27 need not admit an extension to a countably addi-
tive measure on o (/).
Show that any finitely-additive probability measure defined on an algebra o/
of subsets of {2 can be extended to finitely-additive probability on all subsets
of Q.
Let P be a probability measure on a o-algebra .# of subsets of 2. Suppose a
set Cis such that C < 2, but C ¢ .%. Show that P can be extended (preserving
the countable additivity property) to o (% U {C}).
Show that the support of a continuous distribution function F is a perfect set
(i.e., supp F is a closed set such that for any x € supp F and € > 0 there is
y € supp F such that 0 < |x — y| < &). Show that the support of (an arbitrary)
distribution function is a closed set.
Prove the following fundamental result on the structure of distribution func-
tions (see the end of Subsection 1): each distribution function is a convex com-
bination

F = ale + a2Fabc + a3Fsc

of a discrete (Fq), absolutely continuous (F,p) and singular continuous (Fg)
distribution functions, «o; > 0, a1 + oo + az = 1.

Let F = F(x) be the Cantor distribution function. Show that any point x in the
Cantor set .4 of its points of increase (which is the same as the support of F)

can be represented as x = >, ) \where cy (x) = 0 or 2, and that for such

3k
points F(x) = 37, gﬁﬂ).
Let C be a closed subset of R. Construct a distribution function F with

suppF = C.
Show that the distribution function of the binomial distribution (Subsection 1
of Sect.2)

By(m;p) = Pufv <m} = > Cipfq"™*
k=0

can be expressed in terms of the (incomplete) beta-function:

1
B,(m;p) = ! . f K1 — x)"" " dx

B(m+1,n—
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22.

23.

24.

25.

26.

. .. . . Ak
Show that the Poisson distribution function F(n;X) = >}/_, % is ex-

pressed in terms of the (incomplete) gamma-function:
1 0
F(n; \) = —f X'e " dx.
n! A

Along with the mean value and standard deviation, which serve as location
and scale parameters of a distribution, the following two parameters describing
the shape of a density function f = f(x) are customarily used: the skewness
(related to asymmetry of the distribution)

n — H3
'3 0_3 )
and the kurtosis (“peakedness”)
Ha
U= T

where e = § (x — p)*f(x) dx, p = {xf(x) dx, 0% = po.
Find the values of a3 and a4 for the distributions listed in Table 2.3 (Subsec-
tion 1).
Show that for a random variable X having the gamma-distribution (see Ta-
ble 2.3) with § = 1
'k + )
I'()
In particular, EX = o, EX? = a(a + 1) and hence Var X = a.

Find the analogs of these formulas when 5 # 1.
Show that for a random variable X with beta-distribution (see Table 2.3)

EXx* =

Ex* = M
B(r,s)

The binomial distribution P,{v = r} = Cip’¢"~", 0 < r < n, consists of
probabilities that the number v of “successes” in n trials is r, where p is the
probability of “success” in a single trial and the number 7 of trials is fixed in
advance. Now we ask how many trials are needed for r “successes” to occur.
Namely, let T denote the number of trials when r “successes” occur for the
first time (unlike the binomial case, r is a given number here and the number
of trials is random). We are interested in the probabilities P"{t = k}, k =
r,r + 1,..., which form what is known as the negative binomial distribution.
Show that forr = 1,2, ...

P(t=k) = C,ij"qk_’, k=rr+1,...,

and E"1 = rg/p.
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4 Random Variables: I

1. Let (2, #) be a measurable space and let (R, Z(R)) be the real line with the
system Z(R) of Borel sets.

Definition 1. A real function £ = &(w) defined on (Q,.%) is an .#-measurable
function, or a random variable, if

{w: é(w)eB}e F (1)
for every B € A(R); or, equivalently, if the inverse image
£71(B) = {w: &(w) e B}
is a measurable set in {.

When (2, %) = (R, (R")), the Z(R")-measurable functions are called Borel
functions.

The simplest example of a random variable is the indicator I4 (w) of an arbitrary
(measurable) set A € 7.

A random variable ¢ that has a representation

E(w) = > xila, (W), )
i=1

where > A; = Q, A; € Z, is called discrete. If the sum in (2) is finite, the random
variable is called simple.

With the same interpretation as in Sect.4 of Chap. 1, we may say that a ran-
dom variable is a numerical property of an experiment, with a value depending on
“chance.” Here the requirement (1) of measurability is fundamental, for the follow-
ing reason. If a probability measure P is defined on (£2, %), it then makes sense
to speak of the probability of the event {{(w) € B} that the value of the random
variable belongs to a Borel set B.

We introduce the following definitions.

Definition 2. A probability measure P¢ on (R, Z(R)) with
P¢(B) = P{w: {(w) € B}, Be A(R),
is called the probability distribution of £ on (R, (R)).
Definition 3. The function
Fe(x) = P(w: {(w) <x}, x€eR,

is called the distribution function of €.
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For a discrete random variable the measure P¢ is concentrated on an at most
countable set and can be represented in the form

Pe(B) = > plw), 3)
{k: x.eB}
where p(xy) = P{{ = xi} = AFe(xp).
The converse is evidently true: If P is represented in the form (3) then ¢ is a
discrete random variable.
A random variable ¢ is called continuous if its distribution function Fe(x) is
continuous for x € R.
A random variable ¢ is called absolutely continuous if there is a nonnegative
function f = f¢(x), called its density, such that

Fe) = | fi)dy xer @

(the integral can be taken in the Riemann sense, or more generally in that of
Lebesgue; see Sect. 6 below).

2. To establish that a function §¢ = £(w) is a random variable, we have to verify
property (1) for all sets B € .%. The following lemma shows that the class of such
“test” sets can be considerably narrowed.

Lemma 1. Let & be a system of sets such that o(&) = PB(R). A necessary and
sufficient condition that a function § = £(w) is F -measurable is that

{w: {(w) e E} e F Q)
forallE € &.

PROOEF. The necessity is evident. To prove the sufficiency we again use the principle
of appropriate sets (Sect. 2).

Let 2 be the system of those Borel sets D in %(R) for which £71(D) € Z.
The operation “form the inverse image” is easily shown to preserve the set-theoretic
operations of union, intersection, and complement:

51<LQJBQ> - L&JF(B@),
5—1<QBQ> = 05_1(3“)’ ©)

§1(Ba) = &' (Ba)-
It follows that Z is a o-algebra. Therefore

&< 9 < BR)
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and

o(&) € o() = D < B(R).
But (&) = %(R) and consequently 2 = Z(R).

[}

Corollary. A necessary and sufficient condition for & = £(w) to be a random vari-

able is that
{w: f(w) <x} e F

for every x € R, or that
{w:E(w) <x} eF

for every x € R.
PROOF. The proof is immediate, since each of the systems
& = {x:x <c¢, ceR},

& ={x:x<c, ceR}

generates the o-algebra Z(R), i.e., 0(&1) = 0(&2) = HB(R) (see Sect. 2).

m]

The following lemma makes it possible to construct random variables as func-
tions of other random variables.

Lemma 2. Let ¢ = ¢(x) be a Borel function and & = £(w) a random variable.
Then the compositionn = po¢&, i.e., the function n(w) = p(£(w)), is also a random
variable.

PROOF. This statement follows from the equations
{win(w) e B} = {w: p(§(w)) € B} = {w: Ew)e ™ B)}eF (D)

for B € B(R), since o~ (B) € B(R).

O

Therefore if £ is a random variable, so are, for examples, £, €T = max(¢, 0),
&~ = —min(¢,0), and |€], since the functions x", x™, x~ and |x| are Borel functions
(Problem 3).

3. Starting from a given collection of random variables {¢,}, we can construct new
functions, for example, Y~ | |&/, limsup &,, liminf &,, etc. Notice that in general
such functions take values on the extended real line R = [—o0, oo]. Hence it is
advisable to extend the class of .%-measurable functions somewhat by allowing
them to take the values +o0.

Definition 4. A function £ = £(w) defined on (€2, .%) with values in R = [—00, ©0]
will be called an extended random variable if condition (1) is satisfied for every
Borel set B € Z(R), where Z(R) = o(#(R), ).

The following theorem, despite its simplicity, is the key to the construction of the
Lebesgue integral (Sect. 6).
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Theorem 1. (a) For every random variable § = £(w) (extended ones included)
there is a sequence of simple random variables &1,&s, . .. such that |&,| < [¢|
and &,(w) — &(w), n — oo, forall w € Q.

(b) If also £(w) > 0, there is a sequence of simple random variables &1, &, . . . such
that £, (w) 1 &(w), n — oo, for all w € Q.

PROOF. We begin by proving the second statement. Forn = 1,2, ..., put
n2" k—1
&n(w) = Z TIk,n(w) + 1l (g (w)yzn} (W),
k=1

where I , is the indicator of the set {(k —1)/2" < £(w) < k/2"}. It is easy to verify
that the sequence &,(w) so constructed is such that &,(w) 1 £(w) for all w € Q). The
first statement follows from this if we merely observe that £ can be represented in
the form & = £* — £~ This completes the proof of the theorem.

|

We next show that the class of extended random variables is closed under point-
wise convergence. For this purpose, we note first that if &1, &9, . . . is a sequence of
extended random variables, then sup &,, inf&,, limsup &, and liminf &, are also
random variables (possibly extended). This follows immediately from

{w: sup&, > x} = U{w: & > x} € F,

{w: inf§, <x} = U{w: & <x} € F,

and
limsupé&, = inf supé&,, liminf¢, =sup inf &,.
T m>n n m2n
Theorem 2. Let &1, &, . .. be a sequence of extended simple random variables and

¢(w) =1lim¢&,(w), w € Q. Then {(w) is also an extended random variable.

PROOF. It follows immediately from the remark above and the fact that

{w: (W) < x} = {w: lim&,(w) < x}
= {w: limsup &, (w) = liminf &,(w)} n {limsup &,(w) < x}
= Q n {limsup &, (w) < x} = {limsup§,(w) < x} € .Z.
m]
4. We mention a few more properties of the simplest functions of random variables
considered on the measurable space (€2,.%) and possibly taking values on the ex-
tended real line R = [—o0, 00].*

* We shall assume the usual conventions about arithmetic operations in R: if a € R then a + o0 =
+00,a/+t 0 =0;a-0 =0wifa>0,anda -0 = —w0ifa < 0; 0 (+£o) =0, 0 + 0O =
00, —00 — 00 = —00.
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If £ and 7 are random variables, £ + 1, & — n, £, and £/n are also random
variables (assuming that they are defined, i.e., that no indeterminate forms like 0o —
00, 00/, a/0 occur).

In fact, let {£,} and {7, } be sequences of simple random variables converging to
& and 7 (see Theorem 1). Then

§nEmn — 2,
Enlln — 57%
& R
M+ yl=0y (@) 0
The functions on the left-hand sides of these relations are simple random variables.
Therefore, by Theorem 2, the limit functions £ + 7, £n and /7 are also random
variables.

5. Let £ be arandom variable. Consider sets from .% of the form {w: {(w) € B}, B€
2 (R). 1t is easily verified that they form a o-algebra, called the o-algebra generated
by &, and denoted by .Z; or o (&).

If  is a Borel function, it follows from Lemma 2 that the functionn = ¢ o £is
also a random variable, and in fact ﬁg-measurable, i.e., such that

{w:n(w) e B} e F¢, Be AB(R)
(see (7)). It turns out that the converse is also true.

Theorem 3. Let ) = n(w) be an F¢-measurable random variable. Then there is a
Borel function p such that n = @ o £, i.e. n(w) = p(§(w)) for every w € Q.

PROOF. Let @ be the class of .%¢-measurable functions 7 = 1(w) and <i>§ the class
of F¢-measurable functions representable in the form ¢ o £, where ¢ is a Borel
function. It is clear that ® < ®. The conclusion of the theorem is that in fact
D = g

Let A € F¢ and 1)(w) = Ix(w). Let us show that 1) € ®. In fact, if A € F¢ there
isaB e ZA(R)suchthat A = {w: {(w) € B}. Let

1, xeB,
XB(X)_{O x¢ B.

Then I4(w) = x5(&(w)) € P¢. Hence it follows that every simple .7 -measurable
function Y| ¢;l4,(w), A; € F¢, also belongs to Pe.

Now let 7 be an arbitrary .%#¢-measurable function. By Theorem 1 there is a se-
quence of simple .#¢-measurable functions {7, } such that n,(w) — n(w), n — o,
w € . As we just showed, there are Borel functions ¢, = ¢,(x) such that
M (w) = ¢n(€(w)). Moreover @, ({(w)) — n(w), n — ©, w € Q.

Let B denote the set {x € R: lim, ¢,(x) exists}. This is a Borel set. Therefore

lim ¢, (x), x€B,
p(x) =4 "
0, x¢B

is also a Borel function (see Problem 6).
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But then it is evident that n(w) = lim, ¢,({(w)) = @({(w)) for all w € Q.
Consequently &)5 = dg.

m]
6. Consider a measurable space (£2,.%) and a finite or countably infinite decompo-
sition & = {D1, D>, ...} of the space {2: namely, D; € .% and ). D; = Q. We form
the algebra ./ containing the empty set & and the sets of the form »; D, where
the sum is taken in the finite or countably infinite sense. It is evident that the system
&/ is a monotonic class, and therefore, according to Lemma 2 of Sect. 2, the algebra
&/ is at the same time a o-algebra, denoted o () and called the o-algebra generated
by the decomposition 2. Clearly 0(2) < Z.

Lemma 3. Ler £ = &(w) be a 0(D)-measurable random variable. Then € is repre-
sentable in the form

§(w) = Y. xudp, (w), ®)
k=1

where x; € R, i.e., £(w) is constant on the elements Dy, of the decomposition, k > 1.

PROOF. Let us choose a set Dy and show that the o(2)-measurable function & has
a constant value on that set. For this purpose, denote

xp =sup[c: D n{w: &(w) < c} =2].

Since {w: &(w) < x} = |J{w: &(w) < r}, where the union is over all rational
r < xx, we have
Dy n{w: {(w) < x} = @.

Now let ¢ > x;. Then Dy N {w: £(w) < ¢} # &, and since the set {w: {(w) <
c} has the form ), D, where the sum is over a finite or countable collection of
indices, we have

Dy n{w: {(w) < ¢} = Dy.

Hence, it follows that, for all ¢ > x,
Dyniw: {(w) > ¢} =@,

and since {w: &(w) > x} = (J{w: &(w) > r}, where the union is over all rational
r > xi, we have
Dy n{w: {(w) > x} = 2.

Consequently, Dy N {w: {(w) # x¢} = @, and therefore
Dy < {w: £(w) = xi}

asrequired. O
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7. PROBLEMS

1.

10.

11.

Show that the random variable £ is continuous if and only if P(§ = x) = 0 for
allx e R.

If |¢] is % -measurable, is it true that £ is also .% -measurable?

Prove that x", x* = max(x,0), x~ = —min(x,0), |x| = xT + x~ are Borel
functions.

If £ and 7 are .% -measurable, then {w: {(w) = n(w)} € F.

Let £ and 7 be random variables on (2,.%), and A € .%. Then the function

(W) =&(w) - Ia +nw) - I

is also a random variable.
Let &, ..., &, be random variables and ¢(x1, ..., x,) a Borel function. Show
that (&1 (w), . . ., & (w)) is also a random variable.

. Let ¢ and 1 be random variables, both taking the values 1, 2, ..., N. Sup-

pose that %, = .%,. Show that there is a permutation (iy,i2,...,iy) of
(1,2,...,N) such that {w: { = j} = {w:n =i} forj=1,2,...,N.

Give an example of a random variable £ having a density function f(x) such
that lim,_,, f(x) does not exist and therefore f(x) does not tend to zero as
n — +oo.

Hint. One solution is suggested by the comment following (5) in Sect. 4. Find
another solution, where the required density is continuous.

. Let £ and 1 be bounded random variables (|| < c¢1, || < ¢2). Prove that if for

allm,n>1
E¢" =E€" Edf,

then £ and 7 are independent.

Let £ and 7 be random variables with identical distribution functions F¢ and
F,. Prove that if x € R and {w: {(w) = x} # @, then there exists y € R such
that {w: {(w) = x} = {w: n(w) = y}.

Let E be an at most countable subset of R and £ a mapping 2 — E. Prove
that £ is a random variable on (€, %) if and only if {w: ¢(w) = x} € .F for
allx e E.

5 Random Elements

1. In addition to random variables, probability theory and its applications involve
random objects of more general kinds, for example random points, vectors, func-
tions, processes, fields, sets, measures, etc. In this connection it is desirable to have
the concept of a random object of any kind.

Definition 1. Let (€2, .%) and (E, &) be measurable spaces. We say that a function
X = X(w), defined on ) and taking values in E, is % /& -measurable, or is a random
element (with values in E), if
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{w: X(w)e B} e F (1)

for every B € &. Random elements (with values in E) are sometimes called E-valued
random variables.

Let us consider some special cases.

If (E,&) = (R, #(R)), the definition of a random element is the same as the
definition of a random variable (Sect. 4).

Let (E,&) = (R",%(R")). Then a random element X(w) is a “random point”
in R". If 7, is the projection of R" on the kth coordinate axis, X(w) can be repre-
sented in the form

X<w) = (£I(W)7 R gn(w))’ 2

where &, = m; 0 X.
It follows from (1) that & is an ordinary random variable. In fact, for B € Z(R)
we have

{w:&(w)eBy ={w: & (W) ER,.... &1 EREEB i1 ER, ..., & (w) ER}
={w: X(w)eERX - xRXBXRx---xR)} e F,

sinceR X - X RXBXRX -+ x Re B(R").

Definition 2. An ordered set (1, (w), ..., 7,(w)) of random variables is called an
n-dimensional random vector.

According to this definition, every random element X (w) with values in R" is
an n-dimensional random vector. The converse is also true: every random vector
X(w) = (&4 (w), ..., &(w)) is a random element in R". In fact, if By € B(R), k =
1, ..., n,then

{w: X(w)e (By x -+ X B,)} = ﬂ{w: &(w) € By} e £.

But #(R") is the smallest o-algebra containing the sets B x - - - x B,,. Consequently
we find immediately, by an evident generalization of Lemma 1 of Sect. 4, that when-
ever B € #(R"), the set {w: X(w) € B} belongs to .%.

Let (E,&) = (Z,B(Z)), where Z is the set of complex numbers x + iy, x,y € R,
and B(Z) is the smallest o-algebra containing the sets {z: z = x + iy, a1 < x <
b1, az <y < by}. It follows from the discussion above that a complex-valued
random variable Z(w) can be represented as Z(w) = X(w) + i¥(w), where X(w)
and Y(w) are random variables. Hence we may also call Z(w) a complex random
variable.

Let (E,&) = (RT,#(R")), where T is a subset of the real line. In this case
every random element X = X(w) can evidently be represented as X = (&)er with
& = m 0 X, and is called a random function with time domain 7.
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Definition 3. Let T be a subset of the real line. A set of random variables X = (&) e
is called a random process™ with time domain T.

IfT ={1,2,...}, wecall X = (£1,&,...) a random process with discrete time,
or a random sequence.

If T =[0,1], (—o0,00), [0,0),..., we call X = (&)ser a random process with
continuous time.

It is easy to show, by using the structure of the o-algebra Z(RT) (Sect. 2) that
every random process X = (& ).er (in the sense of Definition 3) is also a random
function (a random element with values in R7).

Definition 4. Let X = (&)1 be a random process. For each given w € ) the func-
tion (& (w))ser is said to be a realization or a trajectory of the process corresponding
to the outcome w.

The following definition is a natural generalization of Definition 2 of Sect. 4.
Definition 5. Let X = (&),cr be a random process. The probability measure Py on
(RT, Z(R")) defined by

Px(B) = P{w: X(w) € B}, Be %(R"),
is called the probability distribution of X. The probabilities
P, ..., (B)=P{w: (&,,....&,) B}, Be B[R

withty < to < --- < t,, t; € T, are called finite-dimensional probabilities (or
probability distributions). The functions

Fio o nxa,..x)=P{w: & <xi,...,&, < x}

withty <ty < --- <t,, t; € T, are called finite-dimensional distribution functions
of the process X = (&) 7.

Let (E,&) = (C,%(C)), where C is the space of continuous functions x =
(x)er on T = [0,1] and Hy(C) is the o-algebra generated by the open sets
(Sect.2). We show that every random element X on (C, %,(C)) is also a random
process with continuous trajectories in the sense of Definition 3.

In fact, according to Sect.2 the set A = {x € C: x, < a} is open in %, (C).
Therefore

{w: &(w) <a} ={w: X(w) e A} € Z.

On the other hand, let X = (&,(w)):er be a random process (in the sense of Defi-
nition 3) whose trajectories are continuous functions for every w € €. According to
(17) of Sect.2

{xeC:x €S,(x")} = ﬂ{xe C: |x, —x?k\ < p},
Tk

* Or stochastic process (Translator).
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where #; are the rational points of [0, 1], x° is an element of C and

S,(x%) = {xe C: sup|x, — x| < p}.
teT

Therefore

{w: X(w) € $,(X°(w }*ﬂ{w [ (w) — & (W) < p} € F

and therefore we also have {w: X(w) € B} € # for every B € %,(C).

Similar reasoning will show that every random element of the space (D, %, (D))
can be considered as a random process with trajectories in the space of functions
with no discontinuities of the second kind; and conversely.

2. Let (©2,.%,P) be a probability space and (E,, &,) measurable spaces, where «
belongs to an (arbitrary) set 2.

Definition 6. We say that the .% /&,-measurable functions (X,(w)), o € 2, are

independent (or mutually independent) if, for every finite set of indices oy, .. ., o,
the random elements X, , . . . , X,, are independent, i.e.
P(Xa, €Bayy -+, Xo, € Ba,) = P(Xa, €Ba,) -+ P(Xa, € Ba,), 3)

where B, € &,.

Let 2 = {1,2, ...,n}, let, be random variables, a € 2, and

Fe(x1,...,x,) = P& <x1,...,& < x,)

be the n-dimensional distribution function of the random vector £ = (&1,...,&,).
Let F¢,(x) be the distribution functions of the random variables &, i = 1, ..., n.
Theorem. A necessary and sufficient condition for the random variables &1, . . ., &,

to be independent is that

Fg(xl,...,x,,)=F51(x1)--'Fg”(xn) (4)
forall (x1,...,x,) € R".

PROOE. The necessity is evident. To prove the sufficiency we puta = (as, ..., a,),
b= (b1,...,by),

Pe(a,b] = P{w: a1 <& <bi,...,a, <& < by},
Pg(ai, bi] = Pla; < & < b;}.

Then

n

Pg(bl,b] = H[Fﬁy(b FE, al HP& alv l

i=1
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by (7) of Sect. 3 and (4), and therefore
Pl eh,....& el =][P{&el}. )
i=1

where I; = (a;, b;].
We fix Is, . . ., I, and show that

P{¢1eBi,&ely,... & e} =P{& eB} | [P{& et} (6)

i=2

for all By € A(R). Let .4 be the collection of sets in Z(R) for which (6) holds
(the “principle of appropriate sets,” Sect. 2). Then .# evidently contains the algebra
&/ of sets consisting of sums of disjoint intervals of the form I; = (a1, b;]. Hence
o < M < PAB(R). From the countable additivity (and therefore continuity) of
probability measures it also follows that .# is a monotonic class. Therefore (see
Subsection 1 of Sect. 2)

w) < M < B(R).

But u(&) = o(«) = ZB(R) by Theorem 1 of Sect. 2. Therefore .# = B(R).

Thus (6) is established. Now fix By, /s, ..., I,; by the same method we can es-
tablish (6) with /5 replaced by the Borel set B;. Continuing in this way, we can
evidently arrive at the required equation,

P(gl € Bla ce 75}1 € Bn) = P(fl € Bl) e P(gn € Bn)a

where B; € Z(R). This completes the proof of the theorem.
O

3. PROBLEMS

1. Let &y, ..., &, be discrete random variables. Show that they are independent
if and only if

P(gl =-x15"'7§n =.Xn) = HP(& =-xi)
i=1

for all real x1, ..., X,.

2. Carry out the proof that every random function X (w) = (§(w))ser is a random
process (in the sense of Definition 3) and conversely.

3. Let X, ..., X, be random elements with values in (E1, &1), ..., (E,, &),
respectively. In addition let (E, &7), ..., (E,, &/) be measurable spaces and
letgy, ...,g.be &1/87, ..., &,/&,-measurable functions, respectively. Show
that if Xy, ..., X, are independent, the random elements g1 0 X3, ..., g, 0 X,
are also independent.

4. Let X1, X, ... be an infinite sequence of exchangeable random variables (i.e.,
such that the joint distribution of any collection of k random variables with
distinct subscripts, say, X;, , . .., X;,, depends only on k and does not depend on
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the specific choice of pairwise distinct iy, . . ., iy; compare with the definition in
Problem 11 of Sect. 1). Prove that if EX? < 00, n > 1, then Cov(X1, X2) > 0.
5. Let &, n, ¢ be independent random variables. Prove that & + 1 and (? are

independent.

6. Let&1,...,&0, M, - - -, 1M, be random variables. Consider the random vectors
X=(&,...,&) and Y = (n1,...,7,). Suppose the following conditions are
fulfilled:

(1) The random variables &1, . . ., &, are independent;
(i1) The random variables 71, ..., 7, are independent;

(iii)) The random vectors X and Y treated respectively as R”- and R"-valued
random elements are independent.

Prove that the random variables &y, ...,&,,m,...,n, are mutually inde-
pendent.

7. Suppose X = (&1,...,&y) and Y = (n1,...,n,) are random vectors such that
the random variables &1, . .., &y, 11, - - . , 1), are mutually independent.

(i) Prove that the random vectors X and Y treated as random elements are
independent (compare with Problem 6).

(i) Letf: R™ — R, g: R" — R be Borel functions. Prove that the random
variables f (&1, ..., &,) and g(11, . .., 7,) are independent.

6 Lebesgue Integral: Expectation

1. When (Q, %, P) is a finite probability space and £ = £(w) is a simple random
variable,

Ew) = D xuda, (W), (1)
k=1

the expectation E & was defined in Sect. 4 of Chap. 1. The same definition of the
expectation E £ of a simple random variable £ can be used for any probability space
(Q,.7,P). That is, we define

E<= ) xP(A). 2)
k=1

This definition is consistent (in the sense that E £ is independent of the particular
representation of £ in the form (1)), as can be shown just as for finite probability
spaces. The simplest properties of the expectation can be established similarly (see
Subsection 5 of Sect. 4, Chap. 1).

In the present section we shall define and study the properties of the expecta-
tion E £ of an arbitrary random variable. In the language of analysis, E £ is merely
the Lebesgue integral of the % -measurable function £ = £(w) with respect to the
measure P. In addition to E £ we shall use the notation {, £(w) P(dw) or §, £ d P.
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2. Let £ = £(w) be a nonnegative random variable. We construct a sequence of
simple nonnegative random variables {¢,},>1 such that §,(w) 1 &(w), n — oo, for
each w € {2 (see Theorem 1 in Sect. 4).

Since E¢, < E&,11 (cf. Property (3) in Subsection 5 of Sect.4, Chap. 1), the
limit lim,, E &, exists, possibly with the value +o0.

Definition 1. The Lebesgue integral of the nonnegative random variable £ = £(w),
or its expectation, is
E¢=1limE¢,. 3)

To see that this definition is consistent, we need to show that the limit is indepen-
dent of the choice of the approximating sequence {£,}. In other words, we need to
show thatif &, 1 £ and n,, 1 &, where {n,,} is a sequence of simple functions, then

limE¢, = lim En,. 4)
n m
Lemma 1. Let 1) and &, be simple nonnegative random variables, n > 1, and

&1 &=

Then

PROOF. Lete > 0 and
Ay ={w: & >n—e}.
Itis clear that A, 1  and
§n = &ala, + &by, > Eala, > (0 — €)la,-
Hence by the properties of the expectations of simple random variables we find that
E & > E(n—e)ls, = Enla, —cP(A)
=En—Enly —¢P(A,) >En—CP(A,) —¢,

where C = max,, 7(w). Since ¢ is arbitrary, the required inequality (5) follows.

m]

It follows from this lemma that lim, E¢, > lim, Ew, and by symmetry
lim,, En,, > lim, E &,, which proves (4).

The following remark is often useful.

Remark 1. The expectation E £ of the nonnegative random variable ¢ satisfies

E¢&= sup Es, (6)
{seS: s<¢&}

where § = {s} is the set of simple random variables (Problem 1).
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Thus the expectation is well defined for nonnegative random variables. We now
consider the general case.
Let £ be a random variable and £+ = max(&, 0), £~ = —min(¢, 0).

Definition 2. We say that the expectation E £ of the random variable £ exists, or is
defined, if at least one of E £ and E £~ is finite:

min(E¢T, EET) <o

In this case we define
E¢=E¢t —E¢.

The expectation E£ is also called the Lebesgue integral of the function £ with re-
spect to the probability measure P.

Definition 3. We say that the expectation of £ is finite if E € < coand E €~ < oo.

Since |£] = £ + £, the finiteness of E £ is equivalent to E |£] < oo. (In this
sense one says that the Lebesgue integral is absolutely convergent.)

Remark 2. In addition to the expectation E &, significant numerical characteristics
of a random variable £ are the number E ¢ (if defined) and E |£]", r > 0, which are
known as the moment of order r (or rth moment) and the absolute moment of order
r (or absolute rth moment) of &.

Remark 3. In the definition of the Lebesgue integral {, £(w) P(dw) given above,
we supposed that P was a probability measure (P(2) = 1) and that the .%-
measurable functions (random variables) £ had values in R = (—o0, o0). Suppose
now that y is any measure defined on a measurable space (€2, .%) and possibly tak-
ing the value +c0, and that £ = £(w) is an .#-measurable function with values
in R = [—o0, o] (an extended random variable). In this case the Lebesgue inte-
gral XQ ¢(w) p(dw) is defined in the same way: first, for nonnegative simple & (by
(2) with P replaced by p), then for arbitrary nonnegative &, and in general by the
formula

€@ n(de) = | € nlaw) - | € nlaw)
Q Q Q
provided that no indeterminacy of the form co — co arises.

A case that is particularly important for mathematical analysis is that in which
(Q,F) = (R, ,%’( ) and p is Lebesgue measure. In this case the integral {, &(x)/(dx)

is written §, £(x)dx, or §°_&(x)dx, or (L) {* &(x)dx to emphasize its differ-

ence from the Rlemann 1ntegral R)(” » §(x)dx. 1f the measure 1 (Lebesgue—
Stieltjes) corresponds to a generalized distribution function G = G(x), the integral
SR is also called a Lebesgue—Stieltjes integral and is denoted by
(L-S) SR G(dx), a notation that distinguishes it from the corresponding
Rlemann—Stleltjes integral
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(see Subsection 11 below).

It will be clear from what follows (Property D) that if E ¢ is defined then so is the
expectation E(£1,) for every A € .Z. The notation E(&;A) or §, £ dP is often used
for E(&1,) or its equivalent, §, €14 d P. The integral §, £ d P is called the Lebesgue
integral of £ with respect to P over the set A.

Similarly, we write S 4 & du instead of SQ & - I dp for an arbitrary measure p. In
particular, if i is an n-dimensional Lebesgue—Stieltjes measure, and A = (a1b1] x

- X (ay, by, the notation

by by
J sl &(xay oony xn) p(dxy, ..., dx,) instead of J Edu,
ay ay A

is often used. If u is Lebesgue measure, we write simply dx; - - - dx, instead of
w(dxy, ..., dx,).

3. Properties of the expectation E & of a random variable .
A. Let ¢ be a constant and let E € exist. Then E(c§) exists and
E(cf) =cE¢.
B. Let £ < n; then
ES<En
with the understanding that
if —o<E&then —oo<Enand E€<En
or
if En < oothen E€ < and EE <En.

C. If E exists then
|[E¢I < E[4.

D. If E& exists then E(E1L) exists for each A € F; if E& is finite, E(E1y) is finite.
E. If € and n are nonnegative random variables, or such that E|§| < o and
E|n| < oo, then

E(§+n)=E{+En.

(See Problem 2 for a generalization.)

Let us establish A-E.
A. This is obvious for simple random variables. Let £ > 0, &, 1 £, where &, are
simple random variables and ¢ > 0. Then c¢&, 1 ¢£ and therefore

E(c€) = limE(c,) = climEE, = cEE.
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In the general case we need to use the representation § = £t — £~ and notice
that (c€)t = c£t, (€)™ = c& when ¢ > 0, whereas when ¢ < 0, (c§)" =
=€, (Cf)_ = _C§+'

B.If 0 < ¢ < n, then E£ and E 7 are defined and the inequality E€ < En
follows directly from (6). Now let E€ > —oo; then E£~ < oo. If € < 1), we have
&t <nptand £ > n~. Therefore En~ < E£™ < o0; consequently E 7 is defined
and E¢ = E¢€Y —E¢ < En™ —En~ = En. The case when En < oo can be
discussed similarly.

C. Since —[¢| < & < [¢], Properties A and B imply

—E[§| <EE<EI,

e, |E€ <Eg.
D. This follows from B and

()" =€, <&, (Ela)” =6 <€,

E.Let& > 0, n > 0, and let {&,} and {n,} be sequences of simple functions
such that &, 1 € and 7, 1 1. Then E(&, + n,) = E&, + En, and

E(& +m) TEE+n), E&TES EnlEn

and therefore E(§ + n) = E& + En. The case when E || < o and E|n| < o
reduces to this if we use the facts that

E=¢"—¢, n=nT—n7, £ <E, <,

and
nt<nl, " <|nl

The following group of statements about expectations involve the notion of “P-
almost surely.” We say that a property holds “P-almost surely” if there is a set N €
Z with P(N) = 0 such that the property holds for every point w of Q\N. Instead of
“P-almost surely” we often say “P-almost everywhere” or simply “almost surely”
(a.s.) or “almost everywhere” (a.e.).

F.If¢ =0 (as.) thenEE = 0.

In fact, if £ is a simple random variable, & = > x;/s, (w) and x; # 0, we have
P(Ay) = 0 by hypothesis and therefore E€ = 0. If £ > 0 and 0 < s < £, where
s is a simple random variable, then s = 0 (a.s.) and consequently Es = 0 and
E& = supys. y<¢y Es = 0. The general case follows from this by means of the
representation £ = £ — £~ and the facts that £ < [¢], €~ < [¢], and [¢] = 0 (a.s.).

G.If¢ = n(as.)and E|§| < oo, then E|n| < o0 and EE = En (see also
Problem 3).

In fact,let N = {w: € # n}. Then P(N) = O and £ = &Iy + &Ly, n = niy + £y
By properties E and F, we have E{ = E&ly + E&ly = E&ly = Enly. But
Enly = 0, and therefore E § = Enly + Enly = E7, by Property E.
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H.Let £ > 0and EE = 0. Then £ = 0 (a.s).

For the proof, let A = {w: {(w) > 0}, A, = {w: &(w) > 1/n}. It is clear that
A, 1 Aand 0 < ¢&ly, < &ly. Hence, by Property B,

0<Eé&l, <E£=0.

Consequently
1
0=E&l, > —-P(A)
n

and therefore P(A,) = O for all n > 1. But P(A) = limP(A,) and therefore
P(A) = 0.

L Let & and 1) be such that E |§| < w0, E|n| < oo and E(¢14) < E(nly) for all
Ae F.Then & < n(as.).

In fact, let B = {w: &(w) > n(w)}. Then E(nlp) < E(&Ip) < E(nlp) and
therefore E({Iz) = E(nlp). By Property E, we have E((§ — n)Iz) = 0 and by
Property H we have (£ — n)Ip = 0 (a.s.), whence P(B) = 0.

J. Let € be an extended random variable and E |£| < 0. Then |£| < o (a. s.)

In fact, let A = {w: |{(w)| = oo} and P(A) > 0. Then E|¢| > E(|¢|Ih) =
o0 - P(A) = oo, which contradicts the hypothesis E |£| < o0. (See also Problem 4.)
4. Here we consider the fundamental theorems on taking limits under the expectation
sign (or the Lebesgue integral sign).

Theorem 1 (On Monotone Convergence). Let n, &, &1, &2, ... be random
variables.

(@) If&, >nforalln > 1, En > —o0,and &, 1 &, then
E&G TES
) If&, <nforalln>1, En < oo,and&, | &, then
Eé L EC
PROOF. (a) First suppose that 7 > 0. For each k > 1 let {f,g") }n>1 be a sequence of
simple functions such that 5,5”) 1 &, n— 0. Put ¢ = max; <4<, 5,5"). Then

(n=1) « ~(n) _ (n) _
¢ <( gg;cnfk < lrggécnﬁk &n-

Let ¢ = lim, (™. Since
& <<,
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for 1 < k < n, we find by taking limits as n — o0 that
&G <(<¢

for every k > 1 and therefore £ = (.
The random variables ¢ are simple and ¢ 1 (. Therefore

E¢=E(¢=1mE¢("™ <lmEg&,.
On the other hand, it is obvious, since &, < &,11 < &, that
IimE¢, <EE.

Consequently imE ¢, = E£.

Now let 1 be any random variable with E7n > —o0.

If En = oo then E&, = E£ = oo by Property B, and our proposition is proved.
Let En < oo. Together with the assumption that En > —oo this implies E |n| < oo.
Itis clear that 0 < &, —n 1 & — n for all w € 2. Therefore by what has been
established, E(¢, — 1) 1 E(¢ — n) and therefore (by Property E and Problem 2)

ES.—EnTES—En.

But E |n| < o0, and therefore EE, 1 EE, n — 0.

The proof of (b) follows from (a) if we replace the original variables by their
negatives.

[

Corollary. Let {Wn}nZl be a sequence of nonnegative random variables. Then

se) se)
EZnnzZEnn.
n=1 n=1

The proof follows from Property E (see also Problem 2), the monotone conver-
gence theorem, and the remark that

k 0
E: nnT }: Mns k — 0.
n=1 n=1

[
Theorem 2 (Fatou’s Lemma). Let 7, &1, &, ... be random variables.

@ If& > nforalln > 1 and En > —oo, then
Eliminf ¢, < liminf E&,.
(b) If ¢, < nforalln>1and En < oo, then

limsup E¢, < Elimsupé,.
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©) If|€&:] < nforalln>1and En < o0, then
Eliminf ¢, <liminf E¢, < limsupE¢, < Elimsupé,. @)
PROOF. (a) Let ¢, = inf,,>, &; then
liminf¢, = lil£n nlgfn &n = li’gn G-
It is clear that (,, T liminf &, and ¢, > n for all n > 1. Then by Theorem 1

Eliminf ¢, = Elim(, = imE(, = liminf E(, < liminf E¢,,

which establishes (a). The second conclusion follows from the first. The third is a
corollary of the first two.
O

Theorem 3 (Lebesgue’s Theorem on Dominated Convergence). Let 1, £, &1, &o, - . -
be random variables such that |§,| <n, En < wand & — & (a.s.). Then E €| <
m’

E& — EC ®)
and
El&—¢—0 )
asn — .

PROOF. By hypothesis, lim inf £, = limsup &, = £ (a.s.). Therefore by Property G
and Fatou’s lemma (item (c))

E¢ = Eliminf &, <liminf E¢, = limsupE &, = Elimsup¢, = E&,

which establishes (8). It is also clear that || < 7. Hence E |¢| < .
Conclusion (9) can be proved in the same way if we observe that

|£n _£| § 277'

O

Corollary. Let 1, &, &1,&, ... be random variables such that |§,| < n, & —
¢ (a.s.) and EnP < oo for some p > 0. Then E |€|P < o0 and E|§ — &,|P — 0,
n— oo.

For the proof, it is sufficient to observe that

€l <n, [€=&I" < (1€ + [&])" < (2n)".

The condition “|¢,| < 7, En < o0” that appears in Fatou’s lemma and the
dominated convergence theorem and ensures the validity of formulas (7)—(9) can be
somewhat weakened. In order to be able to state the corresponding result (Theo-
rem 4), we introduce the following definition.
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Definition 4. A family {¢,},>1 of random variables is said to be uniformly inte-
grable (with respect to the measure P) if

supj |€:| P(dw) — 0, ¢ — oo, (10)
n JH{|&|>c}
or, in a different notation,

sup E[|&|I{e, >3] — 0, ¢ — oo (11)

Itis clear that if &,, n > 1, satisfy |€,| <7, En < oo, then the family {&,},>1 is
uniformly integrable.

Theorem 4. Let {&,},>1 be a uniformly integrable family of random variables. Then

(a) Eliminf &, <liminf E¢, < limsupE &, < Elimsupé,.
(b) If in addition &, — £ (a.s.) then & is integrable and

ES —EE n — o,
E|¢,—¢— 0, n— .
PROOF. (a) For every ¢ > 0
E& = E[&lie,<—o}) + E[&ulie,>—}]- (12)
By uniform integrability, for every € > 0 we can take c so large that
sgp |E[&nlie,<—c}]] < e (13)
By Fatou’s lemma,
lim inf E[ulig,>— ] > E[liminf §lge,> ]
But &,li¢,>_c} > &, and therefore
liminf E[£,/(¢,>_cy] > E[liminf&,]. (14)
From (12)—(14) we obtain
liminf E&, > E[liminf §,] —e.

Since ¢ > 0 is arbitrary, it follows that liminf E, > Eliminf &,. The inequality
with upper limits, lim sup E &, < Elimsup&,, is proved similarly.

Conclusion (b) can be deduced from (a) as in Theorem 3.

O

The deeper significance of the concept of uniform integrability is revealed by
the following theorem, which gives a necessary and sufficient condition for taking
limits under the expectation sign.
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Theorem 5. Letr 0 < ¢, — & (P-a.s.)and EE, <oo,n > 1. ThenEE, > E£ < 0
if and only if the family {£,},>1 is uniformly integrable.

PROOF. The sufficiency follows from conclusion (b) of Theorem 4. For the proof
of the necessity we consider the (at most countable) set

A={a: P(¢ =a)>0}.
Then we have §,l(¢, <o) — &l (e <4y for each a ¢ A, and the family

{fnl{gn <a} }nz 1

is uniformly integrable. Hence, by the sufficiency part of the theorem, we have
E&ulie,<ay = E&l{c<qy, a ¢ A, and therefore

Eé-nl{gnza} — Ef[{gza}7 a ¢A, n — o0. (15)

Take an € > 0 and choose ag ¢ A so large that E&l(¢> 4y < g/2; then choose Ny
so large that

E&il(e,>a0) < E&l{e>a0} +€/2

for all n > Ny, and consequently Ef,,l{@eao} < e. Then choose a; > ag so large
that E&, /¢, >4,y < € for all n < No. Then we have

supE&ulie,>a) <€,
n

which establishes the uniform integrability of the family {¢,},>1 of random
variables.
O
5. Let us notice some tests for uniform integrability.
We first observe that if {&,} is a family of uniformly integrable random variables,
then
supE|&,| < . (16)

In fact, for a given € > 0 and sufficiently large ¢ > 0

sup E |§n| = SUP[qunlI{I&nIZC}) + E(‘fn|1{|§,,|<c})]

< sup E(|&il g, 1>cp) + sup E(I&l (g, (<o) <€+,

which establishes (16).
It turns out that (16) together with a condition of uniform continuity is necessary
and sufficient for uniform integrability.

Lemma 2. A necessary and sufficient condition for a family {&,},>1 of random
variables to be uniformly integrable is that E |¢,|, n > 1, are uniformly bounded
(i.e., (16) holds) and that E{|,|I4}, n > 1, are uniformly continuous (i.e.
sup, E{|&.|Ia} — 0 when P(A) — 0).
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PROOF. Necessity. Condition (16) was verified above. Moreover,

E{l&lIa} = E{|&ange)>c1} + E{l&Hange)<c}}
< E{|&llje, >3} + cP(A). a7)

Take c so large that sup, E{|&,|I{j¢,|>c;} < €/2. Then if P(A) < ¢/2c, we have

supE{|&|Ia} < e

by (17). This establishes the uniform continuity.
Sufficiency. Let € > 0 and let 6 > 0 be chosen so that P(A) < ¢ implies that
E(|€x|1a) < €, uniformly in n. Since

E 6] > El&all{g, 1) = ¢ P{|&] = ¢}

for every ¢ > 0 (cf. Chebyshev’s inequality), we have
1
sup P{|€,| > ¢} < —supE[£,[ — 0, ¢ — O,
n C

and therefore, when c is sufficiently large, any set {|&,| > ¢}, n > 1, can be taken
as A. Therefore sup E(|&,|I{|¢,|>c}) < €, which establishes the uniform integrability.
This completes the proof of the lemma.

O

The following proposition provides a simple sufficient condition for uniform in-
tegrability.

Lemma 3. Let &1,&2, ... be a sequence of integrable random variables and G =
G(t) a nonnegative increasing function, defined for t > 0, such that

lim @ = o, (18)
sup E[G(|&])] < oo. (19)

Then the family {&,},>1 is uniformly integrable.

PROOF. Lete > 0, M = sup, E[G(|£,4])], a = M/e. Take c so large that G(¢)/t > a
fort > ¢. Then

1 M

Ell6nlTe,1>0] < — EIG(&]) - Tye gl < =€
uniformly forn > 1.
|

6. If £ and 7 are independent simple random variables, we can show, as in Sub-
section 5 of Sect.4, Chap. 1, that E{n = E& - En. Let us now establish a similar
proposition in the general case (see also Problem 6).
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Theorem 6. Let £ and 1) be independent random variables, E |§| < o, E|n| < .
Then E |&n| < o0 and
E¢n=E¢-En. (20)

PROOF. Firstlet¢ > 0, n > 0. Put

o0

k
&n = Z ;I{k/néé(w)<(k+1)/n}7
k=0
o k
= Z Zl{k/nén(w)<(k+1)/n}.
k=0

Then &, < &, |& — & < 1/nandn, <7, |n, — 7| < 1/n. Since E€ < o and

En < oo, it follows from Lebesgue’s dominated convergence theorem that
limEE¢, =EE limEn, = En.

Moreover, since £ and 7 are independent,

ki
Eéim = ), -2 Elgnze<ternymliynsn<a+nm
k>0

Kl
= -2 Elgynze<rnym  Blupsn<grnym = E& - Em.
k>0

Now notice that

|E&n — E&um| < E[&n — &umal < E[E - [0 —nal]
+E[77n’|§—§n|]§111E§+111E(77+r1l>—>O,n—>oo.

Therefore E&n = lim, E&,m, = imE¢, - limEn, = E£ - En, and E&n < co.
The general case reduces to this one if we use the representations £ = £+ —

E,m=nt—n",&n=Ent =& T =& yT + £ 7. This completes the proof.
]

7. The inequalities for expectations that we develop in this subsection are regularly

used both in probability theory and in analysis.

Chebyshev’s (Bienaymé-Chebyshev’s) Inequality. Let £ be a nonnegative ran-
dom variable. Then for every € > 0

P(¢>e) <

E¢ 1)
1>

The proof follows immediately from

EE>E[§ Iiesey] > eElesy =eP(§ > ¢).
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From (21) we can obtain the following versions of Chebyshev’s inequality: If £ is
any random variable then

E 2
Pllel 2 2) < =5 @2

and V.
P(le —E¢ > 2) < YA€ 23)

€
where Var ¢ = E(¢ — E€)? is the variance of €.

The Cauchy-Bunyakovskii Inequality. Let & and 1 satisfy E €2 < oo, En? < .
Then E |€n| < o and
(Elén)* <EE-En’. (24)

PROOF. Suppose that E€2 > 0, En2 > 0. Then, with § = ¢/A/EE2,7 =
n/+/En?, we find, since 2|¢7j| < €2 + 772, that

2E|&7| <EE* +ER? =2,

i.e. E |€7| < 1, which establishes (24).

On the other hand if, say, E§2 = 0, then{ = 0 (a.s.) by Property I, and then
E &n = 0 by Property F, i.e. (24) is still satisfied.

o

Jensen’s Inequality. Ler the Borel function g = g(x) defined on R be convex down-
ward and & a random variable such that E || < o0. Then

g(E€) < Eg(&). (25)

PROOF. If g = g(x) is convex downward, for each xo € R there is a number A(xp)
such that

g(x) > g(xo) + (x — x0) - A(xo) (26)
for all x € R. Putting x = £ and xo = E £, we find from (26) that

8(6) = g(E&) + (£ —E&) - AMEQ),

and consequently E g(¢) > g(E¢).
=

Remark 4. Jensen’s inequality (25) holds also for vector random variables £ =
(&1,...,&) with E|&] < oo,i = 1,...,d, and functions g = g(x), x € R,
convex downward (i.e., functions g: RY — R such that g(px + (1 — p)y) <
pe(x) + (1 —p)g(y). x,y € R%, p € [0, 1]).

A whole series of useful inequalities can be derived from Jensen’s inequality. We
obtain the following one as an example.
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Lyapunov’s Inequality. If 0 < s < 1,
(Ef¢)" < (B¢ 27)

To prove this, let r = #/s. Then, putting 7 = |£|* and applying Jensen’s inequality
to g(x) = |x|", we obtain | En|” < E|n|’, i.e.

(E|€]°)”s <E|e[,

which establishes (27).
The following chain of inequalities among absolute moments is a consequence
of Lyapunov’s inequality:

El¢| < (B2 <--- < (g™ (28)

Holder’s Inequality. Ler 1 < p < o0, 1 < g < 0, and (1/p) + (1/q) = 1. If
E|¢)P < oo and E |n|? < oo, then E |&n| < oo and

Elénl < (EIEP)P(E nl)". (29)

PROOF. If E[€JP = 0 or E|n|? = 0, (29) follows immediately as for the Cauchy—
Bunyakovskii inequality (which is the special case p = g = 2 of Holder’s inequal-

ity).
Now let E|£JP > 0, E|n|? > 0 and
o & o
(Elgl)rr’ (Elnla)t/a”
We apply the inequality

x"y}’ < ax + by, (30)

which holds for positive x, y, a, b and a + b = 1, and follows immediately from
the concavity of the logarithm:

log[ax + by] > alogx + blogy = log x“y".
Then, putting x = |£]?, y = |7|9, a = 1/p, b = 1/q, we find that
1. 1
&l < —[&1” + —[7l*,
p q

whence

s, 1 _ 1_ ..
Efénl < —E[E) + —Ef[" = —+ - =1.
p q

SRR
Q|

This establishes (29).
m]
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Minkowski’s Inequality. IfE [P < oo, E|n)f < w0, 1 < p < o0, then we have
E| + P < oo and

(EIE+nP)P < (EIEN)P + (Elni)VP. €2y

PROOF. We begin by establishing the following inequality: if ¢, » > O andp > 1,
then
(a+ b)P <2071 (a + bP). (32)

In fact, consider the function F(x) = (a + x)? — 2°~!(a” + x”). Then
F'(x) = pla+x)'~" =27~ Ipa~ 1,

and since p > 1, we have F’(a) = 0, F'(x) > 0 forx < a and F’(x) < 0 forx > a.
Therefore
F(b) <maxF(x) = F(a) =0,

from which (32) follows.
According to this inequality,

€+ 0P < (I€] + )" < 27l + [nP) (33)
and therefore if E [¢]? < o0 and E |n|P < oo it follows that E [ + n}? < oo.

If p = 1, inequality (31) follows from (33).
Now suppose that p > 1. Take ¢ > 1 so that (1/p) + (1/q) = 1. Then

€+l =1 +nl- 1€+l < [E]-1E+ 0P~ + Inllg + P~ (34
Notice that (p — 1)g = p. Consequently
E(l¢ + 0P~ =E[¢ + 9" < 0,
and therefore by Holder’s inequality

E(IE]l +nlP~t) < (EJEP)P(E[E + /¢~ D)t
= (EEN)VP(EE + i) < 0.

In the same way,
E(Inllé + ") < (Elnl")" P (EIE +nl) 7.
Consequently, by (34),

EI¢ + 0" < (E[¢+nl") I(EIE)Y? + (Elnl")'?). (35)
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If E|¢ + nlP = 0, the desired inequality (31) is evident. Now let E |£ + 7| > 0.
Then we obtain

(EJ¢ +npP) =W < (EIEP)YP + (E i)'

from (35), and (31) follows since 1 —(1/g) = 1/p.
[}

7. Let £ be a random variable for which E ¢ is defined. Then, by Property D, the set
function

Q(A)EjgdP, Ac 7, (36)
A

is well defined. Let us show that this function is countably additive.
First suppose that ¢ is nonnegative. If A, As, ... are pairwise disjoint sets from
Z and A = ), A,, the corollary to Theorem 1 implies that

Q(A) = E(§-14) = E(§ - Iza,) =E(Q € In,)
= D E(€-1a,) = D Q(A)).

If £ is an arbitrary random variable for which E ¢ is defined, the countable additivity
of Q(A) follows from the representation

QA) =Q " 4) - Q (1), (37)

where
Q*(4) = j cHdP,  Q(A) = j &dP,
A A

together with the countable additivity for nonnegative random variables and the fact
that min(Q™* (R2), Q" (Q)) < .

Thus if E £ is defined, the set function Q = Q(A) is a signed measure—a count-
ably additive set function representable as Q = Q; — Qq, where at least one of the
measures Q; and Qs is finite.

We now show that Q = Q(A) has the following important property of absolute
continuity with respect to P:

if P(A)=0 then QA) =0 (Ae.F)

(this property is denoted by the abbreviation Q « P).
To prove this property it is sufficient to consider nonnegative random variables.
If £ = >/, xla, is a simple nonnegative random variable and P(A) = 0, then

QA) = E(¢- 1) = Z xP(A; N A) = 0.
k=1
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If {£,},>1 18 a sequence of nonnegative simple functions such that £, 1 £ > 0, then
the theorem on monotone convergence shows that

Q(A) = E(§ - Ix) = imE(E, - Ia) = 0,

since E(&, - I4) = 0 foralln > 1 and A with P(A) =

Thus the Lebesgue integral Q(A) = §, £d P, considered as a function of sets
A € Z,is asigned measure that is absolutely continuous with respect to P (Q « P).
It is quite remarkable that the converse is also valid.

Radon-Nikodym Theorem. Let (£, .%) be a measurable space, |1 a o-finite mea-
sure, and \ a signed measure (i.e., \ = \1 — Ao, where at least one of the measures
A1 and )Xo is finite), which is absolutely continuous with respect to . Then there is
an F -measurable function f = f(w) with values in R = [—o0, o0] such that

f fw)pldw), Ae 7. (38)
The function f(w) is unique up to sets of,u -measure zero lfh = h(w) is an-
other F-measurable function such that \(A) = SA , A € F, then

p{w: f(w) # h(w)} = 0.

If X is a measure, then f = f(w) has its values in R = [0, oo].

The function f = f(w) in the representation (38) is called the Radon—Nikodym
derivative or the density of the measure \ with respect to i, and denoted by d\/du
or (d\/dp)(w).

Some important properties of these derivatives are presented in the lemma in
Subsection 8 of the next Sect. 7. Here we state an especially useful particular case
of formula (35) therein, which is often used for recalculation of expectations under
a change of measure.

Namely, let P and P be two probability measures and E and E the corresponding
expectations. Suppose that P is absolutely continuous with respect to P (denoted
P « P). Then for any nonnegative random variable £ = ¢ (w) the following “for-
mula for recalculation of expectations” holds:

p
il

This formula remains valid also without assuming that £ is nonnegative with the
following modification of the statement: the random variable £ is integrable with

Ee¢ — E[g 39)

respect to P if and only if £ j—g is integrable with respect to P; then (39) is valid.
The proof of (39) is not hard' for simple functions ¢ it follows directly from

the definition of the derivative < dP, and for nonnegative £ we use Theorem 1 (b) of

Sect. 4, which states the existence of simple functions &, 1 &, n — o0, and then

Theorem 1 (a) on monotone convergence. For an arbitrary { we have by (39) that

E|§\ E |§\ . This implies that £ is integrable with respect to P if and only 1f§

is integrable W1th respect to P. The formula (39) follows then from the representa—

tion¢ = T — £
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The Radon—Nikodym theorem, which we quote without proof (for the proof
see, e.g., [39]), will play a key role in the construction of conditional expectations
(Sect. 7).

9.1f ¢ = Z?:l x;14, is a simple random variable, A; = {w: £ = x;}, then

Eg(¢) = X e(x)P(A) = D g(x)AFe(x:).

In other words, in order to calculate the expectation of a function of the (simple)
random variable £ it is unnecessary to know the probability measure P completely;
it is enough to know the probability distribution P¢ or, equivalently, the distribution
function F¢ of £.

The following important theorem generalizes this property.

Theorem 7 (Change of Variables in a Lebesgue Integral). Let (£2,.%) and (E, &)
be measurable spaces and X = X(w) an .F /& -measurable function with values in
E. Let P be a probability measure on (2, F) and Px the probability measure on
(E, &) induced by X = X(w):

Px(A) = P{w: X(w) €A}, A€ é&. (40)
Then
Jswpdan = | sxepp@), ace @)

for every &-measurable function g = g(x), x € E (in the sense that if one integral
exists, the other is well defined, and the two are equal).

PROOF. LetA € & and g(x) = Ig(x), where B € &. Then (41) becomes
Px(AB) = P(X"1(A) n X"'(B)), (42)

which follows from (40) and the observation that X~*(A) nX~1(B) = X~ (AnB).
It follows from (42) that (41) is valid for nonnegative simple functions g = g(x),
and therefore, by the monotone convergence theorem, also for all nonnegative &-
measurable functions.
In the general case we need only represent g as g™ — g~ . Then, since (41) is valid
for g™ and g~ , if (for example) §, g™ (x) Px(dx) < o, we have

| s Plae) <
X=1(a)
also, and therefore the existence of §, g(x) Px(dx) implies the existence of

SX,l(A) gX(w)) P(dw). o

Corollary. Let (E,&) = (R, B(R)) and let § = £(w) be a random variable with
probability distribution P¢. Then if g = g(x) is a Borel function and either of the
integrals §, g(x) P¢(dx) or ngl(A) g(€(w)) P(dw) exists, we have
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| stpet@n = | ste(w)) Pla)
A §71(4)
In particular, for A = R we obtain
(€)= || #(€w) Pldw) = | 00 Pela). @3
Q

R

The measure P¢ can be uniquely reconstructed from the distribution function F¢
(Theorem 1 of Sect. 3). Hence the Lebesgue integral §, g(x) P¢(dx) is often denoted
by § g(x) Fe(dx) and called a Lebesgue—Stieltjes integral (with respect to the mea-
sure corresponding to the distribution function Fe¢ (x)).

Let us consider the case when F¢ (x) has a density f¢(x), i.e., let

Fe(x) = J_ ‘fs(y) dy, (44)

where f = f¢(x) is a nonnegative Borel function and the integral is a Lebesgue
integral with respect to Lebesgue measure on the set (—o0, x] (see Remark 3). With
the assumption of (44), formula (43) takes the form

E glelw)) = | " gelfe () i, 45)

—00

where the integral is the Lebesgue integral of the function g(x)fe (x) with respect to
Lebesgue measure. In fact, if g(x) = Iz(x), B € Z(R), the formula becomes

P¢(B) = JBfg (x)dx, Be B(R); (46)

its correctness follows from Theorem 1 of Sect. 3 and the formula

b
Fe(b) ~ Fela) = | felo)
In the general case, the proof is the same as for Theorem 7.

10. Let us consider the special case of measurable spaces (§2, .#) with a measure p,
where Q = Q) x Qq, F = F1 ® S, and p = p; x ps is the direct product of
measures p; and p; (i.e., the measure on .% such that

p1 % p2(A x B) = p1(A1)p2(B), Ae Z, Be.Zy;

the existence of this measure follows from the proof of Theorem 8.
The following theorem plays the same role as the theorem on the reduction of a
double Riemann integral to an iterated integral.

Theorem 8 (Fubini’s Theorem). Ler & = &(wy,ws) be an Fy ® Fo-measurable
function, integrable with respect to the measure p1 X pa:
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J |£(w1, (.L)Q)‘ d(p1 X pg) < Q0. (47)
Ql X Qz

Then the integrals SQI &(w1,ws) p1(dwy) and SQz &(w1,ws) pa(dws)

(1) are defined for ps-almost all wy and p1-almost all wy;
(2) are respectively Fo- and F1-measurable functions with

0,

o {w [ et w2>|p1<dwl>—oo}
(48)
0,

ol | e, ) palon) = <}

and

(€)]
Jszlmz §(wi,wa)d(pr x p2) = Ll Uﬂz g(w17w2)p2(dw2>] p1(duwy)

(49)
= Lz [ o (w1, wz)ﬂl(dwl)] p2(dws).

PROOF. We first show that &, (w2) = (w1, wa) is .F#a-measurable with respect to
wa, for each wy € 5.

Let F € % ® %5 and f(wl,wg) = Ip(wl,wg). Let
le = {LUQ S QQZ (wl,wg) € F}

be the cross-section of F at wy, and let 6,,, = {F € & : F,,, € %3}. We must show
that 6,,, = .7 for every wy.
IfF=AxB, Ae %, Be %5, then

_ B ifwleA,
(A x Bl = {@ if wy ¢ A.

Hence rectangles with measurable sides belong to %, . In addition, if F € %,
then (F),, = F,,,andif {F"},>1 are sets in %, then (| J F").,, = |JF., . It follows
that 6, = .Z.
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Now let £(wy,ws) > 0. Then, since the function (w1, ws) is F2-measurable for
each wq, the integral SQz &(w1,ws) pa(dws) is defined. Let us show that this integral
is an .%| -measurable function and

Jﬂl [ Qs §wn,w2) p2(dw2)] pr(dwy) = fﬂlxﬂz §(wi,wa)d(p1 x p2).  (50)

Let us suppose that £(wy,w2) = Iixp(wi,w2), A € F#1, B € F,. Then since
IAXB(Wl,WQ) = IA(wl)IB(wg), we have

J Iyxp(wi,w2) p2(dwy) = IA(wl)J Ig(w2) p2(dws) (51)
Qo Qo

and consequently the integral on the left of (51) is an .%#;-measurable function.

Now let (w1, ws) = Ir(wy,ws), F € F = % ® F». Let us show that the
integral f(wy) = SQ2 Ir (w1, ws) pa(dws) is &1 -measurable. For this purpose we put
€ = {F € .Z: f(w;) is #;-measurable}. According to what has been proved, the
set A x B (where A € %1, B € %) belongs to € and therefore the algebra &/
consisting of finite sums of disjoint sets of this form also belongs to €. It follows
from the monotone convergence theorem that ¢ is a monotonic class, ¥ = pu(%).
Therefore, because of the inclusions &/ < ¥ < % and Theorem 1 of Sect. 2, we
have F = o(o) = (&) S u(¥) =6 < F,ie, € = Z.

Finally, if £(wy,ws) is an arbitrary nonnegative .% -measurable function, the %1 -
measurability of the integral SQz &(w1,w2) p2(dw) follows from the monotone con-
vergence theorem and Theorem 2 of Sect. 4.

Let us now show that the measure p = p; X py defined on .F = %, ® F», with
the property (p1 % p2)(A x B) = p1(A) - p2(B), A € F#1, B € F>, actually exists
and is unique

For F € Z we put

o= [ [N palden) | o1 ()

As we have shown, the inner integral is an .%;-measurable function, and conse-
quently the set function p(F) is actually defined for F € %. It is clear that if
F = A x B, then p(A x B) = p1(A)p2(B). Now let {F"} be disjoint sets from .#.
Then

o(Xr) - ). [ |t p2<dw2>] pr(den)

- Ll Zn: [L2 Ip,, (w2) P2(dw2)] p1(dwy)
- ZJ [J Ipn, (w2) p2(duws) ] (dwr) ZP (F),

i.e., p is a (o-finite) measure on .%.
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It follows from Carathéodory’s theorem that this measure p is the unique measure
with the property that p(A x B) = p1(A)p2(B).
We can now establish (50). If £ (w1, we) = Iyxp(wi,ws), A € F1, B € Fo, then

f Iyxp(wi,wa)d(p1 x p2) = (p1 % p2)(A x B), (52)
Ql XQQ

and since Iy x (w1, ws) = Iy (w1 )Ig(w2), we have

Jﬂl [Lz laxplen, wQ)pQ(dW)] p1(dw)

[ futen | 13<w2>p2<dw2>]m<dw1>—p1<A>p2<B>.
Q1 Qs

(53)

But, by the definition of p; X po,

(p1 x p2)(A x B) = p1(A)p2(B).
Hence it follows from (52) and (53) that (50) is valid for &(wq, ws) = Iaxp(w1,ws).
Now let &(w1,w2) = Ip(w1,ws), F € . The set function

A(F) =f Ip(wi, wa2)d(p1 x p2), FeZ,
01 xQs

is evidently a o-finite measure. It is also easily verified that the set function

v(F) = Ll [LQ Ir(wr, w2)P2(dW2)] p1(dwn)

is a o-finite measure. As was shown above, \ and v coincide on sets of the form
F = A x B, and therefore on the algebra 7. Hence it follows by Carathéodory’s
theorem that A and v coincide for all F € .%.

We turn now to the proof of the full conclusion of Fubini’s theorem. By (47),

J £ (w1, wa)d(pr X p2) < 0, J § (w1, wa)d(pr x pa) < 0.
Q1 x0s Q1 xQo

By what has already been proved, the integral SQQ €T (w1,ws) pa(dwsy) is an F-
measurable function of w; and

f [ £F (wi,w2) Pz(dw2)] p1(dwr) = f §F (wi,wa) d(pr % pa) < 0.
Q Q2 Q1 xQs
Consequently by Problem 4 (see also Property J in Subsection 3)

o Y (w1, we) p2(dws) < 0 (pr-a.s.).
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In the same way
& (w1, we) pa(dwy) < 0 (p1-a.s.),
Qz
and therefore

[ letrwalptdon) <0 (preas)

It is clear that, except on a set .4 of p;-measure zero,

§(w1,wa) p2(dws) = . £F (w1, w2) pa(dws) — . § (w1, w2) p2(dws).
2 2 (54)

Taking the integrals to be zero for wy € .4, we may suppose that (54) holds for all
w1 € Q1. Then, integrating (54) with respect to p; and using (50), we obtain

Q2

Ll [ Qs €(w1,w2)p2(dw2)] pi(dwr) = Ll [ 0, f+(wl>w2),02(dw2)] p1(dwy)
- th [ o, 5_(w17w2)ﬂz(dw2)] p1(dwr)

= J £ (w1, wa)d(p1 x p2) —f § (wi,w2)d(p1 X p2)
01 xQs

Ql XQQ

= J. f(wl,wz)d(m X Pz)-
01 xQ0s

Similarly we can establish the first equation in (48) and the equation

fﬂlxm §(wi,we)d(p1 x p2) = LQ [ o §(w1,u)2)p1(dw1)] p2(dws).

This completes the proof of the theorem.
[}

Corollary. If {, [§, |£(wi,w2)|p2(dw2)] p1(dwr) < oo, the conclusion of Fu-
bini’s theorem is still valid.

In fact, under this hypothesis (47) follows from (50), and consequently the con-
clusions of Fubini’s theorem hold.

Example. Let (£,7) be a pair of random variables whose distribution has a two-
dimensional density f¢ ,, (x,), i.e.

P((€.) < B) = f fenley)dedy, Be BR),

where f¢ ,(x, y) is a nonnegative Z(R?)-measurable function, and the integral is a
Lebesgue integral with respect to two-dimensional Lebesgue measure.
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Let us show that the one-dimensional distributions for ¢ and 7 have densities
fe(x) and f;, (), where

fs(x):f_ fen(oy)dy and fn<y):f_ fenlty)dr.  (55)

In fact, if A € Z(R), then by Fubini’s theorem

P(€eA) = P((Em) AXR) = | fenlxy)drdy = j [ j fg,n(x,y)dy] .

AXR

This establishes both the existence of a density for the probability distribution of £
and the first formula in (55). The second formula is established similarly.

According to the theorem in Sect. 5, a necessary and sufficient condition that £
and 7 are independent is that

Fen(x,y) = Fe(X)F,(y), (x,y)€R%

Let us show that when there is a two-dimensional density fe , (x,y), the variables £
and 7 are independent if and only if

Sen (X, ) = fe(0)fy (v) (56)

(where the equation is to be understood in the sense of holding almost surely with
respect to two-dimensional Lebesgue measure).
In fact, if (56) holds, then by Fubini’s theorem

Fealson) = |

(—o0.x]x (—00,y]

= J fe(u)du (J fav) dV) = Fe(x)Fy(y)
(—o0,x] (—00,y]

and consequently ¢ and n are independent.
Conversely, if they are independent and have a density fe ,,(x,y), then again by
Fubini’s theorem

J fen(u,v)dudv = (J fe(u) du) (J fav) dv)
(=00, x] x (=00, y] (=00, x] (—00,y]

= f fe(u)fy(v) dudy.
(=00, x]x (=00, 5]

Jen(u,v) dudy = f fe(u)fy,(v) du dv

(—o0.x]x (—0,]

It follows that

f fen(ery) dxdy = f Fe(X)fy (v) dxdy
B B

for every B € (R?), and it is easily deduced from Property I that (56) holds.
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11. In this subsection we discuss the relation between the Lebesgue and Riemann
integrals.

We first observe that the construction of the Lebesgue integral is independent of
the measurable space (2, .#) on which the integrands are given. On the other hand,
the Riemann integral is not defined on abstract spaces in general, and for 2 = R" it
is defined sequentially: first for R!, and then extended, with corresponding changes,
to the case n > 1.

We emphasize that the constructions of the Riemann and Lebesgue integrals are
based on different ideas. The first step in the construction of the Riemann integral
is to group the points x € R! according to their distances along the x axis. On
the other hand, in Lebesgue’s construction (for Q = R') the points x € R! are
grouped according to a different principle: by the distances between the values of
the integrand. It is a consequence of these different approaches that the Riemann
approximating sums have limits only for “mildly” discontinuous functions, whereas
the Lebesgue sums converge to limits for a much wider class of functions.

Let us recall the definition of the Riemann—Stieltjes integral. Let G = G(x) be a
generalized distribution function on R (see Subsection 2 of Sect. 3) and y its corre-
sponding Lebesgue—Stieltjes measure, and let g = g(x) be a bounded function that
vanishes outside [a, b].

Consider a decomposition & = {xo, ..., %},

a=x9g<x1<--<x,=>b,

of [a, b], and form the upper and lower sums
> = 28[6) =G, Y= g[Gi) — G,
P =1 7 =1

where
gi= sup g(y), g = inf g(y).

-1 N ; .
X1 <y<xi Xi—1<y<x;

Define simple functions g 5 (x) and g , (x) by taking

7o) =% g,00 =g

1

onxi—1 < x < x; and define g5 (a) = g,(a) = g(a). Then it is clear that,
according to the construction of the Lebesgue—Stieltjes integral (see Remark 3 in
Subsection 2),

_ b
5= 1) [ 2006
P

and



242 2 Mathematical Foundations of Probability Theory

Now let {#%} be a sequence of decompositions such that &, < .1 and
Py = {x(()k), e ,x,(/;)} are such that maxo<<y, |Jcl-(_]?1 - xi(k)\ — 0, k — oo. Then

g912g9222g2.25'@22§917

and if |g(x)| < C we have, by the dominated convergence theorem,

. Lol b —
gg%=@sﬁgmam,

a

(57)

b
lim 3 (L—S)j ¢(x) G(d),

k— 00 —
EZ a

where g(x) = limy g5, (x), g(x) = limy g 2, (x).
If the limits limy z o, and limy > o, A€ finite and equal, and their common
P Ligp,

value is independent of the sequence of decompositions { ,}, we say that g = g(x)
is Riemann—Stieltjes integrable, and the common value of the limits is denoted by

b

b
(R-S) J 2(9) G(dx) or (R_S)f 2(x) dG (). (58)

a a

When G(x) = x, the integral is called a Riemann integral and denoted by

Now let (L-S) SZ g(x)G(dx) be the corresponding Lebesgue—Stieltjes integral (see
Remark 3).

Theorem 9. If g = g(x) is continuous on [a, b], it is Riemann—Stieltjes integrable

and
b

b
mﬁﬁgmam=@sﬁgmam. (59)

a a

PROOF. Since g(x) is continuous, we have g(x) = g(x) = g(x). Hence by (57)

limy o0 3. 2, = limo0 )] .- Consequently a continuous function g = g(x) is
— 7k
Riemann—Stieltjes integrable and its Riemann-Stieltjes integral equals the
Lebesgue—Stieltjes integral (again by (57)).
O
Let us consider in more detail the question of the correspondence between the
Riemann and Lebesgue integrals for the case of Lebesgue measure on the line R.

Theorem 10. Let g(x) be a bounded function on [a, D).

(a) The function g = g(x) is Riemann integrable on [a, b] if and only if it is contin-
uous almost everywhere (with respect to Lebesgue measure A on %([a, b])).



6 Lebesgue Integral: Expectation 243

(b) If g¢ = g(x) is Riemann integrable, it is Lebesgue integrable and

b b
mﬁgmw=@ﬁgwﬂm. (60)

PROOF. (a) Let g = g(x) be Riemann integrable. Then, by (57),

b

b
@ﬁgmﬂw=@ﬁgmﬂm.

a a

But g(x) < g(x) < g(x), and hence by Property H

8(x) = g(x) =2(x) (Ma.s.), (61)

from which it is easy to see that g(x) is continuous almost everywhere (with respect
to \).

Conversely, let g = g(x) be continuous almost everywhere (with respect to \).
Then (61) is satisfied and consequently g(x) differs from the (Borel) measurable
function g(x) only on a set .4 with A\(.#") = 0. But then

{r 0) < o} = s g0) < ¢} 0 T + s )
={x:g(x) <c}n A+ {x: g(x)

It is clear that the set {x: g(x) < c} n .4 € %([a,b]), and that
{x: gx) <cpn A

is a subset of .#" having Lebesgue measure ) equal to zero and therefore also be-
longing to %([a,b)]. Therefore g(x) is %B([a, b])-measurable and, as a bounded
function, is Lebesgue integrable. Therefore by Property G,

b b

g@ﬂm:@ﬁkmxm,

a

b
(L) | g0 Ra) = (©) |
which completes the proof of (a).

(b) If g = g(x) is Riemann integrable, then according to (a) it is continuous
(M-a.s). It was shown above than then g(x) is Lebesgue integrable and its Riemann
and Lebesgue integrals are equal.

This completes the proof of the theorem.

=

Remark 5. Let ;1 be a Lebesgue-Stieltjes measure on %([a, b]). Let 8,,([a, b]) be
the system consisting of those subsets A < [a, b] for which there are sets A and B
in #([a,b]) such that A € A < B and p(B\A) = 0. Let i be the extension of p
to B,,([a,b]) ((A) = u(A) for A such that A € A < B and p(B\A) = 0). Then
the conclusion of the theorem remains valid if we consider 1z instead of Lebesgue
measure )\, and the Riemann—Stieltjes and Lebesgue—Stieltjes integrals with respect
to fz instead of the Riemann and Lebesgue integrals.
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Remark 6. The definition of Lebesgue integral (see Definitions 1 and 2 and formu-
las (3) and (6)) differs both conceptually and “in outward appearance” from those
of Riemann and Riemann—Stieltjes integrals, which employ upper and lower sums
(see (57)).

Now we compare these definitions in more detail.

Let (Q,.%, 1) be a measurable space with measure y. For any % -measurable
nonnegative function f = f(w) define two integrals, lower L.f and upper L*f (de-
noted also by §_ f du and { f dy), by putting

Lyf = sup )} (inf £() ) u(a),

L*f = inf ) (supf() ) u(a),

WEA;

where sup and inf are taken over all finite decompositions (A1,As,...,A,) of Q
into .% -measurable sets A1,Ao, ..., A, (Z:;lAi = Q), n>1.

It can be shown that L,f < L*f and L.f = L*f provided that f is bounded and p
is finite (Problem 20).

One approach (Darboux—Young) to the definition of the integral Lf of f with
respect to p consists in saying that f is p-integrable if L,f = L*f, letting then
Lf = Lyf (= L*f).

If we now consider Definition 1 of Lebesgue integral E f (Subsection 1), we can
see (Problem 21) that

Ef =L.f.

Thus for bounded nonnegative functions f = f(w) the Lebesgue and Darboux—
Young approaches give the same result (Ef = Lf = L*f = L,f).

But these approaches to integration become different when we deal with un-
bounded functions or infinite measure .

For example, the Lebesgue integrals 5(071] x‘% and 8(1, ) f—;“ are well defined and
equal to Lyf for f(x) = x~/21(0,1] and f(x) = x~2I(1, ) respectively. However
in both cases L*f = co.

Thus Lyf < L*f here and the functions at hand are not integrable in the
Darboux—Young sense, whereas they are integrable in the Lebesgue sense.

Consider now integration in Riemann’s sense in terms of the above approach
dealing with lower, L.f, and upper, L*f, integrals.

Suppose that Q = (0,1], # = % (Borel o-algebra) and p1 = A (Lebesgue
measure). Let f = f(x), x € €, be a bounded function (for the present we do not
assume its measurability).

By analogy with L.f and L*f define lower and upper Riemann integrals R.f,
R*f by putting

Rof = sup Y (inf £(w) ) A(B),

R'f = inf ) (sup s () ) A(B),

WEB;
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where (B1, Ba, ..., B,) is a finite decomposition of Q2 = (0, 1] with B;’s of the form
(a;, b;] (unlike arbitrary .%-measurable A;’s in the definition of L,f and L*f).
Obviously, the above definitions imply that

Rof < Lyf < L*f <R*f.

The Riemann integrability properties given in Theorems 9 and 10 can be restated
and complemented in terms of the following conditions:

(@) R*f = Rf;
(b) The set Dy of discontinuity points of f has zero Lebesgue measure (A(Dy) = 0);
(c) There esists a constant R(f) such that for any £ > 0 there is 6 > 0 such that

‘R(f) — Zf(w,-)/\((a,-,bi])' <e, w;€ (a;,bi],

for any finite system of disjoint intervals (a;, b;] satisfying > (a;, b;] = (0,1]
and /\((ai,b,']) < 0.

Arguing as in the proofs of Theorems 9 and 10 one can show (Problem 22) that
for a bounded function f

(A) conditions (a), (b), (c) are equivalent and
(B) under either of conditions (a), (b), (¢)
R(f) = Rsf = R*f.

11. In this part we present a useful theorem on integration by parts for the Lebesgue—
Stieltjes integral.
Let two generalized distribution functions F = F(x) and G = G(x) be given on

(R, Z(R)).
Theorem 11. The following formulas are valid for all real a and b, a < b:
b

F(s—)dG(s) + J G(s)dF(s), (62)

a

F(b)G(b) — F(a)G(a) = J

or equivalently

F(b)G(b) — F(a)G(a) = J F(s—)dG(s) + J G(s—) dF (s)

+ Y AF(s) - AG(s), (63)

a<s<b
where F(s—) = limyy F(1), AF(s) = F(s) — F(s—).
Remark 7. Formula (62) can be written symbolically in “differential” form

d(FG) = F_dG + GdF. (64)
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Remark 8. The conclusion of the theorem remains valid for functions F and G of
bounded variation on [a, b]. (Every such function that is continuous on the right
and has limits on the left can be represented as the difference of two monotone
nondecreasing functions.)

PROOF. We first recall that in accordance with Subsection 1 an integral Sj() means
S(a N (+). Then (see formula (2) in Sect. 3)

<ﬂm—F@xam—Gw»=fcww~fda»

a a

Let F x G denote the direct product of the measures corresponding to ' and G. Then
by Fubini’s theorem

(F(b) = F(a))(G(b) — G(a)) :J( e d(F x G)(s,1)

Iis>iy (s, 1) d(F x G)(s,1) + Tis<iy (s, 1) d(F < G)(s, 1)
a,b] x (a,b] (a,b] x (a,b]

(G(s) — G(a)) dF(s) + J (F(t=) — F(a)) dG(1)

(a,6]

S

a,b)

G(s) dF(s) + J F(s=)dG(s) — G(a)(F(b) — F(a)) — F(a)(G(b) - G(a)),
(65)

S

a

where 1, is the indicator of the set A.
Formula (62) follows immediately from (65). In turn, (63) follows from (62) if
we observe that

b
f (G(s) — G(s—))dF(s) = Y] AG(s) - AF(s). (66)
a a<s<b

Corollary 1. If F(x) and G(x) are distribution functions, then
F(x)G(x) = F(s—)dG(s) + J G(s) dF(s). (67)
—0 —0

If also
Fo = [ ss)as

then

F(x)G(x) = JXOO F(s)dG(s) + f;o G(s)f (s) ds. (68)
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Corollary 2. Let £ be a random variable with distribution function F(x) and
E |¢|" < c0. Then

JﬂdF —nf)d’ [1— F(x)]dx (69)

ﬁthﬁK)——waWGx—nf YL (—x) dx (70)

and

E|¢" = JOOOO |x|" dF (x) = njoo X1 = F(x) + F(—x)] dx. (71)

0

To prove (69) we observe that

fﬂﬁ@-—ﬂﬂﬂhf@h

—b"(1 — F(b)) + nj FH1 - F(x)) dx. (72)

0

Let us show that since E [¢]" < o,
V'(1—F(b) + F(—=b)) <b"P(|¢§| > b) - 0, b — 0. (73)

In fact,
0k
HWZZJ x["dF(x) < o
k=1vk=1
and therefore
ZJ |x|"dF(x) — 0, b— .
k>b+1
But
S [ wrare = opoe 2 )
k>b+1

which establishes (73).
Taking the limit as b — o0 in (72), we obtain (69). Formula (70) is proved
similarly, and (71) follows from (69) and (70).

13.Let A = A(¢), ¢ > 0, be a function of locally bounded variation (i.e., of bounded
variation on each finite interval [a, b]), which is continuous on the right and has
limits on the left. Consider the equation

Zi=1+ f Z, dA(s), (74)
0

which can be written in differential form as
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dZ, = Z,_ dA(r), Zy = 1. (75)

The formula that we have proved for integration by parts lets us solve (74) ex-
plicitly in the class of functions of locally bounded variation.
We introduce the function (called the stochastic exponent, see [43])

E(A) = DO TT (1+ AA(s)e 40, (76)

0<s<t

where AA(s) = A(s) — A(s—) for s > 0, and AA(0) = 0.

The function A(s), 0 < s < 7, has bounded variation and therefore has at most
countably many discontinuities and the series > .., |AA(s)| converges. It follows
that

[T @+ aA(s)e 240, t>o,

0<s<t
is a function of locally bounded variation.

If A°(f) = A(1) — X g<,<, AA(s) is the continuous component of A(r), we can
rewrite (76) in the form

E(A) = OO TT (14 AA(s)). (77)

0<s<t

Let us write

F(t) =040 Gy = [] 1+ 2A(s), G(O0) = 1.

0<s<t

Then by (62)

t !

F(s)dG(s) + L G(s—)dF(s)

£(A) = F(VG(t) = 1 + f
0

=1+ Z F(s)G(s—)AA(s) +J G(s—)F(s) dA“(s)

0<s<t 0
t
=1+ J &,_(A) dA(s).
0

Therefore &,(A), t > 0, is a (locally bounded) solution of (74). Let us show that
this is the only locally bounded solution.

Suppose that there are two such solutions and let Y = Y(¢), t > 0, be their
difference. Then

Y(r) = j Y(s—)dA(s).

0
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Put
T =inf{r > 0: Y(r) # 0},

where we take T = oo if Y (¢) = 0 for ¢t > 0.

Since A(t), t > 0, is a function of locally bounded variation, there are two gener-
alized distribution functions A1 (#) and As(¢) such that A(7) = A;(t) — Aa(2). If we
suppose that T < oo, we can find a finite 7/ > T such that

[A1(T") + Ao(T")] — [AL(T) + Ax(T)] < 1.

Then it follows from the equation

that
sup | ¥(1)| < & sup | (1)
1<T <T
and since sup,« |Y(¢)| < o, we have Y(¢) = 0 for T < ¢ < T’, contradicting the
assumption that 7 < o0.
Thus we have proved the following theorem.

Theorem 12. There is a unique locally bounded solution of (74), and it is given by
(76).

14. PROBLEMS

1. Establish the representation (6).

2. Prove the following extension of Property E. Let £ and 7 be random variables
for which E £ and E n are defined and the sum E £ + E 7 is meaningful (does
not have the form co — o0 or —o0 + o0). Then

E(€+n) =E¢+En.

3. Generalize Property G by showing that if £ = 7 (a.s.) and E £ exists, then En
existsand E{ = En.

4. Let & be an extended random variable, i a o-finite measure, and SQ |€]dp < 0.
Show that |£]| < oo (u-a.s.) (cf. Property J).

5. Let p be a o-finite measure, £ and 1 extended random variables for which E £
and E 7 are defined. If §, {dp < §, ndp for all A € F then £ < n (u-a.s.).
(Cf. Property I.)

6. Let £ and 7 be independent nonnegative random variables. Show that E{n =
E¢-En.

7. Using Fatou’s lemma, show that
P(liminf A,) < liminf P(4,), P(limsupA,) > limsup P(4,).

8. Find an example to show that in general it is impossible to weaken the hypoth-
esis “|&,| <n, En < 0” in the dominated convergence theorem.
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10.

11.

13.

14.

15.

16.
17.

18.
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. Find an example to show that in general the hypothesis “¢, < n, En > —0”
in Fatou’s lemma cannot be omitted.

Prove the following variant of Fatou’s lemma. Let the family {&;" },>1 of ran-
dom variables be uniformly integrable. Then

limsupE ¢, < Elimsupé,.

Dirichlet’s function

1, x irrational,
d(x) = {0, x rational,

is defined on [0, 1], Lebesgue integrable, but not Riemann integrable. Why?
. Find an example of a sequence of Riemann integrable functions {f, },>1, de-
fined on [0, 1], such that |f,| < 1, f, — f almost everywhere (with Lebesgue
measure), but f is not Riemann integrable.
Let (ay; i,j > 1) be a sequence of real numbers such that 3, ; |a;| < oo.
Deduce from Fubini’s theorem that

;“ﬁzz(z"fi) =3 (Sa)- 78)

i i

Find an example of a sequence (ay; i,j > 1) for which 3, ; |a;| = o0 and the
equations in (78) do not hold.
Starting from simple functions and using the theorem on taking limits under
the Lebesgue integral sign, prove the following result on integration by substi-
tution.

Let & = h(y) be a nondecreasing continuously differentiable function on
[a, D], and let f(x) be (Lebesgue) integrable on [A(a), h(b)]. Then the function
F(h(y))H (y) is integrable on [a, b] and

h(b)

b
) dx = j F(R()H (v) dy.

h(a)

Prove formula (70).

Let &, &1, &9, . . . be nonnegative integrable random variables such that E¢, —
E¢ and P(|§¢ — &,| > &) — 0 for every € > 0. Show that then E |, — &| —
0, n — oo.

Let £ be an integrable random variable (E || < o). Prove that for any € > 0
there exists § > 0 such that EJ4|¢| < ¢ for any A € .# with P(A) < ¢ (the
property of “absolute continuity of Lebesgue integral”).

. Let&,n, Cand &,,n,, Cy, n > 1, be random variables such that*

* Convergence in probability &, LA ¢ means that P{|¢, —&| > e} —> 0asn — oo forany e > 0
(for more details see Sect. 10).
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20.
21.

22.
23.

24.

25.

26.

27.

28.

P P P
&8 m—n, GG <& <G, n>1,
ECﬁ_’ECa ETM—*EW,

and the expectations E£, En, E( are finite. Show that then E§, — E¢
(Pratt’s lemma).

If also 77, < 0 < ¢, then E[§, — &| — 0.

Deduce that if &,—¢, E |¢,| — E|¢| and E ¢| < o0, then E |€, — €| — 0.
Give an example showing that, in general, under the conditions of Pratt’s
lemma E |, — £| - 0.

Prove that L.f < L*f and if f is bounded and  is finite then L,f = L*f (see
Remark 6).

Prove that Ef = L. f for bounded f (see Remark 6).

Prove the final statement of Remark 6.

Let X be a random variable and F(x) its distribution function. Show that

0
EXT <0 — J logidx< oo for some a.

o F()
Show that if lim,_,o ” P{|¢| > x} = 0 for p > 0 then E |§|" < oo for all
r < p. Give an example showing that for r = p it is possible that E |£]7 = oo.
Find an example of a density f(x), which is not an even function but has zero
odd moments, Sicoo Ff(x)dx=0,k=1,3,...
Give an example of random variables &,, n > 1, such that

0] o0
E> & # Y E&,.
n=1 n=1
Let a random variable X be such that
P{|X| > an}
—— >0, n— o,
P{|X| > n}

for any o > 1. Prove that in this case all the moments of X are finite. Hint: use
the formula

0
E|X|N = NJ HEP(IX| > x) dx.
0

Let X be a random variable taking values k = 0, 1, 2, ... with probabilities py.
By the definition in Sect. 13 of Chap. 1 the function F(s) = 3,7, pes”, |s| < 1,
is called the generating function of X. Establish the following formulas:
(i) If X is a Poisson random variable, i.e., py = e*)‘)\k/k!, A> 0,k =
0,1,2,...,then
F(s) = e 2179, ls] < 1;

(ii) If X has a geometric distribution, i.e., px = pg*&,0 <p<1,q=1—p,
k=0,1,2,..., then
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p
F(s) = , <1.
)= 2 <

29. Besides the generating function F'(s), it is often expedient to consider the mo-
ment generating function M(s) = E eX (for s such that E e** < 0).
(a) Show that if the moment generating function M (s) is defined for all s in
a neighborhood of zero (s € [—a, a], a > 0), then M(s) has derivatives
M®)(s) of any order k = 1,2, ... ats = 0 and

M©(0) = ExF

(which explains the term for M(s)).

(b) Give an example of a random variable for which M(s) = oo for
all s > 0.

(c) Show that the moment generating function of a Poisson random vari-
able X with A > 0is M(s) = e~ *1=¢) for all s € R.

30. Let X, €e L",0 < r < o0, and X, A X. Then the following conditions are
equivalent:
(i) The family {|X,|",n > 1} is uniformly integrable;
(i) X, > XinL";
(i) E|X,|" — E|X|" < o0.
31. Spitzer’s identity. Let X1, Xo,... be independent identically distributed ran-
dom variables with P{X; < 1} = 1l and let S, = X; + --- + X,,. Then for

Jul, o] <1
& & t" +
ZtnEeuM” —GXp(Z — EeMS">7

n=0 n=1

where M,, = max(0, X1, Xa, ..., X,), S = max(0,S,).

32. LetSy =0,S, =X1 +---+ X,,, n > 1, be a simple symmetric random walk
(ie.,X;,i =1,2,..., are independent and take the values 1 with probabilities
1/2) and 7 = min {n > 0: S, > 0}. Show that

E min(7,2m) = 2E |So,| = 4mP{S2, =0}, m > 0.

33. Let & be a standard Gaussian random variable (£ ~ .47(0,1)). Using integra-
tion by parts, show that E ¢k = (k — 1) E ¢€¥=2. Derive from this the formulas:

E¢* 1 =0 and E¢*=1-3-...-(2k—3)(2k—1) (= (2k — 1)!).

34. Show that the function x~'sinx, x € R, is Riemann integrable, but not
Lebesgue integrable (with Lebesgue measure on (R, Z(R))).
35. Show that the function

E(wy,we) = e 9192 — Qe 2wz e ) = [1,00), ws € Qo = (0,1],
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36.

37.

38.

39.

40.

41.

is such that

(a) itis Lebesgue integrable with respect to wy € €2 for every wy and

(b) itis Lebesgue integrable with respect to ws € (25 for every w1,
but Fubibi’s theorem does not hold.
Prove the Beppo Levi theorem: If random variables &1, &o, ... are integrable
(E|&| < o foralln > 1), sup,E&, < o0 and &, 1 &, then £ is integrable
and E¢, 1 E£ (cf. Theorem 1 (a)).
Prove the following version of Fatou’s lemma: if 0 < &, — £ (P-a.s.) and
E¢, <A < oo,n > 1, then £ is integrable and E£ < A.
(On relation of Lebesgue and Riemann integration.) Let a Borel function f =
f(x) be Lebesgue integrable on R: {, |f(x)| dx < co. Prove that for any £ > 0
there are:

(a) a step function fz(x) = X', fila,(x) with bounded intervals A; such

that §, [f(x) — fz(x)] dx < &;
(b) an integrable continuous function g. (x) with bounded support such that

$o lf(x) — go(x)|dx < e.

Show that if £ is an integrable random variable, then

w 0
Engo P{§>x}dx—J P{¢ < x} dx.

Let ¢ and 7 be integrable random variables. Show that

Ef—En—JOC [P{n <x <& —P{{ <x < n}]dx.

—00

Let £ be a nonnegative random variable (¢ > 0) with Laplace transform
we(A\) =Ee X, A >0.
(a) Show that forany 0 < r <1

r r 001_(105()‘)
Eg"ragwyL N1 dA.

Hint: use that fors > 0,0 <r <1

1 Y e

(b) Show that if ¢ > 0 then for any r > 0

—r 1 * 1/r
Ee = e\ dA.

Hint: use that fors > 0,r > 0

s = ﬁfo exp {—(\/s)"} dX.
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7 Conditional Probabilities and Conditional Expectations
with Respect to a o-Algebra

1. Let (€2,.%, P) be a probability space and A € .# an event such that P(A) > 0.
As for finite probability spaces, the conditional probability of B with respect to
A (denoted by P(B|A)) means P(BA)/P(A), and the conditional probability of B
with respect to the finite or countable decomposition 9 = {D1, D, ...} such that
P(D;) > 0, i > 1 (denoted by P(B| 2)) is the random variable equal to P(B | D;)
forwe D;, i > 1:

P(B|2) = . P(B| Di)lp,(w).

i>1

In a similar way, if £ is a random variable for which E £ is defined, the conditional
expectation of £ with respect to the event A with P(A) > 0 (denoted by E(£ |A)) is
E(&14)/P(A) (cf. (10) in Sect. 8 of Chap. 1).

The random variable P(B|2) is evidently measurable with respect to the
o-algebra ¥ = o(2), and is consequently also denoted by P(B|¥) (see Sect.8
of Chap. 1).

However, in probability theory we may have to consider conditional probabilities
with respect to events whose probabilities are zero.

Consider, for example, the following experiment. Let £ be a random variable
uniformly distributed on [0, 1]. If £ = x, toss a coin for which the probability of head
is x, and the probability of tail is 1 —x. Let v be the number of heads in n independent
tosses of this coin. What is the “conditional probability P(v = k| & = x)”? Since
P(¢ = x) = 0, the conditional probability P(v = k | £ = x) is undefined, although it
is intuitively plausible that “it ought to be Ckx*(1 — x)"~*.

Let us now give a general definition of conditional expectation (and, in particular,
of conditional probability) with respect to a o-algebra ¢, ¢4 < .#, and compare it
with the definition given in Sect. 8 of Chap. 1 for finite probability spaces.

2.Let (Q2,.%,P) be a probability space, 4 a o-algebra, ¥ < .F (¥ is a o-subalgebra
of %), and £ = £(w) arandom variable. Recall that, according to Sect. 6, the expec-
tation E £ was defined in two stages: first for a nonnegative random variable &, then
in the general case by

E¢=E¢ —E¢T,

and only under the assumption that

min(E€™, E€T) <o
(in order to avoid an indeterminacy of the form o0 — 00). A similar two-stage con-
struction is also used to define conditional expectations E(£ | ¥).

Definition 1.

(1) The conditional expectation of a nonnegative random variable & with respect
to the o-algebra ¢ is a nonnegative extended random variable, denoted by

E(¢|¥9) or E(¢]¥)(w), such that
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(a) E(£|9) is ¥-measurable;
(b) forevery A € 4

LEdP=J;E(§\E¢)dP. (1)

(2) The conditional expectation E(£|9), or E(§|¥)(w), of any random variable &
with respect to the o-algebra ¢ is considered to be defined if

min(E(E" |9),E(€|9) < (P-as.),
and it is given by the formula
E(€|9)=E("|9) —E(¢19),

where, on the set (of probability zero) of sample points for which E(¢* |4) =
E(™]¥) = oo, the difference E(¢7|¥) — E((7 |¥) is given an arbitrary
value, for example zero.

We begin by showing that, for nonnegative random variables, E(£ |¢) actually
exists. By Subsection 8 of Sect. 6 the set function

Q(A) =Jgdp, Acd, o)
A

is a measure on (2, %), and is absolutely continuous with respect to P (considered
on (2,9), 9 < #). Therefore (by the Radon—Nikodym theorem) there is a non-
negative ¢-measurable extended random variable E(£ | %) such that

Q) = LE(flg)dP- 3)

Then (1) follows from (2) and (3).

Remark 1. In accordance with the Radon-Nikodym theorem, the conditional ex-
pectation E(£]%) is defined only up to sets of P-measure zero. In other words,
E(¢]¥) can be taken to be any ¢-measurable function f(w) for which Q(A) =
§,f(w)dP, A€ (a“version” of the conditional expectation).

Let us observe that, in accordance with the remark on the Radon-Nikodym
theorem,

E(e|9) = T2 w), @

i.e., the conditional expectation is just the Radon—Nikodym derivative of the mea-
sure Q with respect to P (considered on (2, 9)).

It is worth to note that if a nonnegative random variable £ is such that E£ < oo,
then E(£|¥) < oo (P-a.s.), which directly follows from (1). Similarly, if £ < 0 and
E¢ > —oo, then E({|¥) > —0 (P-a.s.).

Remark 2. In connection with (1), we observe that we cannot in general put
E(¢]¥) = &, since ¢ is not necessarily 4-measurable.
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Remark 3. Suppose that ¢ is a random variable for which E £ exists. Then E(¢ |¥)
could be defined as a ¢-measurable function for which (1) holds. This is usually just
what happens. Our definition E(£ |¥) = E(£7 |9) — E(£™ |¥9) has the advantage
that for the trivial o-algebra ¢ = {@, Q} it reduces to the definition of E ¢ but
does not presuppose the existence of E £. (For example, if £ is a random variable
with EET = o0, E€™ = o, and ¢ = %, then E £ is not defined, but in terms of
Definition 1, E(£ |¥) exists and is simply £ = £t — £7).

Remark 4. Let the random variable £ have a conditional expectation E(¢ |¥) with
respect to the o-algebra 4. The conditional variance Var(§|¥) of £ with respect
to ¢ is the random variable

Var(¢|9) = E[(€ — E(€]9))*|9].

(Cf. the definition of the conditional variance Var (¢ | 2) with respect to a decompo-
sition 2, as given in Problem 2 in Sect. 8, Chap. 1, and the definition of the variance
in Sect. 8).

Definition 2. Let B € .%. The conditional expectation E(/5|¥) is denoted by
P(B|¥), or P(B|¥)(w), and is called the conditional probability of the event B
with respect to the o-algebra ¥, 4 < F.

It follows from Definitions 1 and 2 that, for a given B € .#, P(B|¥) is a random
variable such that
(a) P(B|¥) is 9-measurable,
(b) foreveryAe ¥

P(AmB)=JP(B\%)dP. )

Definition 3. Let £ be a random variable and %, the o-algebra generated by a ran-
dom element 7). Then E(¢ | %)), if defined, is denoted by E(¢ |n) or E(§ | n)(w), and
is called the conditional expectation of & with respect to 1.

The conditional probability P(B|¥,,) is denoted by P(B|n) or P(B|n)(w), and
is called the conditional probability of B with respect to 1.

3. Let us show that the definition of E(£|¥) given here agrees with the definition
of conditional expectation in Sect. 8 of Chap. 1.

Let 2 = {D;1,D,,...} be a finite or countable decomposition with atoms D;
(Zi D; = Q) such that P(D;) > 0,7 > 1.

Theorem 1. If 4 = o(Z) and & is a random variable for which E £ is defined, then

E(€|%) =E(|D;) (P-as.onDy) ©)
or equivalently
E(¢|9) = EP((E;D; (P-a.s. on Dy).

(The notation “§ = n (P-a.s. on A)” or “¢ = n (A; P-a. s.)” means that P(A n {§ #
n}) =0.)
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PROOF. According to Lemma 3 of Sect.4, E(£|¥) = K; on D;, where K; are con-
stants. But

J £dP =f E(¢|9)dP = K,P(D)),
D; D;

whence ) E(el)
K = jgdP: Dl E(¢|Dy).
PO by " " Py IR
This completes the proof of the theorem.
O

Consequently the concept of the conditional expectation E(¢ | 2) with respect to
a finite decomposition 2 = {D1, ..., D,}, as introduced in Chap. 1, is a special case
of the concept of conditional expectation with respect to the o-algebra ¢ = o (D).

4. Properties of conditional expectations. We shall suppose that the expectations
are defined for all the random variables that we consider and that 4 < 7.

A*. If Cisaconstantand § = C (a.s.), then E(§|9) = C (a.s.).

B*. If¢ <n(a.s.)thenE(|9) <E(n|¥Y) (a.s.).

C*. [E(¢|9)| <E(¢]|9) (a.s.).

D*. Ifa,b are constants and a E £ + b E 1 is defined, then

E(a€+bn|¥9)=aE(|Y9)+DE(n|Y) (a.s.).
E*. Let #, = {&,Q} be the trivial o-algebra. Then
E(| 7)) =E¢ (a-s.).
F*. E({| F) = £ (a.s.).
G*. E(E(¢|¥9)) = E¢.
H*. If % < %, then the (first) “telescopic property” holds:
E[E(|9) %] =E(|4) (a.s.).
I*. If 9 2 % then the (second) “telescopic property” holds:
E[E(|4)[4)] = E(|4) (as.).

J*. Let a random variable £ for which E £ is defined be independent of the o-
algebra ¥ (i.e., independent of Iy, B € 4). Then

E(¢|9) =E¢ (a.s.).

K*. Let n be a 9-measurable random variable, E || < o and E |¢n| < .
Then

E(n|9) =nE(E|Y) (as.).
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Let us establish these properties.
A*. A constant function is measurable with respect to ¢. Therefore we need
only verify that

fgdP:JCdP, Aec9.
A A

But, by the hypothesis £ = C (a.s.) and Property G of Sect. 6, this equation is
obviously satisfied.
B*. If £ < 7 (a.s.), then by Property B of Sect. 6

JgdPandP, Ae9,
A A

and therefore

JE({W)dPgJ E(n|4)dP, Acd.
A A

The required inequality now follows from Property I (Sect. 6).
C*. This follows from the preceding property if we observe that — || < £ < [£].
D*. If A € ¢ then by Problem 2 of Sect. 6,

L(aerbn)dP: LafquLLbndP:LaE(ﬂg)dP
+ | bEmI9)aP = | [aE(€|9) + bEG|9))aP,
A A

which establishes D*.
E*. This property follows from the remark that E £ is an .%,-measurable func-
tion and the evident fact that if A = QQ or A = & then

LfszLEgdP.

F*. Since ¢ if .%-measurable and
f cdpP :j E(¢|.7)dP, AeZ,
A A
we have E(£ | #) = £ (a.s.).

G*. This follows from E* and H* by taking 4 = {@, Q} and % = ¥4.
H*. LetA € ¥4, ; then

LE(&\%)dP:LfdP.

Since 4 < %, we have A € %, and therefore

LE[E(§|%)|%]dP:LE(§|%)dP:LgdP.
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Consequently, when A € ¢,

Lam%wp=fﬂaﬂ%n%wp

A

and arguing as in the proof of Property I (Sect. 6) (see also Problem 5 of Sect. 6)
E([#) = E[E(¢[92) %] (a.s.).

I*. If A € ¢4}, then by the definition of E[E(£ |4) | 4]

LﬂHH%H%WP:LHﬂ%MP

The function E(£ | %2) is %,-measurable and, since % € %, also % -measurable. It
follows that E(& | 42) is a variant of the expectation E[E(¢ | %) | 41 ], which proves
Property I'*.

J*. Since E £ is a ¥-measurable function, we have only to verify that

Jgdsz.EgdP forany Be ¥,
B B

i.e., that E[¢-I5] = E&-EIp. IfE |£] < o0, this follows immediately from Theorem 6
of Sect. 6. In the general case use Problem 6 of Sect. 6 instead of this theorem.

The proof of Property K* will be given a little later; it depends on conclusion (a)
of the following theorem.

Theorem 2 (On Taking Limits Under the Conditional Expectation Sign). Let
{fn}nzl be a sequence of extended random variables.

@ If|&] <n, En<oo,and &, — £ (a.s.), then
E(6.|9) > E(¢|9Y) (as.)

and
E(l& —¢[19) >0 (a.s.).
) If& >n, En> —o,and &, 1 € (a.s.), then

E(|9) 1EEIY) (as.).
©If& <n, En<oo,and &, | € (a.s.), then

E |9 |EE|Y) (a.s.).
(A If& >n, En > —oo, then

E(liminf &, |¥4) <liminfE(E, |¥) (a.s.).
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() If&, <n, En < oo, then
limsupE(§, |¥¢) < E(limsup&, |¥9) (a.s.).

() If & > 0 then
EQ 619 =) E&lY) (as).

PROOF. (a) Let ¢, = sup,,>, [&n — &|. Since &, — £ (a.s.), we have ¢, | 0 (a.s.).
The expectations E &, and E £ are finite; therefore by Properties D* and C* (a.s.)

B |9) —E(€19)] = |E(& —§|9)| <E(I& —¢]19) < E(G9).

Since E(¢,+119) < E(¢,|¥9) (a.s.), the limit 2 = lim, E((, | ¢4) exists (a. s.). Then
ogf thgf E(g‘n|%)dP:J G dP >0, n— oo,
Q Q Q

where the last statement follows from the dominated convergence theorem, since
0 < ¢ < 21, En < oo. Consequently SthP = 0 and then 7 = 0 (a.s.) by
Property H.

(b) First let n = 0. Since E(§,|¥) < E(&+41]¥) (a.s.), the limit {(w) =
lim, E(&, |¢) exists (a.s.). Then by the equation

féndP f (€ |9)dP, Aed,

and the theorem on monotone convergence,

fgdP f (€|9)dP = J(dP Aed.

Consequently £ = ( (a.s.) by Property I and Problem 5 of Sect. 6.
For the proof in the general case, we observe that 0 < £} 1 T, and by what has
been proved,

B |9)1EET9) (as.). )
But0 <¢; <&, EE™ < o0, and therefore by (a)

B |9) —E(E[9),

which, with (7), proves (b).

Conclusion (c) follows from (b).

(d) Let ¢, = inf,>,&y; then ¢, T ¢, where { = liminf¢,. According to (b),
E(¢.|¥9) 1 E((|¥) (a.s.). Therefore (a.s.) E(liminf¢,|¥9) = E((|¥) =
lim, E(¢, |¥) = liminf E(¢, |¥) < liminf E(&,|¥9).
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Conclusion (e) follows from (d).
(f) If &, > 0, by Property D* we have

E <i §k|g> = an E(&|¥Y) (a.s.)
k=1 k=1

which, with (b), establishes the required result.
This completes the proof of the theorem.
O
We can now establish Property K*. Let = Iy, B € ¢. Then, for every A € ¥,

fgndP:j €dP = E(§|%)dP:JIBE(§\%)dP:JnE(§|€§)dP.
A ANB ANB A A

By the additivity of the Lebesgue integral, the equation
| enap = [ nE€I9)aP, acw. ®)
A A

remains valid for the simple random variables = >/ _, yilp,, Bx € ¢. Therefore,
by Property I (Sect. 6), we have

E(¢n|¥) =nE(|Y) (as) ©

for these random variables.

Now let 7 be any ¢-measurable random variable, and let {77,1},121 be a sequence
of simple ¥-measurable random variables such that |n,| < 7 and 7, — 7. Then
by (9)

E@€m|9) =mEElY) (as.).

It is clear that |£n,| < |€n|, where E |£n] < oo. Therefore E(én, |9) — E(En|9)
(a.s.) by Property (a). In addition, since E |£| < oo, we have E(£|¥) finite (a.s.)
(see Property C* and Property J of Sect.6). Therefore 1, E({|¥) — nE(¢|¥)
(a.s.). (The hypothesis that E(£ |¥) is finite, almost surely, is essential, since, ac-
cording to the footnote in Subsection 4 of Section 4, 0-c0 = 0, butifn, = 1/n, n =
0,wehave 1/n-00 =00 » 0-00 =0.)

Remark 5. For the property K* the following conditions suffice: n) is 4 -measurable
and E(£|9) is well defined.

5. Here we consider the more detailed structure of conditional expectations E(¢ | 9;,),
which we also denote, as usual, by E(¢ | 7).

Since E(£ | 1) is a ¢,,-measurable function, then by Theorem 3 of Sect. 4 (more
precisely, by its obvious modification for extended random variables) there is a
Borel function m = m(y) from R to R such that

m(n(w)) = E(&|n)(w) (10)
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for all w € Q. We denote this function m(y) by E(£|n = y) and call it the condi-
tional expectation of £ with respect to the event {n = y}, or the conditional expec-
tation of & under the condition that ) =y, or given that n = y.

By definition,

fgdP fE§|ndP f )dP, Aecd,. (11)

Therefore by Theorem 7 of Sect. 6 (on change of variable under the Lebesgue inte-
gral sign)
m(n)dP = [ miy)Py(dy), B e BR), (12
{w: neB} B
where P, is the probability distribution of 7. Consequently m = m(y) is a Borel
function such that

f £dP = f P, (dy) (13)
{w: neB}

for every B € #(R).
This remark shows that we can give a different definition of the conditional ex-
pectation E(£ |n = y).

Definition 4. Let £ and 7 be random variables (possibly, extended) and let E £ be
defined. The conditional expectation of the random variable £ under the condition
that 5 = y is any %(R)-measurable function m = m(y) for which

f £dP = J P,(dy), Be B(R). (14)
{w: neB}

That such a function exists follows again from the Radon—Nikodym theorem if
we observe that the set function

Q) — f{w Rl

is a signed measure absolutely continuous with respect to the measure P,,.

Now suppose that m(y) is a conditional expectation in the sense of Definition 4.
Then if we again apply the theorem on change of variable under the Lebesgue inte-
gral sign, we obtain

J{w: el EdP = Lm(y) P, (dy) = Lw: . m(n)dP, Be A(R).

The function m(n) is ¢,-measurable, and the sets {w: 1 € B}, B € Z(R), exhaust
the subsets of ¢,,.

Hence it follows that m(n) is the expectation E(& | n). Consequently if we know
E(¢|n = y) we can reconstruct E(£ | n), and conversely from E(¢ | 1) we can find

E(€[n=y).
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From an intuitive point of view, the conditional expectation E({|n = y) is
simpler and more natural than E(¢|7n). However, E(¢|7), considered as a ¥, -
measurable random variable, is more convenient to work with.

Observe that Properties A*—K* above and the conclusions of Theorem 2 can
easily be transferred to E({|n = y) (replacing “almost surely” by “P,-almost
surely”). Thus, for example, Property K* transforms as follows: if E || < oo and
E |&f(n)| < oo, where f = f(y) is a Z(R) measurable function, then

B () [n=y)=fEEIn=y) (Pyas.). (15)

In addition (cf. Property J*), if £ and 7 are independent, then
E€[n=y)=E¢ (Pyas.).

We also observe that if B € %(R?) and £ and 7 are independent, then

E[/z(&,n) |n=y] = Elg(&,y) (Py-as.), (16)

and if ¢ = ¢(x,y) is a Z(R?)-measurable function such that E |¢(&, n)| < oo, then

E[p(&n) |1 =y] =E[p(y)] (Py-as.).

To prove (16) we make the following observation. If B = By X Bo, the validity
of (16) will follow from

J Iy x5 (€,1) Pdw) = J E L, x5, (€,) Py (d)-
{w: nea} (yeA)

But the left-hand side here is P{{ € By, n € A n By}, and the right-hand side is
P(¢ € B1) P(n € A n By); their equality follows from the independence of & and 1.
In the general case the proof depends on an application of Theorem 1 of Sect.2 on
monotone classes (cf. the corresponding part of the proof of Fubini’s theorem).

Definition 5. The conditional probability of the event A € .% under the condition
that 7 = y (notation: P(A|n = y))is E(I4 | n = y).

Itis clear that P(A | 7 = y) could be defined as a (R)-measurable function such
that

P(A ~ {neB)) = LP(A 11 =y) Py(dy), Be BR). (17

6. Let us calculate some examples of conditional probabilities and conditional ex-
pectations.

Example 1. Let 7 be a discrete random variable with P( = y;) > 0, 3%, P(n =
yx) = 1. Then

An{n=w})

F’(Aln=yk)=P(P(n:yk) k> 1.
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For y ¢ {y1,y2, ...} the conditional probability P(A | = y) can be defined in any
way, for example as zero.
If £ is a random variable for which E ¢ exists, then

1
E(€In=y)= P(r]_yk)J:{w: n=yk}§dP'

When y ¢ {y1,y2,...} the conditional expectation E(£|n = y) can be defined in
any way (for example, as zero).

Example 2. Let (£, 7) be a pair of random variables whose distribution has a density

Jem (x,y):
PIEn) < B) = | fenlrr)dedy, B e B,
B
Let f¢(x) and f, (y) be the densities of the probability distributions of £ and 7 (see

(46), (55), and (56) in Sect. 6).
Let us put

o (x ) = Fente) (1)

taking f¢ |, (x| y) = 0if f;,(y) = 0
Then

H&CM=W=L@me,Ce%m, (19)

i.e., fe,(x|y) is the density of a conditional probability distribution.
In fact, to prove (19) it is enough to verify (17) for B e #A(R), A = {¢ € C}. By
(43) and (45) of Sect. 6 and Fubini’s theorem,

JUE'” 1) d"] n(dy) = f“fgn 1) dx] - () dy

=j Fe(x19) £ (v) dxdy
CxB

= fen(x,y) dxdy
CxB

=P{(¢&n) e CxB} =P{(( € C) n (neB)},

which proves (17).
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In a similar way we can show that if E £ exists, then

o0

E(|n=y) :f X fepn (x| y) dx. (20

Example 3. Let the length of time that a piece of apparatus will continue to operate
be described by a nonnegative random variable 7 = 7(w) whose distribution func-
tion F,(y) has a density f;,(y) (naturally, F,,(y) = f,,(y) = 0 for y < 0). Find the
conditional expectation E(n — a|n > a), i.e., the average time for which the appa-
ratus will continue to operate given that it has already been operating for time a.

Let P(n > a) > 0. Then according to the definition of conditional probability
given in Subsection 1 and (45) of Sect. 6 we have

E[(n —a)li>, —a)l>qy Pldw
E(r—aln > a) - [(7;(77;{;)_ H_ Sa( P();{za}) (dw)

§2(v —a) f,(v) dy
Schn (y) dy .

It is interesting to observe that if 7 is exponentially distributed, i.e.

B Xe™,  y>0,
fao) = {0, 2o @

then En = E(n|n > 0) = 1/A and E(n — a|n > a) = 1/X for every a > 0.
In other words, in this case the average time for which the apparatus continues to
operate, assuming that it has already operated for time a, is independent of a and
simply equals the average time E 7.

Let us find the conditional distribution P(n — a < x|n > a) assuming (21). We
have

Pla<n<a+x)
P(n > a)

Fyla+x) = Fy(a) + P(n = a)
1—Fy(a) +P(n = a)

[1 o ef)\(aer)] _ [1 _ e*/\a]

- 1—[1—e ]

B e—)\a[l _ e—)\x]

—Aa

P(n—a<x|[n>a)=

—1—e M,

e

Therefore the conditional distribution P(p — a < x|n > a) is the same as the

unconditional distribution P(n < x). This remarkable property is characteristic for

the exponential distribution: there are no other distributions that have densities and
possess the property P(n —a <x|n>a) =P(n <x), a>0,0<x < o0.
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Example 4 (Buffon’s Needle). Suppose that we toss a needle of unit length “at
random” onto a pair of parallel straight lines, a unit distance apart, in a plane (see
Fig. 29). What is the probability that the needle will intersect at least one of the
lines?

To solve this problem we must first define what it means to toss the needle “at
random.” Let £ be the distance from the midpoint of the needle to the left-hand line.
We shall suppose that ¢ is uniformly distributed on [0, 1], and (see Fig. 29) that the
angle 6 is uniformly distributed on [—7/2, 7/2]. In addition, we shall assume that &
and 6 are independent.

7,

i

Fig. 29

Let A be the event that the needle intersects one of the lines. It is easy to see that
if
B={(a,x): |a| <7/2, x€[0,%cosa] U [l —1cosa,1]},

—_

then A = {w: (6, &) € B}, and therefore the probability in question is
P(A) = Els(w) = Elz(0(w), §(w)).

~—

By Property G* and formula (16),

Elp(0(w), £(w)) = E(E[Is(0(w), £(w)) [6(w)])
-,
/

1
El13(6(w). £(w)) | 6(w)] P(dw)
/2
- f El15(0(w), £)) | 6(w) = a] Po(da)

—m/2

3

/2 /2
EJ Elp(a,{(w))da = ! f cosada = g,
™

T J_x/2 T J_7/2

where we have used the fact that

Elp(a,(w)) = P{¢€ [0, 4 cosa] U [1 — § cosa]} = cosa.
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Thus the probability that a “random” toss of the needle intersects one of the lines
is 2/m. This result can be used as the basis for an experimental evaluation of 7. In
fact, let the needle be tossed N times independently. Define &; to be 1 if the needle
intersects a line on the ith toss, and 0 otherwise. Then by the law of large numbers
(see, for example, (5) in Sect. 5 of Chap. 1)

°|
for every € > 0.
In this sense the frequency satisfies

G+ -+
N

P(A)‘>€}HO, N — o,

MQP(A):E
N 0

and therefore
2N

Gt

This formula has actually been used for a statistical evaluation of . In 1850,

R. Wolf (an astronomer in Zurich) threw a needle 5000 times and obtained the value

3.1596 for 7. Apparently this problem was one of the first applications (now known

as “Monte Carlo methods”) of probabilistic-statistical regularities to numerical anal-
ysis.

.

Remark 6. Example 4 (Buffon’s problem) is a typical example of a problem on
geometric probabilities. In such problems one often can see how to assign probabil-
ities to “elementary events” from geometric considerations based, for example, on a
“symmetry.” (Cf. Subsections 3 and 4 in Sect. 1 of Chap. 1 and Sect. 3 of the present
Chapter.) Problems 9 to 12 below deal with geometric probabilities.

7.1f {£,}4>1 s a sequence of nonnegative random variables, then according to con-
clusion (f) of Theorem 2,

E(Y619) = YEGI9) (as).

In particular, if By, Bs, . . . is a sequence of pairwise disjoint sets,

p(ZB“g):ZPumg)(&w. (22)

It must be emphasized that this equation is satisfied only almost surely and that
consequently the conditional probability P(B|%)(w) cannot be considered as a
measure in B for given w. One might suppose that, except for a set .4~ of mea-
sure zero, P(-|4)(w) would still be a measure for w € .#". However, in general this
is not the case, for the following reason. Let .4 (B, Bs, . ..) be the set of sample
points w such that the countable additivity property (22) fails for these By, Bo, . . ..
Then the excluded set .4 is
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N =) A (By,By, .., (23)

where the union is taken over all By, Bs, ... in .%. Although the P-measure of each
set 4 (B, Ba, . . .) is zero, the P-measure of .4 can be different from zero (because
of an uncountable union in (23)). (Recall that the Lebesgue measure of a single point
is zero, but the measure of the set .#” = [0, 1], which is an uncountable sum of the
individual points {x},0 <x < 1,is 1.)

However, it would be convenient if the conditional probability P(- | ¥4)(w) were
a measure for each w € (2, since then, for example, the calculation of conditional
expectations E(£|¥)(w) could be carried out (see Theorem 3 below) in a simple
way by averaging with respect to the measure P(- | ¢)(w):

E(¢|9) = ff PWo| )W) (as)

(cf. (10) in Sect. 8 of Chap. 1).
We introduce the following definition.

Definition 6. A function P(w;B), defined for all w € Q and B € %, is a regular
conditional probability with respect to 4 < % if

(a) P(w; -) is a probability measure on .# for every w € 2;
(b) For each B € .Z the function P(w;B), as a function of w, is a version of the
conditional probability P(B|¥)(w), i.e., P(w; B) = P(B|¥)(w) (a.s.).

Theorem 3. Let P(w; B) be a regular conditional probability with respect to 4 and
let & be an integrable random variable. Then

E€[9)(w) = | {@)P(w;dw) (a.s.). 24)
Q
PROOF. If ¢ = I, B € .7, the required formula (24) becomes

P(B|9)(w) = P(w;B) (a.s.),

which holds by Definition 6 (b). Consequently (24) holds for simple functions.

Now let £ > 0 and &, 1 &, where &, are simple functions. Then by (b) of Theo-
rem 2 we have E({ |¥)(w) = lim, E(&, |¥)(w) (a.s.). But since P(w;-) is a mea-
sure for every w € (), we have

(S |9)() = lim [ 6(@P(w: ) = [ €@)Pw: di)

by the monotone convergence theorem.

The general case reduces to this one if we use the representation £ = £+ — £,
This completes the proof.

m]
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Corollary. Let Y = 9,, where 1) is a random variable, and let the pair (§,7) have
a probability distribution with density fe ,,(x,y). Let E |g(§)| < 00. Then

Q0

Eg(6) |7 = y) = j ¢() fepn x| ) d,

where fe|, (x| y) is the density of the conditional distribution (see (18)).

In order to be able to state the basic result on the existence of regular conditional
probabilities, we need the following definitions.

Definition 7. Let (E, &) be a measurable space, X = X(w) a random element with
values in E, and ¢ a o-subalgebra of .%. A function Q(w; B), defined for w € 2 and
B e &, is a regular conditional distribution of X with respect to 4 if

(a) for each w € (2 the function Q(w; B) is a probability measure on (E, &);
(b) for each B € & the function Q(w;B), as a function of w, is a version of the
conditional probability P(X € B|¥)(w), i.e.

Ow;B)=P(XeB|9)(w) (a.s.).

Definition 8. Let £ be a random variable. A function F = F(w;x), w € Q, x € R, is
a regular distribution function for & with respect to 9 if:

(a) F(w;x) is, for each w € €, a distribution function on R;
(b) F(w;x) = P(£ <x|¥9)(w) (a.s.), for each x € R.

Theorem 4. A regular distribution function and a regular conditional distribution
always exist for the random variable & with respect to a o-algebra ¥ < F.

PROOE. For each rational number r € R, define F,(w) = P(§ < r|¥)(w), where
P < r|9)(w) = E(l{e<,y |9)(w) is any version of the conditional probability,
with respect to ¢, of the event {{ < r}. Let {r;} be the set of rational numbers
in R. If r; < ry, Property B* implies that P({ < r;|¥9) < P({ < 1;|¥) (a.s.), and
therefore if A; = {w: F,(w) < F,,(w)}, A = |JAj;, we have P(A) = 0. In other
words, the set of points w at which the distribution function F,(w), r € {r;}, fails to
be monotonic has measure zero.
Now let

s

Il
—

B; = {w: nli_)ngo Fr,.+(1/n)(w) # Fr‘_(w)}7 B = B;.

L

It is clear that Iie<, 4 (1/n)} | I{e<ry, n — o0. Therefore, by (a) of Theorem 2,
F, i am(w) — F,(w) (a.s.), and therefore the set B on which continuity on the
right (along the rational numbers) fails also has measure zero, P(B) = 0.

In addition, let

n—o0 n——aoo

C= {w: lim F,(w) # 1} U {w: lim Fy(w) # 0}.

Then, since {£ <n} 1 Q, n — o0, and {{ < n} | I, n — —o0, we have P(C) = 0.
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Now put
limF,(w), wéAuUuBUDC,
F(w;x) =< rix
G(x), weAUBUC,

where G(x) is any distribution function on R; we show that F(w;x) satisfies the
conditions of Definition 8.

Let w ¢ A U B u C. Then it is clear that F(w;x) is a nondecreasing func-
tion of x. If x < ¥’ < r, then F(w;x) < F(w;x') < F(wyr) = Fr(w) |
F(w, x) when r | x. Consequently F(w;x) is continuous on the right. Simi-
larly lim, o F(w;x) = 1, lim, , o F(w;x) = 0. Since F(w;x) = G(x) when
w € Au B uU C, it follows that F(w;x) is a distribution function on R for every
w € §, i.e., condition (a) of Definition 6 is satisfied.

By construction, P(§ < r|¥9)(w) = F,(w) = F(w;r). If r | x, we have F(w; ) |
F(w;x) for all w € Q by the continuity on the right that we just established. But by
conclusion (a) of Theorem 2, we have P({ < r|9)(w) — P(§ < x|9)(w) (a.s.).
Therefore F(w;x) = P(§ < x|¥)(w) (a.s.), which establishes condition (b) of
Definition 8.

We now turn to the proof of the existence of a regular conditional distribution
of & with respect to ¢.

Let F(w; x) be the function constructed above. Put

0wi) = | Fws av),

where the integral is a Lebesgue—Stieltjes integral. From the properties of the inte-
gral (see Subsection 8 in Sect. 6), it follows that Q(w; B) is a measure in B for each
given w € Q. To establish that Q(w; B) is a version of the conditional probability
P(¢£ € B|¥)(w), we use the principle of appropriate sets.

Let % be the collection of sets B in Z(R) for which Q(w; B) = P(£ € B|¥4)(w)
(a.s.). Since F(w;x) = P(§ < x|9)(w) (a.s.), the system ¢ contains the sets B
of the form B = (—o0,x], x € R. Therefore ¥ also contains the intervals of the
form (a, b], and the algebra o consisting of finite sums of disjoint sets of the form
(a, b]. Then it follows from the continuity properties of Q(w; B) (w fixed) and from
conclusion (b) of Theorem 2 that % is a monotonic class, and since &/ € ¥ <
2% (R), we have, from Theorem 1 of Sect. 2,

PBR) =o(d) S 0o(C) =€) =C < BR),

whence € = Z(R).

This completes the proof of the theorem.

O

By using topological considerations we can extend the conclusion of Theorem 4
on the existence of a regular conditional distribution to random elements with values
in what are known as Borel spaces. We need the following definition.
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Definition 9. A measurable space (E, &) is a Borel space if it is Borel equivalent to a
Borel subset of the real line, i.e., there is a one-to-one mapping ¢ = ¢(e): (E, &) —
(R, #(R)) such that

(1) o(E) = {p(e): e € E} is asetin A(R);
(2) ¢ is &-measurable (p~1(A) € &, A € p(E) n B(R)),
(3) ¢~ ! is B(R)/&-measurable (p(B) € ¢(E) n B(R), B € &).

Theorem 5. Let X = X(w) be a random element with values in the Borel space
(E, &). Then there is a regular conditional distribution of X with respect to 4 < F.

PROOF. Let ¢ = ¢(e) be the function in Definition 9. By (2) in this definition
©(X(w)) is a random variable. Hence, by Theorem 4, we can define the conditional
distribution Q(w;A) of ¢(X(w)) with respect to 4, A € p(E) n AB(R).

We introduce the function Q(w; B) = Q(w; ¢(B)), B € &. By (3) of Definition 9,
©(B) € p(E) n %A(R) and consequently Q(w; B) is defined. Evidently Q(w; B) is a
measure in B € & for every w. Now fix B € &. By the one-to-one character of the

mapping ¢ = ¢(e),
Q(w; B) = Q(w; ¢(B)) = P{p(X) € ¢(B) | ¥}(w) = P{X € B|¥}(w) (a.s.).

Therefore Q(w; B) is a regular conditional distribution of X with respect to .
This completes the proof of the theorem.
|

Corollary. Let X = X(w) be a random element with values in a complete separa-
ble metric space (E,&). Then there is a regular conditional distribution of X with
respect to 9. In particular, such a distribution exists for the spaces (R", Z(R")) and
(R*, B(R™?)).

The proof follows from Theorem 5 and the well-known topological result that
such spaces (E, &) are Borel spaces.

8. The theory of conditional expectations developed above makes it possible to give
a generalization of Bayes’s theorem; this has applications in statistics.

Recall that if 2 = {A1,...,A,} is a partition of the space Q with P(4;) > 0,
Bayes’s theorem, see (9) in Sect. 3 of Chap. 1, states that

P(A;) P(B|A;)
i1 P(A)P(B[A))

P(Ai|B) = (25)

for every B with P(B) > 0. Therefore if @ = Y, a;l4, is a discrete random variable
then, according to (10) in Sect. 8 of Chap. 1,

Y glai) P(A;) P(B|A))
Y1 P(A)P(B|4)

J

Elg(0) | B] = (26)
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or -
§_o,8(a) P(B|0 = a) Py(da)

E[(0)|B] = Siooc P(B|0 = a) Py(da)

) 27)

where Pg(A) = P{6 € A}.

On the basis of the definition of E[g(f) | B] given at the beginning of this sec-
tion, it is easy to establish that (27) holds for all events B with P(B) > 0, random
variables 6 and functions g = g(a) with E |g(0)] < oo.

We now consider an analog of (27) for conditional expectations E[g(6) | 4] with
respect to a o-algebra ¥, ¥ < .%.

Let
Q) - f 2(0(w)) P(dw), Bed. (28)
B
Then by (4)
E[2(0)|9]() = S () (29)
g w) = 5w
We also consider the o-algebra &. Then, by (5),
P(B) = f P(B|%))dP (30)
Q
or, by the formula for change of variable in Lebesgue integrals,
P(B) = f P(B|6 = a) Py(da). 3D
Since
Q(B) = E[g(0)I5] = E[3(0) - E(Is | )],
we have o
QB) = | s(a) P(B|6 = 0) Pa(da). 32)
—00

Now suppose that the conditional probability P(B |6 = a) is regular and admits
the representation

P(B|0 —a) - f p(w; @) Mdw), 33)

B

where p = p(w;a) is nonnegative and measurable in the two variables jointly, and
A is a o-finite measure on (2, ¢).
Let E|g(0)| < 0. Let us show that (P-a.s.)

_ {7, 8l@)p(w:a) Po(da)
§%, p(w,a) Po(da)

Efg(0) [4](w) 34)

(generalized Bayes theorem).
In proving (34) we shall need the following lemma.
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Lemma. Let (2,.%) be a measurable space.

(a) Let u and X be o-finite measures, p < A, and f = f(w) an ¥ -measurable
function. Then

_ [ ,dr
Lfduf fo P ar (35)

(in the sense that if either integral exists, the other exists and they are equal).
(b) Ifvis a signed measure and i, \ are o-finite measures, v < p, p < A, then

dv dv dp
and J J J
v v 1%
Lo (as). 37
di "/ (p-a.s.) 37

PROOF. (a) Since

_ [ (dr 7
M(A)—L<d)\>d)\, Ac.Z,

(35) is evidently satisfied for simple functions f = Z fila,. The general case follows

from the representation f = f* — f~ and the monotone convergence theorem (cf.
the proof of (39) in Sect. 6).
(b) From (a) with f = dv/d. we obtain

w-[ () LE) (D)o

Then v « A and therefore 4
12
A)= | —dX
v4) L an

whence (36) follows since A is arbitrary, by Property I (Sect. 6).
Property (37) follows from (36) and the remark that

CRUES I
piw: — =0, = —d\=0
{ dX {w: du/dX=0} d\

(on the set {w: du/d\ = 0} the right-hand side of (37) can be defined arbitrarily,
for example as zero). This completes the proof of the lemma.

O

To prove (34) we observe that by Fubini’s theorem and (33),

as - [ |[ " d@p(wia) Pa(da) | A(a), (38)

—00

Pe) = [ || stwsa)patan | s (39)

—0
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Then by the lemma
dQ dQ/dx
— = P-a.s.).
2P~ apjan (TS

Taking account of (38), (39) and (29), we have (34).

Remark 7. Formula (34) remains valid if we replace 6 by a random element with
values in some measurable space (E, &) (and replace integration over R by integra-
tion over E).

Let us consider some special cases of (34).
Let the o-algebra & be generated by the random variable £, ¢ = %.. Suppose
that

PeA|d=a)= Lq(x; a) A(dx), Ae B(R), (40)

where ¢ = ¢(x;a) is a nonnegative function, measurable with respect to both vari-
ables jointly, and A is a o-finite measure on (R, Z(R)). Then by the formula for
change of variable in Lebesgue integrals and (34) we obtain

§” . 8(a) q(x; a) Py(da) _

E[g(0)]€ =x] = §°_q(x;a) Po(da)

(41)

In particular, let (0, £) be a pair of discrete random variables, 0 = > a;ls,, £ =
2. XiIp,. Then, taking A to be the counting measure (A\({x;}) = 1, i = 1,2,...) we
find from (41) that

Elg(0) |¢ = %] = S52——T—— = 42)

(Compare (26).)

Now let (6, &) be a pair of absolutely continuous random variables with density
fo.¢(a,x). Then by (19) the representation (40) applies with g(x; a) = fejo(x | a) and
Lebesgue measure \. Therefore

Elg(0) € =x] =

[ g(a)fs|9(|x @)fo(a) da 43)

|a)fo
§7 feo(x| a) fo(a) da

9. Here we give one more version of the generalized Bayes theorem (see (34)),
which is especially appropriate in problems related to the change of probability
measures.

Theorem 6. Let P and P be two probability measures on a measurable space

(Q, F) with P being absolutely continuous with respect to P (denoted P « P)
and let % be the Radon—Nikodym derivative of P with respect to P. Let 4 be a
o-subalgebra of F (4 < F) and E(-|¥) and E( |4) be conditional expecta-

~

tions with respect to P and P given 4. Let £ be a nonnegative (% -measurable)
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random variable. Then the following “recalculation formula of conditional expec-
tations” holds: N
E(6F7)
P ~
AN P-a.s.). (44)
(%)

Formula (44) is valid also for any random variable &£ whose conditional expectation
E(£|9Y) is well defined.

E¢|9) =

PROOF. Note first of all that the P-measure (as well as the P-measure) of the event
{w: E(%‘ %) = 0} equals zero. Indeed, if A € ¢, then

JAE(ZE)%)dP—JAZidP—LdIS_IS(A),
and therefore the set A = {w: E(% ’g ) = 0} has zero P-measure.

Let £ > 0. By the definition of conditional expectation, E(§|£¢ ) is a 9-
measurable random variable such that

E[LE(E|9)] = E[Lk¢] (45)

for any A € ¢. Hence for the proof of (44) we only need to establish that the (¢-
measurable) random variable in the right-hand side of (44) satisfies the equality

E[IA : E(jé%) E (gf;‘%)] — E[I.¢). (46)

Using the properties of conditional expectations and (39) of Sect. 6 we find that

. p B\ dP
E[’A | E(Zag) | E(fizp)g)] -E [’A | E(Zg‘g) E(e5p]9) jzp]

B B
-E [’A ' E(gg‘g) ' E(fZ?’g) 'E(fzp\g)]

dP dP] =
~&|nE(<ple) | - e |nets | - B
which proves (45) for nonnegative £. The general case is treated similarly to the

proof of (39) in Sect. 6 for arbitrary integrable random variables €.
m]
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10. The generalized Bayes theorem stated above (see (34), @1), and (43)), which is
one of the basic tools in the “Bayes’s approach” in mathematical statistics, answers
the question of how our knowledge about the distribution of a random variable 6
redistributes depending on the results of observations on a random variable £ statis-
tically related to 6.

Now we will consider one more application of the concept of conditional ex-
pectation to the estimation problem of an unknown parameter 6 based on the ob-
servational data. (We emphasize that unlike the above case, where 6 was a random
variable, we now treat f simply as a parameter taking values in a parameter set ©
specified a priori, cf. Sect. 7 of Chap. 1).

Actually we will consider an important concept of mathematical statistics, namely,
that of sufficient o-subalgebra.

Let & = {Py, 0 € O} be a family of probability measures on a measurable space
(Q, F), these measures depending on a parameter  running over a parameter set
©. The triple & = (Q,.F, &) is often said to specify a probabilistic-statistical
model or a probabilistic-statistical experiment.

To clarify Definition 10 to be given below assume that we have an .7 -measurable
function T = T(w) (a statistic), depending on the outcome w, and a o-algebra & =
o(T(w)) generated by this function. It is clear that ¥ < .% and, in general, % may
contain events which do not belong to ¢ (i.e., % is “richer” than ¢). But it may
happen that with regard to determining which value of 6 is in fact “acting” we do
not need anything but 7 = T(w). In this sense it would be natural to call the statistic
T “sufficient.”

Remark 8. When T'(w) = w, i.e., when we know the outcomes themselves (rather
then a function of them), we can single out the following two extreme cases.

One of them is when the probabilities Py are the same for all 8 € ©. Clearly
neither outcome w can then give any information about 6.

Another case is when the supports of all the measures Py, § € ©, are contained
in different subsets of .# (i.e., for any two values ¢, and 65 the measures Py, and
Py, are singular, in which case there are two sets (supports) {29, and €2y, such that
Po, (0\Qg,) = 0, Py, (N\Qg,) = 0 and Qg, N Qg, = ). In this case the outcome
w uniquely determines 6.

Both these cases are of little interest. The cases of interest are, say, when all the
measures Py are equivalent to each other (and their supports are then the same), or
these measures are dominated, which is a weaker property than equivalence, namely,
there exists a o-finite measure A such that Py « A for all # € ©. In the general
statistical theory it is customarily assumed that the family at hand is dominated
(which allows one to exclude some measure-theoretic pathologies). The role of this
property is fully revealed by the Factorization Theorem 7 to be stated below.

The following definition may be regarded as one of the ways to formalize the
concept of sufficiency of “information” contained in a o-subalgebra ¥ < .%.

Definition 10. Let (§2,.7, &) be a probabilistic-statistical model, &2 = {Py, 6 €
O}, and ¥ be a og-subalgebra of F (¥ < F). Then ¥ is said to be sufficient for the
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family 27 if there exist versions of conditional probabilities Py (- |¥4)(w), 0 € ©,
w € Q, independent of 6, i.e., there is a function P(A;w), A € F, w € €2, such that

Po(A|9)(w) = P(A;w) (Pg-a.s.) 47)

forall A € % and 0 € O; in other words, P(A;w) is a version of Py(A |¥)(w) for
allf e ©.
If 9 = o(T(w)), then the statistic T = T'(w) is called sufficient for the family &.

Remark 9. As was pointed out above, we are interested in finding sufficient statis-
tics in our statistical research because we try to obtain functions 7 = T(w) of out-
comes w which provide the reduction of data preserving the information (about
). For example, suppose that w = (x1,Xa,...,X,), where x; € R and n is very
large. Then finding “good” estimators for € (as, e.g., in Sect. 7 of Chap. 1) may be
a complicated problem because of large dimensionality of the data xq,xs, ..., X,.
However it may happen (as we observed in Sect.7 of Chap. 1) that for obtaining
“good” estimators it suffices to know only the value of a “summarizing” statistic
like T(w) = x1 + x2 + - - - + x, rather than individual values x1, x2, . . ., X;,.

Clearly such a statistic provides an essential reduction of data (and computational
complexity) being at the same time sufficient for obtaining “good” estimators for 6.

The following factorization theorem provides conditions that ensure sufficiency
of a o-subalgebra ¢ for the family &.

Theorem 7. Let &? = {Py,0 € O} be a dominated family, i.e., there exists a o-

finite measure X on (2, F) such that the measures Py are absolutely continuous

with respect to A (Pg < ) forall 0 € ©.
Let g((;‘) (w) = % (w) be a Radon—Nikodym derivative of Py with respect to \.
The o-subalgebra ¢ is sufficient for the family &7 if and only if the functions
g((;‘) (w) admit the following factorization: there are nonnegative functions gf,” (w)

and h(w) such that gé” (w) are 4-measurable, h(w) is .F -measurable and
gV (W) = e (W) h(w) (\as) (48)

forall 6 € O.

If we can take the measure Py, for \, where 6 is a parameter in ©, then ¢ is

dPg
Py,

sufficient if and only if the derivative g990) (w) = itself is -measurable.

PROOF. Sufficiency. By assumption, the dominating measure \ is o-finite. This
means that there are .7 -measurable disjoint sets {, k > 1, such that Q = > ., O
and 0 < A(§%) < oo, k > 1.
Form the measure 1 MO
0= D F T
>1 K)

This measure if finite, A(€2) < oo, and A(€) > 0. Without loss of generality it can
be taken to be a probability measure, A(2) = 1.
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Then by the formula (44) of recalculating conditional expectations we find that,
for any .#-measurable bounded random variable X = X(w),

Ex (X252 |)
W (Pp-a.s.). (49)

Ey(X|9) =

By (48) we have

(S\) d Pg d Pe d\ (\) dX A(A)h dX 5
- ——=— == = —= = . 0
80 N A A 0

Therefore (49) takes the form

- A(>\
Eo(X|9) = EI;(( A);ﬂ;? (Po-a.s.). (51)
But g(A) are ¢¥-measurable and
Eo(X|9) = M (Po-a.s.). (52)

Ex (1)

The right-hand side here does not depend on 6, hence the property (47) holds.
Thus by Definition 10 the o-algebra ¢ is sufficient.

The necessity will be proved only under the additional assumption that the family
P = {Py, 0 € O} is not only dominated by a o-finite measure A, but also that there
is a §p € O such that all the measures Py « Py, i.e., that for any § € © the
measure Py is absolutely continuous with respect to Pg,. (In the general case the
proof becomes more complicated, see Theorem 34.6 in [10].)

So, let ¢4 be a sufficient o-algebra, i.e., (47) holds. We will show that under the

assumption that Py « Py, 6 € O, the derivative g(eo) = j;:

any 6 € ©.
LetA € .%. Then usmg the properties of conditional expectations we find for any

§ € © that (w1th g™ = dPy dPg,)

is ¢¥-measurable for

Po(A) = Eg s = Eg Eg(I4| %) = EgEg, (I4 | 4) = Eo,[2y”) Eoy(Is | 9)]
= Eg, Eo, (85" Eoy (I | %) | %) = Eg, ([Eo, (85 |9)] - [Eo, (In | 9)])
= Eg, Eo, (In Eo, (85 | %) | %) = Eg, 11 Eo, (85" | ¥) = f Eo, (g5 |9) dPy,.
A

Therefore the ¢-measurable function Eg, (géaf’) | ¢) is a version of the derivative

(00) _ dPg
89 T 4Py, -
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Hence if A\ = Py, sufficiency of ¢ implies the factorization property (48)
with gé‘%) = gggo) and h = 1.

In the general case (again under the additional assumption Py « Py, , 6 € ©) we
find that

() _ 4Py _ dPg dPy, _ (9,)dPg,
86 T AN T dPy, dx %0 Tax
Denoting
N0 00) dPy
gl =g, n= d/\°,
we obtain the desired factorization representation (48).
[}

Remark 10. It is worth to emphasize that there exists a sufficient o-algebra for any
family & = {Py, 0 € ©} (without any assumptions like &7 being dominated). We
can always take the “richest” o-algebra .# for this o-algebra.

Indeed, in this case Eg(X | #) = X (Py-a.s.) for any integrable random variable
X and therefore (47) is fulfilled.

It is clear that such sufficient o-algebra is not of much interest because it does
not provide any “reduction of data.” What we are really interested in is to find the
minimal sufficient o-algebra %y, i.e. the o-algebra which is the intersection of
all sufficient o-subalgebras (cf. the proof of Lemma 1 in Sect. 2, which implies that
such a o-algebra exists). But regretfully an explicit construction of such o-algebras
is, as a rule, rather complicated (see, however, Sects. 13—15, Chap. 2 in Borovkov’s
book [13]).

Remark 11. Suppose that & = {Py, 6 € ©} is a dominated family (Py « \,6 € ©,

with A a o-finite measure) and the density g(QA) = %(w) is representable as

gV (W) = GP(T(w)) h(w) (M-a.s.) (53)

for all € ©, where T = T(w) is an .% /&-measurable function (random element,
see Sect. 5) taking values in a set E with a o-algebra & of its subsets. The functions
GéA)(t), t € E, and h(w), w € , are assumed to be nonnegative and &-and .%-
measurable respectively.

By comparing (48) and (53) we see that o-algebra ¥ = o(T(w)) is sufficient and
the function T = T'(w) is a sufficient statistic (in the sense of Definition 10).

Note that in dominated settings it is the factorization representation (53) that is
usually taken for the definition of the sufficient statistic 7 = T(w) involved in this
equation.

Example 5 (Exponential Family). Assume that 2 = R", .# = #(R") and the mea-
sure Py is such that
Po(dw) = Po(dx1) -+ Po(dx,) (54

for w = (x1,...,x,), where the measure Py(dx), x € R, has the following structure:
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Po(dx) = a(6) 0@y (x) \(dx). (55)

Here s = s(x) is a Z-measurable function and the meaning of «(), 5(6), v(x),
A(dx) is obvious. (The family of measures Py, 8 € ©, presents the simplest example
of an exponential family.) It follows from (54) and (55) that

Py(dw) = o"(0)e O+ 45l ey ooy () dixy . . . dix,. (56)

Comparing (56) with (53) we see that T(w) = s(x1) + - + s(x,), w =
(x1,...,%,), is a sufficient statistic (for the exponential family at hand).

If we denote X (w) = x1,...,X,(w) = x, forw = (x1,...,x,), then the struc-
ture of the measures Py (which have the form of the direct product of measures Py)
implies that relative to them X3, ..., X, are a sequence of independent identically
distributed random variables. Thus the statistic T(w) = s(X;(w)) + - - - + s(X, (w))
is a sufficient statistic related to such a sequence X; (w), . .., X,(w). (In Problem 20
we ask whether this statistic is minimal sufficient.)

Example 6. Let = R", # = Z(R"), w = (x1,...,%,), and the distributions Py,
0 > 0, have densities (with respect to the Lebesgue measure \)

dPy 0", f0<x;<@foralli=1,... n,
(w) =

d\ 0 otherwise.
Putting
T(w) = max x;,
h(w) 1, ifx; Z'Oforalli: 1,...,n,
0 otherwise,
A ", ifo<r<é,
Gy (1) = .
0 otherwise,
we obtain P
@) = Gg (T(@)h(w). (57)

Thus T(w) = maxj <<, x; is a sufficient statistic.

11. Let O be a subset of the real line and & = (Q,.%,2 = {Py,0 € O}) a
probabilistic-statistical model. We are now interested in construction of “good” es-
timators for the parameter 6.

By an estimator we mean any random variable 6= é(w) (cf. Sect. 7 of Chap. 1).

The theorem to be stated below shows how the use of a sufficient o-algebra
enables us to improve the “quality” of an estimator measured by the mean-square
deviation of § from 6. More precisely, we say that 0 is an unbiased estimator of @ if
Eg|0] < 0 and Eg § = 6 for all @ € © (cf. the property (2) in Sect. 7 of Chap. 1).
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Theorem 8 (Rao-Blackwell). Let & be a sufficient o-algebra for the family & and
0 = 0(w) an estimator.

(a) If 0 is an unbiased estimator, then the estimator
T =Eo(0|9) (58)

is also unbiased.
(b) The estimator T is “better” than 0 in the sense that

Eo(T —0)> <Ey(d—0)%, 6eo. (59)
PROOF. Conclusion (a) follows from
EoT =E¢Eo(0|¥) =Ep0 = 0.

For the proof of (b) we have only to note that by Jensen’s inequality (see Prob-
lem 5 with g(x) = (x — 0)?),

(Eo(019) —6)* < Eo[(0 —0)*|4].
Taking the expectation Eg(-) of both sides we obtain (59). o

12. PROBLEMS

1. Let £ and 7 be independent identically distributed random variables with E £
defined. Show that

§+1
E(l€+m =Eml&+n) =>5— (as).
2. Let &, &, ... be independent identically distributed random variables with

E || < oo. Show that

Sn
E(gl |Sna Sn+17 o ) = ; (a.s.),

where S, =& + -+ - +&,.

3. Suppose that the random elements (X, Y) are such that there is a regular con-
ditional distribution P,(B) = P(Y € B| X = x). Show thatif E |g(X, Y)| < o0
then

EMKYHX=ﬂ=fﬂmwAMW(&ﬂw-

4. Let & be a random variable with distribution function F¢ (x). Show that

. xdFe(x)

Fela<t<h) =0~ F@

(assuming that F¢ (b) — Fe(a) > 0).
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10.

11.

12.

13.
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Let ¢ = g(x) be a convex Borel function with E |g(§)] < co. Show that
Jensen’s inequality

8(E(¢1¥)) <E(s(5)|9)

holds (a.s.) for the conditional expectations.

Show that a necessary and sufficient condition for the random variable £ and
the o-algebra ¢ to be independent (i.e., the random variables & and Ip(w) are
independent for every B € ¥) is that E(g(£)|¥¢) = Eg(§) for every Borel
function g(x) with E |g(¢)| < .

. Let £ be a nonnegative random variable and ¢ a o-algebra, 4 < .%. Show that

E(¢]|¥) < o (a.s.) if and only if the measure Q, defined on sets A € ¢ by
Q(A) = §, £dP, is o-finite.

Show that the conditional probabilities P(A | B) are “continuous” in the sense
that lim, P(A, | B,) = P(A | B) whenever lim, A, = A, lim, B, = B, P(B,) >
0,P(B) > 0.

Let Q = (0,1), . % = %((0,1)) and P the Lebesgue measure. Let X(w) and
Y(w) be two independent random variables uniformly distributed on (0, 1).
Consider the random variable Z(w) = |X(w) — ¥Y(w)| (the distance between
the “points” X(w) and Y(w)). Prove that the distribution function Fz(z) has
a density f7(z) and fz(z) = 2(1 — z), 0 < z < 1. (This, of course, implies
that EZ = 1/3.)

Suppose that two points A; and A5 are chosen “at random” in the circle of
radius R ({(x,y): x> + y* < R?}), i.e. these points are chosen independently
with probabilities (in polar coordinates, A; = (p;, 6;), i = 1,2)

rdrdf

T, l:172
™

P(p, € d}", 9,‘ € d&) =

Show that the distance p between A; and A, has a density f,(r) and

2r r r r\2

folr) = W[Q arccos<ﬁ) ~ 2 1- (ﬁ) ],
where 0 < r < 2R.
A point P = (x,y) is chosen “at random” (explain what it means!) in the unit
square (with vertices (0,0), (0,1), (1,1), (1,0)). Find the probability that this
point will be closer to the point (1, 1) than to (1/2,1/2).
Two people A and B made an appointment to meet between 7 and 8 p.m. But
both of them forgot the exact time of the meeting and come between 7 and 8
“at random” waiting at most 10 minutes. Show that the probability for them to
meet is 11/36.
Let X1,Xo,... be a sequence of independent random variables and S, =
Z:’Zl X;. Show that §; and S3 are conditionally independent relative to the
o-algebra o (S3) generated by Ss.
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14.

16.

17.

18.

Two o-algebras ¢ and ¥ are said to be conditionally independent relative to
a o-algebra ¥; if

P(A1A2 |g3) = P(A1 ‘gg) P(A2 ‘g:g) for all Ai € g,', i= 1, 2.

Show that conditional independence of ¢4, and ¥ relative to ¢43 holds (P-a.s.)
if and only if any of the following conditions is fulfilled:
(a) P(Al |O'(g2 ) gg)) = P(A1 ‘gg) for a11A1 € gl;
(b) P(B|o(% u %)) = P(B|%5) for any set B in a system %71, which is
a m-system such that 4; = o(%);
(C) P(B1B2 |0’<g2 U gg)) = P(Bl ‘g3> P(BQ |g3> for any Bl and B2 in
m-systems &1 and £, respectively such that 4 = o(£?;) and % =
o («@2);
d) E(X|0(%u¥s)) = E(X|¥45) for any 0 (%, U %3)-measurable random
variable X for which the expectation E X is well defined (see Defini-
tion 2 in Sect. 6).

. Prove the following extended version of Fatou’s lemma for conditional expec-

tations (cf. (d) in Theorem 2):

Let (€2, .#, P) be a probability space and (&,),>1 a sequence of random vari-
ables such that the expectations E¢,, n > 1, and Eliminf &, (which may
take the values +o0, see Definition 2 in Sect. 6) are well defined. Let & be a
o-subalgebra of .% and

supE(E, I(§ > a)|¥9) -0 (P-as.), a— .
n>1
Then
E(liminf ¢, |¥4) <liminfE(§,|¥) (P-a.s.).

Let, as in the previous problem, (£,),>1 be a sequence of random variables
such that the expectations E &,, n > 1, are well defined and ¢ a o-subalgebra
of .Z such that

sup Jim E(&[1(&] > K)[#) =0 (P-as). (60)

Then
E(|¥) - EE|Y) (P-as)

provided that &, — £ (P-a.s.) and E £ is well defined.
In the previous problem replace (60) by sup, E(|$:|*|¥) < « (P-a.s.) for
some o > 1. Then

Let&, LR ¢ for some p > 1. Then E(§, | ¥4) LA E(|9).
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19. (a) LetVar(X|Y) = E[(X—E(X|Y))?| Y]. Show that Var X = E Var(X|Y)+
VarE(X|Y).

(b) Show that Cov(X,Y) = Cov(X,E(Y |X)).

20. Determine whether the sufficient statistic T(w) = s(X1(w)) + - - + (X, (w))
in Example 5 is minimal.

21. Prove the factorization representation (57).

22. InExample 6 (Subsection 10), show that Eg(X; | T) = %L T, where X;(w) = x;
forw = (x1,...,%),i=1,...,n

8 Random Variables: 11

1. In the first chapter we introduced characteristics of simple random variables, such
as the variance, covariance, and correlation coefficient. These extend similarly to the
general case. Let (€2, .7, P) be a probability space and £ = £(w) a random variable
for which E £ is defined.

The variance of £ is

Var¢ = E(€ — E€)?.

The number ¢ = ++/Var¢ is the standard deviation (Cf. Definition 5 in Sect. 4,
Chap. 1).
If £ is a random variable with a Gaussian (normal) density
1

fe(x) = 5 e_(’“_’”)z/z"z7 oc>0, —0<m< o, €))
Y[Xeh

the meaning of the parameters m and o in (1) is very simple:
m=E¢ o2 =Varé.

Hence the probability distribution of this random variable £, which we call Gaus-
sian, or normally distributed, is completely determined by its mean value m and
variance o2, (It is often convenient to write & ~ A (m, 0?).)

Now let (£, ) be a pair of random variables. Their covariance is

Cov(§,m) =E(—E&(n—En) ()

(assuming that the expectations are defined).
If Cov(&,n) = 0 we say that £ and 7 are uncorrelated.
If 0 < Var¢ < oo and 0 < Varn < oo, the number

_ Cov(&m)
p(&,n) = Nar€ Varn 3

is the correlation coefficient of & and ).
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The properties of variance, covariance, and correlation coefficient were investi-
gated in Sect.4 of Chap. 1 for simple random variables. In the general case these
properties can be stated in a completely analogous way.

Let £ = (&1,...,&,) be a random vector whose components have finite second
moments. The covariance matrix of £ is the n x n matrix R = |R|, where R;; =
Cov(&;, &). It is clear that R is symmetric. Moreover, it is positive semi-definite, i.e.

znj RyjAiA; > 0

ij=1
forall \;eR,i=1,...,n,since

n 2

znl Rj N =E Z(fi —E&N| >0.

i,j=1 i=1
The following lemma shows that the converse is also true.

Lemma. A necessary and sufficient condition that an n x n matrix R is the co-
variance matrix of a vector & = (&1,...,&,) is that the matrix R is symmetric and
positive semi-definite, or, equivalently, that there is an n X k matrix A (1 < k < n)
such that

R = AA*,

where * denotes the transpose.

PROOF. We showed above that every covariance matrix is symmetric and positive
semi-definite.

Conversely, let R be a matrix with these properties. We know from matrix theory
that corresponding to every symmetric positive semi-definite matrix R there is an
orthogonal matrix O (i.e., OO* = E, the identity matrix) such that

O*RO = D,
where
d 0
D= .
0 d,
is a diagonal matrix with nonnegative elements d;, i = 1,...,n.

It follows that
R = ODO* = (OB)(B*0*),

where B is the diagonal matrix with elements b; = ++/d;, i = 1,...,n. Conse-
quently if we put A = OB we have the required representation R = AA* for R.

It is clear that every matrix AA* is symmetric and positive semi-definite. Con-
sequently we have only to show that R is the covariance matrix of some random
vector.
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Let m1,m2,...,m, be a sequence of independent normally distributed random
variables, .4#(0,1). (The existence of such a sequence follows, for example, from
Corollary 1 of Theorem 1, Sect.9, and in principle could easily be derived from
Theorem 2 of Sect.3.) Then the random vector & = An (vectors are thought of as
column vectors) has the required properties. In fact,

Ec¢* = E(An)(An)* = A - Enn* - A* = AEA* = AA™.

(If ¢ = /¢l is a matrix whose elements are random variables, E ( means the matrix
IE&1).

This completes the proof of the lemma.

O

We now turn our attention to the two-dimensional Gaussian (normal) density
for(y) 1 { 1 [ (x —my)?
nxy) = ———F————exp{—
& 2mo1094/ 1 — p? 2(1—-p?) o}
xX—m —m — my)?
_2p( Dy —ma)  (v—ms) ]}7

3 4)
0102 g5

characterized by the five parameters my, ms, 01, 09 and p (cf. (14) in Sect. 3),

where |m;| < o0, |mg| < 0, o1 > 0, 02 > 0, |p| < 1. (See Fig. 28 in Sect.3.) An

easy calculation identifies these parameters:

my =E¢  of = Varg,
my = Emn, 05 = Varn,
p=p(&n).

In Sect. 4 of Chap. 1 we explained that if £ and 7 are uncorrelated (p(€, ) = 0), it
does not follow that they are independent. However, if the pair (£, n) is Gaussian, it
does follow that if £ and 7 are uncorrelated then they are independent.

In fact, if p = 0 in (4), then

1 2 n 2 o
ff n(XJ) = 76_("_’”1) /207 . e—(_V—M2) /202.
' 210109

But by (55) in Sect. 6 and (4),

2 2
—(x—m 20
o~ (=m)? 20}

“ 1
o) = | fenlor)dy =

o0
1 2 2
_ V)dx = —(y=m2)?/203
() f_wff,n(x y) dx Tmf

Consequently
Ten(x,y) = fe(x) - (),

from which it follows that £ and 7 are independent (see the end of Subsection 9
of Sect. 6).
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2. A striking example of the utility of the concept of conditional expectation (intro-
duced in Sect. 7) is its application to the solution of the following problem which is
connected with estimation theory (cf. Subsection 8 of Sect. 4 of Chap. 1).

Let (£,n) be a pair of random variables such that £ is observable but 7 is not. We
ask how the unobservable component 1 can be “estimated” from the knowledge of
observation of &.

To state the problem more precisely, we need to define the concept of an esti-
mator. Let ¢ = ¢(x) be a Borel function. We call the random variable ¢(£) an
estimator of 1 in terms of &, and E[n — ¢(¢)]? the (mean-square) error of this
estimator. An estimator ¢* (&) is called oprimal (in the mean-square sense) if

A=E[n—¢*(©) :ing[n—w(f)]Q7 )

where inf is taken over all Borel functions ¢ = ¢(x).

Theorem 1. Let E7n? < oo. Then there is an optimal estimator ©* = ¢*(€) and
©* (x) can be taken to be the function

¢*(x) = E(n]€ = x). (6)

PROOF. Without loss of generality we may consider only estimators (&) for which
E ©?(€) < oo. Then if (&) is such an estimator, and ¢*(£) = E(n| £), we have

Eln — ¢(&)]* = El(n — ¢*(&)) + (¢*(&) — ()]
= E[n — ¢* ()] + E[¢*(€) — 0(&)]?
+2E[(n = ¢*(©)(¢* (&) — 9(€))] = Eln — 0" (€))%,

since E[¢0*(£) — ¢(€)]? > 0 and, by the properties of conditional expectations,

E[(n = @* () (¥ (&) — ()] = E{E[(n — ¢*())(#* () — 2(£)) [ €]}
= E{(¢*(©) = 0(€) E(n — ¢*(€) [} = 0.

This completes the proof of the theorem.
O

Remark 1. It is clear from the proof that the conclusion of the theorem is still valid
when ¢ is not merely a random variable but any random element with values in a
measurable space (E, &). We would then assume that the estimator ¢ = ¢(x) is an
&/ 9B(R)-measurable function.

Let us consider the form of ¢* (x) on the hypothesis that (£, n) is a Gaussian pair
with density given by (4).

From (1), (4) and (18) of Sect.7 we find that the density f;¢(y|x) of the condi-
tional probability distribution is given by

1 2 2 2
__ b mm) 203 .
X e ,
fn\i()" ) (= )0l (7
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where -
m(x) :m2+a—1p-(x —my). (8)

Then by the Corollary of Theorem 3, Sect. 7,

€l e =) = [ shets )y = mto) ©)
and
Var(n| € = x) = El(n — E(y]€ = 9)* | € = o
[ om0
_ 021 p?). (10)

Notice that the conditional variance Var(n | £ = x) is independent of x and there-
fore

A =E[n—En|O = o3(1—p?). (11)

Formulas (9) and (11) were obtained under the assumption that Var > 0 and
Varn > 0. However, if Var{ > 0 and Varn = 0 they are still evidently valid.
Hence we have the following result (cf. (16), (17) in Sect. 4 of Chap. 1).

Theorem 2 (Theorem on the Normal Correlation). Let (€, 1) be a Gaussian vector
with Var & > 0. Then the optimal estimator of 1) in terms of & is

_ Cov(&,n)
E(nl&)—E?HiVM£ (£ —-ES), (12)
and its error is
_ 2 _ C0V2(f,7l)
A=E[n—-En|9] —Varn—i\,ar5 : (13)

Remark 2. The curve y(x) = E(n|£ = x) is the regression curve of n on £ or of 1)
with respect to €. In the Gaussian case E(n) | £ = x) = a + bx and consequently the
regression of n and £ is linear. Hence it is not surprising that the right-hand sides
of (12) and (13) agree with the corresponding parts of (16) and (17) in Sect. 4 of
Chap. 1 for the optimal linear estimator and its error.

Corollary. Let €1 and 5 be independent Gaussian random variables with mean
zero and unit variance, and

f =a1€1 +ager, N = b1e1 + boeo.

ThenE¢& =En =0, Varé = a2 + a2, Varn = b? + b3, Cov(&,n) = aiby + asbs,
and if a2 + a3 > 0, then
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a1b1 +Cl2b2
E === 14
(n1€) a2 £, (14)
. 2
A = (b2 —ashy)” (15)
ai +a2

3. Let us consider the problem of determining the distribution functions of random
variables that are functions of other random variables.

Let £ be a random variable with distribution function F¢ (x) (and density fe (x), if
it exists), let ¢ = ¢(x) be a Borel function and n = ¢(§). Letting I, = (—o0, y), we
obtain

FA0) =P £3) = PO <) =P(E o™ ) = | | Fila), (6)

which expresses the distribution function F,,(y) in terms of F¢(x) and ¢.
For example, if n = a + b, a > 0, we have

Fn(y>=P(£syab) — Fe (yb>. (17)

a

If n = &2, itis evident that F,,(y) = 0 for y < 0, while for y > 0

Fy(y) = P(€ <y) = P(=/y < €< V)
= Fe(\y) = Fe(=vy) + P(E = =/y). (18)

We now turn to the problem of determining f;,(y).

Let us suppose that the range of £ is a (finite or infinite) open interval I = (a, b),
and that the function ¢ = ¢(x), with domain (a, b), is continuously differentiable
and either strictly increasing or strictly decreasing. We also suppose that ¢’ (x) # 0,
x € 1. Let us write h(y) = ¢ *(y) and suppose for definiteness that ((x) is strictly
increasing. Then when y € {p(x) : x € I},

Fp(y) =P(n<y) =P(p(§) <y) =P < ()
h(y)

=PE<hy)=| Jex)dx. (19
By Problem 15 of Sect. 6,
h(y) y
= [ g C) o)
and therefore
fa(y) = fe(h(y))H' (). 2

Similarly, if (x) is strictly decreasing,

Sa () = fe(h(3)) (=1 (v)).
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Hence in either case
Ja) = fe(h())[H ()] (22)
For example, if n = a€ + b, a # 0, we have

) =20 a0 = e (20,

If ¢ ~ A (m,0?) and 1 = ¢, we find from (22) that

exp [_ 10gg‘/£’1)2] ) y > 07
y<0,

1
fa(y) = { OV%W (23)

with M = ™. A probability distribution with the density (23) is said to be logarith-
mically normal or lognormal.

If ¢ = p(x) is neither strictly increasing nor strictly decreasing, formula (22) is
inapplicable. However, the following generalization suffices for many applications.

Let ¢ = ¢(x) be defined on the set >, _, [ax, bx], continuously differentiable and
either strictly increasing or strictly decreasing on each open interval I, = (a, by),
and with ¢'(x) # 0 for x € I;. Let by = hy(y) be the inverse of ¢(x) for x € I;. Then
we have the following generalization of (22):

ka Wi )| - In, (), (24)

where D, is the domain of A (y).
For example, if n = £2 we can take I; = (—o0, 0), I» = (0, o), and find that

hi(y) = —/y, h2(y) = /. and therefore

1 _
fn(y): {(Q):ﬁ[f»’f(\/y) +f§( \/y)]v izgv (25)

We can observe that this result also follows from (18), since P({ = —,/y) = 0. In
particular, if £ ~ .4 (0, 1),

1 —y/2 0
p ve A R 26
fo) = {3 - 6)
A straightforward calculation shows that
f (y) +f <_y)a y > Oa

fmw={f ¢ <0 27)

2 + fe(—y?)), >0,
+ ( ) { y(f&( ) ff( y )) §< 0 (28)

4. We now consider functions of several random variables.
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If £ and 7 are random variables with joint distribution Fe ,, (x,y), and ¢ = ¢(x,y)
is a Borel function, then if we put { = (&, n) we see at once that

Fe(z) = dFep(x,y). (29)

Lx,y: P (x,y)<z}

For example, if ¢(x,y) = x + y, and £ and 7 are independent (and therefore
Fe n(x,y) = Fe(x) - Fy)(y)) then Fubini’s theorem shows that

Fe(e) = f dFe(x) dF, (y)
{x,y: x+y<z}

= | tera e drets) ar, )

f; dFe(x) {f; Iery<ay (%,y) dFy (y)} = f; Fy(z—x)dFe(x)  (30)

and similarly

@ = Felemy)ar,0) 1)

—00

If F and G are distribution functions, the function
o0
H(z) - f F(z — %) dG(x)
—o0

is denoted by F = G and called the convolution of F and G.
Thus the distribution function F; of the sum of two independent random variables
& and 1 is the convolution of their distribution functions F¢ and F,):

Fe=Fc#F,.

Itis clear that F¢ * Fy = Fy, % Fe.
Now suppose that the independent random variables & and 7 have densities f¢
and f,,. Then we find from (31), with another application of Fubini’s theorem, that

r@) = [ [ swanoa

- r; U:Off(u -) du] fo(y)dy = foo Uifg(u =) dy] du,

whence

fe(z) = ro Je(z =) () dy, (32)
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and similarly
5@ = | e s @3)

Let us see some examples of the use of these formulas.
Let &,&9,...,&, be a sequence of independent identically distributed random
variables with the uniform density on [—1, 1]:

- {h st

|x| > 1.

Then by (32) we have

2—|x]| |)C| <9
= 4 = 4
f51+§2 (x) {07 |)C| > 2
3_1x])2
O 1<hd<s
f51+52+§3(x) = 3_8" , 0< |x| <1,
O’ |x| > 3)
and by induction
[(n+x)/2] - St
20 (n=1)! -1 n +x— " ) S 5
fer+ore,(x) = § 201! kgo (1)*Cy(n+x ) x| <n
0, |x| > n.

Now let & ~ A (my,0%) and n ~ A (ma, 03). If we write

1
QD(X) = 7%6 /Qa

fe) =~ (xn“), fole) = —¢ (xm2>,

o1 02 02

then

and the formula

Feor(x) = 1 o x — (my + ma)
s+ w/O’%‘FO’% \/0’%4’0’%
follows easily from (32).

Therefore the sum of two independent Gaussian random variables is again a
Gaussian random variable with mean my + ms and variance o3 + o3.
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Let &4, ..., &, be independent random variables each of which is normally dis-
tributed with mean 0 and variance 1. Then it follows easily from (26) (by induction)
that

2 1 x(n/2)—1e—x/2’ X 0,
f€%++£3 (.x) = { S/QF(H/Q) X < O (34)

The variable £ + -+ + £2 is usually denoted by x2, and its distribution (with
density (34)) is the x2-distribution (“chi-square distribution”) with n degrees of
freedom (cf. Table 2.3 in Sect. 3).

If we write y, = +4/ X2, it follows from (28) and (34) that

24" 1 —t2/2
fx,l<x) — { 202T (n/2) X 237 (35)
X < U.

)

The probability distribution with this density is the x-distribution (chi-distribution)
with n degrees of freedom. When n = 2 it is called the Rayleigh distribution.
Again let £ and 1 be independent random variables with densities f¢ and f;,. Then

Fen(z) = f fe(X)fy (v) dxdy,
{xy: <z}

Fon@ = || sono)asar
{xy: x/y<z}

Hence we easily obtain

@ = [ k(a0 = 5 ErwE o

]

and

Tesn (@) f Je(@)fy ()lyl dy. (37)

Applying (37) with independent £ ~ .4#7(0,1) and 7 4 A/ X2/n and using (35),
we find that )
1

) (14 2)e

This is the density of the t-distribution, or Student’s distribution, with n degrees
of freedom (cf. Table 2.3 in Sect. 3). See Problem 17 showing how this distribution
arises in mathematical statistics.

Tr
o) = o= F((
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5. PROBLEMS

1. Verify formulas (9), (10), (24), (27), (28), (34)—(38).
2. Let&y, ..., &, n > 2,be independent identically distributed random variables
with distribution function F(x) (and density f(x), if it exists), and let § =

max(&y, ..., &), § =min(&y, ..., &), p = & — & Show that

s - {7
fegly ) = { 80 = DIFO) =~ F3700/ 0. 7>

Fol) = {’&Si@ F0) =Py = 0P 0) s x 20

£0) = {0< ~DELIFO) = FO =IO -0 x>0

3. Let&; and &, be independent Poisson random variables with respective param-
eters \; and \o. Show that &; + &> has the Poisson distribution with parameter
A1+ Aol

4. Let my = my = 0in (4). Show that

01092 1—[)2

fem(2) =

m(0372 — 2po109z + 02’

5. The maximal correlation coefficient of £ and 7 is p*(&,n) = sup,, p(u(§),
v(€)), where the supremum is taken over the Borel functions u = u(x) and
v = v(x) for which the correlation coefficient p(u(€),v(£)) is defined. Show
that £ and 7 are independent if and only if p*(&,n) = 0.

6. Let 71, To, ..., T be independent nonnegative identically distributed random
variables with the exponential density

f(t) =X, t>0.

Show that the distribution of t; + - - - 4+ T4 has the density

)\ktkflef)\t
NS 1 >0,
and that
SPENCY)
Plti+--+wu>1t) = ;)e e

7. Let & ~ A(0,0?). Show that, for every p > 1,

E |€|p = Cpap»
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10.

11.

13.

14.

where "
2° +1
¢ - 2ip(rrt
ml/2 2
and I'(s) = SSC e*x*~!dx is the Euler’s gamma function. In particular, for

each integern > 1,
E& = (2n—1)1o".

Let ¢ and 7 be independent random variables such that the distributions of
& + n and ¢ are the same. Show that n = 0 a.s.

. Let (X, Y) be uniformly distributed on the unit circle {(x,y): x> +y? < 1} and

W = X? + Y2. Put

2logW 2log W
U=Xr/— , V=Yy\|/— .
w w

Show that U and V are independent .4 (0, 1)-distributed random variables.
Let X and Y be independent random variables uniformly distributed on (0, 1).
Put

U=+/—logYcos(2rX), V =+/—logV¥sin(27X).

Show that U and V are independent and .#(0, 1) distributed.
Give an example of Gaussian random variables £ and 7 such that the distribu-
tion of their sum £ + 7 is not Gaussian.

. Let X1,...,X, be independent identically distributed random variables with

density f = f(x). Let %, = max(Xq,...,X,)—min(Xy,...,X,) be the sample
range of X1, ..., X,. Show that the density fz, (x), x > 0, of %, is

0
f, 0 = nln = 1) [ [F0) = PO =01 2000~ 3)
-0
where F(y) = f(2) dz. In particular, when X1, ..., X, are uniformly dis-
tributed on [0, 1],

nn—1)x""2(1-x), 0<x<1,
fa,(x) =

0, x<QOorx>1.
Let F(x) be a distribution function. Show that for any a > 0 the following
functions are also distribution functions:

Gix) =+ f WF(M) du, Galx) = — fm F(u) du.

X 2a X—a

Let a random variable X have the exponential distribution with parameter A >
0 (fx(x) = Ae™™, x > 0). Find the density of the random variable ¥ = X'/,
a > 0. (The corresponding distribution is called the Weibull distribution.)
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Let A = 1. Find the density of the random variable Y = log X (its distribution
is called double exponential).

15. Let random variables X and Y have the joint density function f'(x, y) of the form
F(x,y) = g(+/x2 + »?). Find the joint density function of p = v/X? + Y2 and
6 = arctan(Y/X). Show that p and 6 are independent.
Let U = (cosa)X + (sina)Y and V = (—sin &)X + (cos )Y. Show that the
joint density of U and V is again f(x, y). (This property is due to invariance of
the distribution of (X, Y) with respect to “rotation.”)

16. Let X1, ..., X, be independent identically distributed random variables with
distribution function F = F(x) and density f = f(x). Denote (cf. Prob-
lem 12) by X(V) = min(Xy,...,X,) the smallest of X1, ..., X,, by X(?) the

second smallest, and so on, and by X = max(Xy,...,X,) the largest of
Xi,...,X, (the variables XV, ... X" so defined are called order statistics
of X1,...,X,).

Show that: (a) the density function of X(¥) has the form
nf (x) Cy 1 [F()] 1 = F(0)]"™
(b) the joint density f(x!,...,x") of X, ... X" is given by

f! X = {n!f(xl)...f(xn)’ il << o)

0 otherwise.

17. Let X1, ..., X, be independent identically distributed Gaussian .4 (1, o) ran-
dom variables. The statistic
1 n o . 1 n
5% = Zl(Xi—X)Q, wheren > 1, X = ;ZlXi,
i= i=

is called the sample variance. Show that:

(a) ES? = 02

(b) The sample mean X and sample variance S? are independent;

(¢) X ~ A (u,0?/n) and (n—1)8%/0? has the x2-distribution with (n—1)
degrees of freedom.

(d) The statistic T = /n(X — 11)/+/S2 has the Student distribution with
n — 1 degrees of freedom (independently of p and o). In mathemat-
ical statistics T is used for testing hypotheses and setting confidence
intervals for .

18. Let Xi,...,X,,... be independent identically distributed random variables
and N a random variable independent of X;’s (N = 1,2,...) such that
EN < o0, Var N < o0. Put Sy = X1 + - -+ + Xy. Show that

VarSy  VarX; Var N

Var Sy = VarX; EN+(EX;)? Var N, ES, ~ EX, +EX; EN




9 Construction of a Process with Given Finite-Dimensional Distributions 297

19. Let M(t) = E ™ be the generating function of a random variable X. Show that
P(X > 0) < M(z) for any 7 > 0.

20. Let X,Xy,...,X, be independent identically distributed random variables,
Sw = 21 Xi» So = 0, M, = maxg<j<u Sjy M = sup,>( S,. Show that (the
notation & 4 1 means that £ and 7 have the same distribution):

(a) Mn i (Mnfl +X)+, n Z ]-;
(b) if S, — —oo (P-a.s.), then M < (M + X)+;
(c) if —o0 < EX < 0 and EX? < oo, then

VarX — Var(S + X)~

EM = 2EX

21. Under the conditions of the previous problem, let M(e) = sup, (S, — ne)
for € > 0. Show that lim. o eM(g) = (Var X)/2.

9 Construction of a Process with Given Finite-Dimensional
Distributions

1. Let £ = £(w) be a random variable defined on a probability space (§2,.%, P), and
let
Fe(x) = Plw: {(w) < x}

be its distribution function. It is clear that F¢ (x) is a distribution function on the real
line in the sense of Definition 1 of Sect. 3.

We now ask the following question. Let F = F(x) be some distribution function
on R. Does there exist a random variable whose distribution function is F(x)?

One reason for asking this question is as follows. Many statements in probabil-
ity theory begin, “Let £ be a random variable with the distribution function F(x);
then ....” Consequently if a statement of this kind is to be meaningful we need to
be certain that the object under consideration actually exists. Since to know a ran-
dom variable we first have to know its domain (2, %), and in order to speak of its
distribution we need to have a probability measure P on (€2, .%), a correct way of
phrasing the question of the existence of a random variable with a given distribution
function F'(x) is this:

Do there exist a probability space (0, %, P) and a random variable £ = £(w)
on it, such that

P{w: {(w) < x} = F(x)?

Let us show that the answer is positive, and essentially contained in Theorem 1
of Sect. 3.
In fact, let us put
Q =R, F=2BR).
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It follows from Theorem 1 of Sect. 3 that there is a probability measure P (and only
one) on (R, Z(R)) for which P(a,b| = F(b) — F(a), a < b.
Put £(w) = w. Then

P{w: {(w) <x} =P{w: w <x} = P(—w0,x] = F(x).

Consequently we have constructed the required probability space and the random
variable on it.

2. Let us now ask a similar question for random processes.

Let X = (&)er be a random process (in the sense of Definition 3 in Sect. 5)
defined on the probability space (Q2,.%,P), witht € T < R.

From a physical point of view, the most fundamental characteristic of a random
process is the set {Fy, .., (x1,...,x,)} of its finite-dimensional distribution func-
tions

Frooon(xa,.o0x) =Plw: &, <x1,....&, <x.}, (1)

defined for all sets #1,...,6, witht; <ty < --- < t,.

We see from (1) that, for each set 1, ...,t, withf; < t5 < --- < t, the functions
Fi, ... 1(x1,...,x,) are n-dimensional distribution functions (in the sense of Defi-
nition 2 in Sect.3) and that the collection {F;, . , (x1,...,x,)} has the following
consistency property (cf. (20) in Sect. 3):

Fll,--~7’k,--~7fu (xla e, 0 7xﬂ)

= Ftl,“.,tkfl,tprl,...,tn (xla sy Xk—15Xk415 - - - 7xn)- (2)

Now it is natural to ask the following question: under what conditions can a
given family {F,, ., (x1,...,x,)} of distribution functions Fy, ., (x1,...,%,) (in
the sense of Definition 2 in Sect. 3) be the family of finite-dimensional distribution
functions of a random process? It is quite remarkable that all such conditions are
covered by the consistency condition (2).

Theorem 1 (Kolmogorov’s Theorem on the Existence of a Process). Let
{Fi, . n(x1,...,x)},witht; e T TR, ) <ty <---<ty, n>1,bea given family
of finite-dimensional distribution functions, satisfying the consistency condition (2).
Then there are a probability space (),.%,P) and a random process X = (&)er
such that

P{w: &, <x1,...,&, <x} =Fiy (1,00, %) 3)

PROOF. Put
Q=RrR" F=2%R",

i.e., take € to be the space of real functions w = (w,);er With the o-algebra gener-
ated by the cylindrical sets.

Lett = [t1,...,ty], 1 < ta < -+ < t,. Then by Theorem 2 of Sect.3 we can
construct on the space (R", Z(R")) a unique probability measure P, such that

Pl{(wry,y o ywy)twy <xp,..,wy, <xp}=Fpy (1,0, X). 4)
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It follows from the consistency condition (2) that the family {P;} is also consis-
tent (see (20) in Sect. 3). According to Theorem 4 of Sect. 3 there is a probability
measure P on (R”, Z(R")) such that

P{w: (wy,...,w;,) € B} = P(B)

forevery set T = [t1,...,t:], 11 < -+ < ty.
From this, it also follows that (4) is satisfied. Therefore the required random
process X = (&(w)):er can be taken to be the process defined by

&(w)=w, teT. 5)

This completes the proof of the theorem.
[}

Remark 1. The probability space (R?, Z(R"), P) that we have constructed is called
canonical, and the construction given by (5) is called the coordinate method of
constructing the process.

Remark 2. Let (E,, &,) be complete separable metric spaces, where « belongs to
some set 2 of indices. Let {P;} be a set of consistent finite-dimensional distribution
functions Py, T = [a1,. .., qy], On

(Eal X...ann’ éaa1®"'®éaan)~

Then there are a probability space (€2,.%,P) and a family of % /&, -measurable
functions (X, (w))aeu such that

P{(Xa,,---,Xa,) € B} = P:(B)

forallt = [aq,...,a,]and BE&,, ® - ® &,, .
This result, which generalizes Theorem 1, follows from Theorem 4 of Sect. 3 if
weput Q =[] Es, Z = [, and X, (w) = w, foreach w = (wq), o € 2

Corollary 1. Let F1(x), Fo(x), ... be a sequence of one-dimensional distribution
functions. Then there exist a probability space (), % ,P) and a sequence of inde-
pendent random variables &1, &, . . . such that

P{w: &(w) < x} = Fi(x). (6)

In particular, there is a probability space (), % , P) on which an infinite sequence
of Bernoulli random variables is defined. Notice that §) can be taken to be the space

Q={w:w=(a,a2,...), a; =00r1}
(cf. also Theorem 2 below).

To establish the corollary it is enough to put F1 . ,(x1,...,%,) = F1(x1)---
F,(x,) and apply Theorem 1.
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Corollary 2. Let T = [0, 00) and let {P(s, x; t, B} be a family of nonnegative func-
tions defined for s, t € T, t > s, x € R, B € B(R), and satisfying the following
conditions:

(a) P(s, x; t, B) is a probability measure in B for given s, x and t,
(b) for given s, t and B, the function P(s, x; t, B) is a Borel function of x;
(c) forall 0 < s <t < tand B € #(R), the Kolmogorov—Chapman equation

P(s, x: 7, B) - f P(s, x: 1, dy)P(t, y: T, B) )
R

is satisfied.

Also let 1 = w(-) be a probability measure on (R, B(R)). Then there are a
probability space (), #,P) and a random process X = (&)>0 defined on it, such
that

X0 X1
P{gto S X0, gl‘l S X1y ovny gtn S xn} = J ﬂ(dy())f P(ano;tlv dyl)

- -

Xn
. f P(tnflv Yn—15 In, dyn) 3
—0o0
forO=ty <ty <--- <ty
The process X so constructed is a Markov process with initial distribution 7 and
transition probabilities {P(s, x; t, B}.

Corollary 3. Let T = {0,1,2, ...} and let {P(x; B)} be a family of nonnegative
functions defined fork > 1,x € R, B € #(R), and such that Py(x; B) is a probability
measure in B (for given k and x) and measurable in x (for given k and B). In addition,
let 1 = w(B) be a probability measure on (R, #(R)).
Then there is a probability space (2, % ,P) with a family of random variables
= {&0,&1, ...} defined on it, such that

P{& <xo, & < x50, &6 <)

X0 X1 "Xn
= f ﬂ-(dyO)f Pl(y(); dyl)f Pn(ynfl; dyn)

—00 —00 —0o0

3. In the situation of Corollary 1, there is a sequence of independent random vari-
ables &1, &5, ... whose one-dimensional distribution functions are Fy, Fo, ..., re-
spectively.

Now let (E1,81), (E2,&3%), ... be complete separable metric spaces and let
Py, P, ... be probability measures on them. Then it follows from Remark 2 that
there are a probability space ({2, %#,P) and a sequence of independent elements
X1,Xo, ... such that X, is & /&,-measurable and P(X, € B) = P,(B), B € &,.

It turns out that this result remains valid when the spaces (E,, &,) are arbitrary
measurable spaces.
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Theorem 2 (Ionescu Tulcea’s Theorem on Extending a Measure and the Existence
of a Random Sequence). Let (0, %#,), n = 1,2, ..., be arbitrary measurable
spaces and Q) = [[Q,, F = E[Z.. Suppose that a probability measure Py is
given on (01, %1) and that, for every set (w1, ...,wy) € Q1 X -+« X Q,, n >
1, probability measures P(w1, .. .,wy; ") are given on (1, Fni1). Suppose that
for every B € %, the functions P(wy, ...,w,; B) are " = F1 ® -+ ® Fy-
measurable functions of (w1, ... ,w,) and let, for A; € F;, n > 1,

Py(A; x -+ X A,) = JA Pl(dwl)j P(wy; dwo)

Az

f Plwy, ... ,wy—1; dwy). 9)
A)l

Then there is a unique probability measure P on (0, ) such that
Plw: w1 €Ar, ... wn €A} = Py(Ar x -+ X A,) (10)
for everyn > 1, and there is a random sequence X = (X1(w), Xa(w), ...) such that
P{w: X1(w) € Ay, ..., Xy(w) € Ay} = Pu(A1 X -+ X Ay), 1D
where A; € &.

PROOF. The first step is to establish that for each n > 1 the set function P, defined
by (9) on the rectangles A; x - - - x A, can be extended to the o-algebra .%#".
For eachn > 2 and B € " we put

P,(B) = J Pl(dwl)J P(wy; dws -+ +) J P(wi, ..., wp—2; dwy—1)
Ql Qg anl

X f Ig(wi, oo ywn)P(wiy ...y wy—1; dwy). (12)

Q,

It is easily seen that when B = A; x - -- X A, the right-hand side of (12) is the
same as the right-hand side of (9). Moreover, when n = 2 it can be shown, just as in
Theorem 8 of Sect. 6, that P, is a measure. Consequently it is easily established by
induction that P, is a measure for all n > 2.

The next step is the same as in Kolmogorov’s theorem on the extension of a
measure in (R*, Z(R*)) (Theorem 3, Sect.3). Namely, for every cylindrical set
Ju(B) = {weQ: (wi,...,w,) EB},Be F" = 71 ® - ® F,, we define the set
function P by

If we use (12) and the fact that P(wy, ...,wy;) are measures, it is easy to estab-
lish that the definition (13) is consistent, in the sense that the value of P(J,(B)) is
independent of the representation of the cylindrical set.

It follows that the set function P defined in (13) for cylindrical sets, and in
an obvious way on the algebra that contains all the cylindrical sets, is a finitely
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additive measure on this algebra. It remains to verify its countable additivity and
apply Carathéodory’s theorem.

In Theorem 3 of Sect. 3 the corresponding verification was based on the property
of (R", A(R")) that for every Borel set B there is a compact set A < B whose
probability measure is arbitrarily close to the measure of B. In the present case this
part of the proof needs to be modified in the following way.

As in Theorem 3 of Sect. 3, let {Bn}nzl be a sequence of cylindrical sets

B, = {w: (w1, ...,wn) € By}

that decrease to the empty set &, but have

lim P(B,) > 0. (14)
n—0o0
For n > 1, we have from (12)
PB,) = | £ (wr)Pr(dwr),
Q1
where
f,,(l)(wl) = J P(wy; dws) .. J I, (w1, « .. wy) P(wi, « .. wp—1; dwy).
Q2 Qn
Since B,,+1 < B,, we have B,+1 € B, x .1 and therefore
13n+1(0.)1, R ,w,,H) S IB”(OJl, e 7w,,)lgn+1(w,,+1).

Hence the sequence {fn(l) (w1)}a>1 decreases. Let fM) (w;) = limnfn(l)(wl). By the
dominated convergence theorem

lim P(B,) = lim f,§1>(w1)P1(dw1)=f F® (wy) Py (dwy).
n n o} o}

By hypothesis, lim, P(B,) > 0. It follows that there is an w € B; such that

FD (W) > 0, since if wy ¢ By then £ (wy) = 0 forn > 1.
Further, forn > 2,

FD(w)) = . £ (ws) P(w); dws), (15)
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where

P (wo) = J P(w?), wo; dws)

Q3

. f Ip, (w(f,wg, e ,wn)P(w(f,wg, ey Wn—1; dwy).

n

We can establish, as for {fn(l) (w1)}, that {f,,(2) (wo)} is decreasing. Let f(?) (wy) =
limy o 2 (ws). Then it follows from (15) that

0<fBWd) = fP(w2)P(w; dws),
Qo

and there is a point w9 € Qy such that £ (w9) > 0. Then (w,wy) € By. Con-
tinuing this process we find a point (w9, ... ,w!) € B, for each n. Consequently
(W, ...,w?, ...) € () By, but by hypothesis we have () B, = @. This contradiction
shows that lim,, P( w) = 0.

Thus we have proved the part of the theorem about the existence of the probabil-
ity measure P. The other part follows from this by putting X,,(w) = wy, n > 1.

[}

Corollary 4. Let (E,, &,)n>1 be any measurable spaces and (Py),>1 measures on
them. Then there are a probability space (2, &, P) and a family of independent ran-
dom elements X1,Xo, ... with values in (El, 6’1), (E9, &), ..., respectively, such
that

P{w: X,(w) € B} = P,(B), Be &, n>1.

Corollary 5. Let E = {1,2, ...}, and let {pi(x,y)} be a family of nonnegative func-
tions,k > 1,x,y € E, such that 2eePr(x;y) = 1, x € E,k > 1. Also let m = m(x)
be a probability distribution on E (that is, ( ) >0, Y pm(x) =1).

Then there are a probability space (), % ,P) and a family X = {£y,&1, ...} of
random variables on it such that

P{&o = x0, &1 = x1, ..., & = X} = w(x0)p1(X0,X1) - - - Pr(Xn—1, Xn) (16)

(cf. (4) in Sect. 12 of Chapter 1) for all x; € E and n > 1. We may take ) to be the
space
={w: w = (xg,x1, ...), X; € E}.

A sequence X = {£p, &1, ...} of random variables satisfying (16) is a Markov chain
with a countable set E of states, transition matrices {px(x,y)} and initial probability
distribution 7. (Cf. the definition in Sect. 12 of Chap. 1 and the definitions in Sect. 1
of Chapter 8, Vol. 2).

4. Kolmogorov’s theorem (Theorem 1) states the existence of a process with a
given set of consistent finite-dimensional distribution functions. Its proof exploits
the canonical probability space and the processes are constructed in a coordinate-
wise manner, which is due to the complexity of the structure of their paths.
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From this point of view of much interest are the instances, where random pro-
cesses having desired properties can be built constructively, and with minimal use
of “probabilistic structures.”

To demonstrate such possibilities, consider the so-called renewal processes.
(A particular case of them is the Poisson process; see Sect. 10 of Chap. 7, Vol. 2.)

Let (01,02,...) be a sequence of independent identically distributed positive
random variables with distribution function F = F(x). (The existence of such a
sequence follows from Corollary 1 to Theorem 1.)

Based on (01,09, ... ), we form a new sequence (7o, T4, . .. ) with Ty = 0 and

T,=01+:--+4+0,, n>1

For illustrative purposes, let us think of 7, as the time instant of, say, the nth tele-
phone call. Then o, is the time between the (n — 1)th and nth calls.
The random process N = (N;),>( with constructively specified random variables

No= > I(T, <1) (17)
n=1

is referred to as a renewal process.
Clearly, N, could also be defined as

N, = max{n: T, <1}, (18)

i.e., N; is the number of calls that occur in the time interval (0, ¢], and it is obvious
that
{N; = n} ={T, <1}. (19)

This simple formula is very useful because it reduces the study of probabilis-
tic properties of the process N = (N,),;>¢ to the treatment of the variables 7, =
o1 + -+ + o,, which are sums of independent random variables o4,...,0,,n > 1
(see Subsection 4 in Sect. 3 of Chapter 4 and Subsection 4 in Sect. 2 of Chapter 7
(vol. 2)).

Formula (17) implies that the renewal function m(t) = EN,, t > 0, is connected
with the distribution function F,(z) = P(T, < t) by the equation

m(t) = Z Fn(l)~ (20)

4. PROBLEMS

1. Let Q = [0,1], let .# be the class of Borel subsets of [0, 1], and let P be
Lebesgue measure on [0, 1]. Show that the space (2, .%, P) is universal in the
following sense. For every distribution function F(x), x € R, there is a ran-
dom variable £ = £(w) such that its distribution function F¢(x) = P(¢ < x)
coincides with F(x). (Hint. Let {(w) = F7Y(w), 0 < w < 1, where
F~Y(w) = sup{x: F(x) < w}, when 0 < w < 1, and £(0), £(1) can be
chosen arbitrarily.)
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2. Verify the consistency of the families of distributions in the corollaries to The-
orems | and 2.

3. Deduce Corollary 2, Theorem 2, from Theorem 1.

4. Let F, denote the distribution function of 7,,, n > 1 (see Subsection 4). Show

that F,,1(t) = Sg F.(t—s)dF(s),n > 1, where F; = F.

Show that P{N; = n} = F,(t) — F,+1(t) (see (17)).

6. Show that the renewal function m(¢) defined in Subsection 4 satisfies the re-
newal equation

e

!
m(t) = F(r) +J m(t — x) dF (x). (1)
0
7. Show that the function defined by (20) is a unique solution of the equation (21)
within the class of functions bounded on finite intervals.
8. Let T be an arbitrary set.
(i) Suppose that for every ¢ € T a probability space (), %, P;) is given.
Put Q = [[,.; Q, F = [|,.r-%:. Prove that there is a unique probabil-
ity measure P on (2, .%) such that

P (HBI) ~ TP

teT teT

where B, € %#;,t € T, and B, = (), for all but finitely many z. (Hint.
Specify P on an appropriate algebra and use the method of the proof of
Tonescu Tulcea’s theorem.)

(ii) Let for every t+ € T a measurable space (E;,&;) and a probability
measure P, on it be given. Show that there is a probability space
(Q, .#,P) and independent random elements (X;),er such that X, are
F | &-measurable and P{X; € B} = P,(B), B € &,.

10 Various Kinds of Convergence of Sequences
of Random Variables

1. Just as in analysis, in probability theory we need to use various kinds of conver-
gence of random variables. Four of these are particularly important: in probability,
with probability one, in the mean of order p, in distribution.

First some definitions. Let £, &1, &3, . . . be random variables defined on a proba-
bility space (2, %, P).

Definition 1. The sequence &;,&s,... of random variables (denoted by (&,) or

(&1)n>1) converges in probability to the random variable ¢ (notation: &, A & if
forevery € > 0
P{|& — & >¢} -0, n— . (1

We have already encountered this convergence in connection with the law of
large numbers for a Bernoulli scheme, which stated that
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g

(see Sect. 5 of Chap. 1). In analysis this is known as convergence in measure.

Sn ‘ )
——p|>¢e)] —0, n—w
n

Definition 2. The sequence &1, &2, . . . of random variables converges with probabil-
ity one (almost surely, almost everywhere) to the random variable ¢ if

Plw: & = & =0, 2)

i.e., if the set of sample points w for which &,(w) does not converge to £ has proba-
bility zero.
This convergence is denoted by £, — £ (P-a.s.), or §, — £ (a.s.), or &, =3 & or

&€

Definition 3. The sequence &1, &9, . . . of random variables converges in the mean of
order p, 0 < p < o0, to the random variable ¢ if

E|&—&P —0, n— oo 3)

»

In analysis this is known as convergence in L7, and denoted by &, L &. In the
special case p = 2 it is called mean square convergence and denoted by ¢ = L.i.m. &,
(for “limit in the mean”).

Definition 4. The sequence £1, &2, . . . of random variables converges in distribution

to the random variable £ (notation: &, < Eoré, ay o if

Ef(&) —Ef(§), n—oo, “)

for every bounded continuous function f = f(x). The reason for the terminology is
that, according to what will be proved in Sect. 1 of Chap. 3 condition (4) is equiva-
lent to the convergence of the distribution functions F¢, (x) to F¢(x) at each point x
of continuity of F¢(x). This convergence is denoted by Fg, = Fe.

We emphasize that the convergence of random variables in distribution is defined
only in terms of the convergence of their distribution functions. Therefore it makes
sense to discuss this mode of convergence even when the random variables are de-
fined on different probability spaces. This convergence will be studied in detail in
Chapter 3, where, in particular, we shall explain why in the definition of F¢, = F¢
we require only convergence at points of continuity of Fe(x) and not at all x.

2. In solving problems of analysis on the convergence (in one sense or another)
of a given sequence of functions, it is useful to have the concept of a fundamental
sequence (or Cauchy sequence). We can introduce a similar concept for each of the
first three kinds of convergence of a sequence of random variables.

Let us say that a sequence {,},>1 of random variables is fundamental in proba-
bility, or with probability 1, or in the mean of order p, 0 < p < 0, if the correspond-
ing one of the following properties is satisfied: P{|§, — &,| > ¢} — 0asm, n —> ©
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for every € > 0; the sequence {&,(w)},>1 is fundamental for almost all w € Q; the
sequence {&,(w)},>1 is fundamental in L7, i.e., E|&, — &P — 0 as n, m — 0.

3. Theorem 1.

(a) A necessary and sufficient condition that &, — £ (P-a.s.) is that
P{sup|§k—§|>s}—>07 n— o, (5)
k>n

for every e > 0.
(b) The sequence {£,},>1 is fundamental with probability 1 if and only if

P{ sup |§k_£l|25}_)07 n— oo, (6)
k>n,i>n

for every € > 0; or equivalently
P{Supfn+k—§n| 26} —0, n— oo )
k>0

PROOF. (a) LetAZ = {w: [§, — €| > e}, A° = limsup A5 = (,2; U, Af. Then

{w: & —» & = L_JAE = UAl/m.
m=1

e>0

But

P(A%) = lim P ( U A§> :

k>n

hence (a) follows from the following chain of implications:

Plw: & —» & =0<:>P<UAE> =0<:>P(LOOJA1/’”> =0

e>0 m=1

< PAY™) =0, m>1<PA%)=0,e>0

<:>P(UA,§>—>0,n—>oo,e>o

k>n

@P<sup\§kf§\25)HO,nHoo,5>O.
k>n

(b) Let
B ={w: l&—&l>¢}, B =[)|Bir

n=1k>n
I>n
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Then {w: {&(w)}u>1 is not fundamental} = | J.., B°, and it can be shown as
in (a) that P{w: {&,(w)}n>1 is not fundamental} = 0 < (6). The equivalence of (6)
and (7) follows from the obvious inequalities

sup [Enx — &l < sup |Gk — Euga| < 2 5up |Gugi — &l
k>0 k>0 >0
>0

This completes the proof of the theorem.
m]

Corollary. Since

P{swle -6l <) =P { & €12} < T Pla ¢l > o)

k>n k>n

a sufficient condition for &, =3 & is that

DMIP{a—¢ >l < (8)

k=1
is satisfied for every € > 0.

It is appropriate to observe at this point that the reasoning used in obtaining (8)
lets us establish the following simple but important result which is essential in study-
ing properties that are satisfied with probability 1.

Let Aj,As, ... be a sequence of events in .%. Let (see Table 2.1 in Sect. 1)
{A,1.0.} denote the event limsupA, that consists in the realization of infinitely
many of A1,As, ...

Borel-Cantelli Lemma.

(@) If >, P(A,) < oo then P{A,i.0.} = 0.
(b) If >P(A,) = coand A1,As, ... are independent, then P{A, i.0.} = 1.

PROOF. (a) By definition {A,i.0.} = limsupA, = (,Z; U;>, As- Consequently
[e¢]
P{A,i0} =P ( N UAk> — limP ( U Ak) <lim Y P(Ay),
n=1k>n k>n k>n

and (a) follows.
(b)If Ay, As, ... are independent, so are A1, A, . ... Hence for N > n we have

P <§Ak> - lljmk),



10 Various Kinds of Convergence of Sequences of Random Variables 309

and it is then easy to deduce that

P(ﬂm)— P (). ©)
k=n k=n
Since log(l —x) < —x, 0 <x < 1,
log H[l —P(AY)] = Z log[1 — P(Af)] < — 2 P(Ax) = —o0.
k=n k=n k=n

Consequently
a0
P ( N Ak> =0
k=n

for all n, and therefore P(A,1.0.) = 1.
This completes the proof of the lemma.
|

Corollary 1. If AS = {w: |§, — &| > ¢} then (8) means that Y.,- | P(AZ) < oo,
e > 0, and then by the Borel-Cantelli lemma we have P(A®) = 0, € > 0, where
A® = limsup AS(= {A%i.0.}). Therefore

o0
DIP{&—¢ >} <0, e>0=PA)=0,e> 0
k=1

< Plw: & » £} =0,
as we already observed above.

Corollary 2. Let (g,),>1 be a sequence of positive numbers such that €, | 0,
n — oo. Then if &, converges to £ in probability sufficiently “fast” in the sense
that

DI P{& — €l > e} <, (10)

n=1
then &, 3 &

In fact, let A, = {|& — &| > e,}. Then P(A,i.0.) = 0 by the Borel-Cantelli
lemma. This means that, for almost every w € {2, there is an N = N(w) such that
|€:(w) — &(w)] < &, forn > N(w). Bute, | 0, and therefore &,(w) — &(w) for
almost every w € ().
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4. Theorem 2. We have the following implications:

65 €= 606, (1)
he=65¢ p>o, (12)
Enif:énif. (13)

PrROOF. Statement (11) follows from comparing the definition of convergence in
probability with (5), and (12) follows from Chebyshev’s inequality.

To prove (13), let f(x) be a continuous function, let |[f(x)| < ¢, lete > 0, and
let N be such that P(|¢] > N) < e/(4c). Take 6 so that |f(x) — f(y)| < &/2 for
|x| < Nand |x—y| < 6. Then (cf. the “probabilistic” proof of Weierstrass’s theorem
in Subsection 5, Sect. 5, Chap. 1)

Elf (&) —f(©)] = E(f (&) —f(E]; 1€ =&l <0, [E] < N)
+ E(f (&) —f(&)]: 16 — &l < 0, €] > N)

+ E(If (&) —f(O: 16 — & > 0)
<e/2+¢/2+2cP{|§ — & > 6}
=¢e+2cP{l¢, — & > 6}

But P{|¢, — &| > 6} — 0, and hence E |[f(&,) — f(&)] < 2e for sufficiently large n;
since € > 0 is arbitrary, this establishes (13).
O

We now present a number of examples which show, in particular, that the con-
verses of (11) and (12) are false in general.

Example 1. (&, > ¢ = &°3¢ 65¢ » £%3¢)Let Q = [0,1],.F =
2#([0,1]), P = Lebesgue measure. Put

_ 1 A
Aln—[ln ’;]7 fﬁ,:IAL(w)’ i=12,...,n;n>1.

Then the sequence
{66 6:6, 6. 65}

of random variables converges both in probability and in the mean of order p > 0,
but does not converge at any point w € [0, 1].

Example 2. (6, € = 6,°5¢ = &,5¢,p > 0) Again let Q = [0,1], & =
2|0,1], P = Lebesgue measure, and let

_fe', 0<w< 1,
&nlw) = {O, w>1/n.

Then {&,} converges with probability 1 (and therefore in probability) to zero, but

np
E|£n|p:%—>oo, n— o0,

for every p > 0.
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Example 3. (&, gf > & € Let {&,} be a sequence of independent random
variables with

P(gn = 1) = Pn, P(fn = 0) =1—p,.

Then it is easy to show that

& B0ep, >0, n—o o, (14)

650 p, >0, n—o o, (15)
o0

£ 0e > py < . (16)
n=1

In particular, if p, = 1/n then &, 20 for every p > 0, but &, “5°0.

The following theorem singles out an interesting case when almost sure conver-
gence implies convergence in L!.

Theorem 3. Ler (§,) be a sequence of nonnegative random variables such that
&S EandEE, — E€ < 0. Then

E|l¢,—¢& —0, n— . 17
PROOF. We have E ¢, < oo for sufficiently large n, and therefore for such n we have

E |£ - §n| = E(f - fn)l{izin} + E(fn - g)l{fn>§}
=2 E(f - gn)l{f;"Z&n} + E(fn - 5)
But0 < (¢ — 5,1)1{525”} < &. Therefore, by the dominated convergence theorem,
lim, E(§ — &)I{¢>¢,; = 0, which together with E§, — E & proves (17).

O

Remark. The dominated convergence theorem also holds when almost sure con-
vergence is replaced by convergence in probability (see Problem 1). Hence in The-

orem 3, we may replace “¢, =3 &’ by “¢, 5 E£r

5. It is shown in analysis that every fundamental sequence (x,), x, € R, is conver-
gent (Cauchy criterion). Let us give similar results for the convergence of a sequence
of random variables.

Theorem 4 (Cauchy Criterion for Almost Sure Convergence). A necessary and suf-
ficient condition for the sequence (,),>1 of random variables to converge with
probability 1 (to a random variable &) is that it is fundamental with probability 1.

PROOE. If &, ™5 € then

sup [& — & < sup [& — €| +sup|& — &,
k>n k>n >n

lg/x

whence the necessity follows (see Theorem 1).
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Now let (£,),>1 be fundamental with probability 1. Let A" = {w: (&,(w)) is not
Sfundamental}. Then whenever w € Q\.4 the sequence of numbers (&,(w)),>1 is
fundamental and, by Cauchy’s criterion for sequences of numbers, lim &, (w) exists.

Let )

The function so defined is a random variable, and evidently &, 5 £

This completes the proof.

o

Before considering the case of convergence in probability, let us establish the
following useful result.

Theorem 5. If the sequence (&,) is fundamental (or convergent) in probability, it
contains a subsequence (&, ) that is fundamental (or convergent) with probability 1.

PROOEF. Let (&,) be fundamental in probability. By Theorem 4 it is enough to show
that it contains a subsequence that converges almost surely.
Take n; = 1 and define n; inductively as the smallest n > n;_; for which

P{l& — & >27F) <27
for all s > n, t > n. Then

Z P{|§”k+1 - €nk| > 2_k} < ZQ_k < 0
k

and by the Borel-Cantelli lemma

P{‘gnk+1 - fnk| > 27]( 10} = 0.
Hence

o0
Z ‘gl’lkJrl - gﬂk| < 0
k=1

with probability 1.
Let A4 = {w: Y&, — & | = o0}. Then if we put

() + 2 (60 (@)~ (@), wERS,
0, - weN,

{(w) =

we obtain &, =3 &.

If the original sequence converges in probability, then it is fundamental in prob-
ability (see also (19) below), and consequently this case reduces to the one already
considered.

This completes the proof of the theorem.

m]
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Theorem 6 (Cauchy Criterion for Convergence in Probability). A necessary and
sufficient condition for a sequence (&,)n>1 of random variables to converge in prob-
ability is that it is fundamental in probability.

PROOF. If &, - ¢ then

P{‘gn - £m| Z 5} S P{|£n - €| Z 5/2} + P{|§m - £| Z 6/2} (19)

and consequently (&,) is fundamental in probability.
Conversely, if (§,) is fundamental in probability, by Theorem 5 there are a sub-

sequence (&,,) and a random variable ¢ such that &, “> &. But then
P{[& — &l = e} < P{I€ — Gul = €/2} + P{|&w — &] = €/2},

from which it is clear that &, 5 ¢. This completes the proof.

O

Before discussing convergence in the mean of order p, we make some observa-
tions about L” spaces.

We denote by L? = LP(§2, #,P) the space of random variables £ = £(w) with
Ef¢P =, €[? dP < co. Suppose that p > 1 and put

1€ll, = (E[€[7)17.
It is clear that

l€l, >0, (20)
I€lly = lel 1€ ]ps ¢ constant, (21)

and by Minkowski’s inequality (31), Sect. 6,

€ + 77Hp < Hgﬂp + HUHP- (22)

Hence, in accordance with the usual terminology of functional analysis, the function
| - ||, defined on L” and satisfying (20)-(22), is (for p > 1) a semi-norm.
For it to be a norm, it must also satisfy

[€l, =0=¢=0. (23)

This property is, of course, not satisfied, since according to Property H (Sect. 6) we
can only say that £ = 0 almost surely.

This fact leads to a somewhat different view of the space 7. That is, we connect
with every random variable { € L the class [¢] of random variables in L? that
are equivalent to it (£ and 7 are equivalent if £ = 7 almost surely). It is easily
verified that the property of equivalence is reflexive, symmetric, and transitive, and
consequently the linear space L can be divided into disjoint equivalence classes
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of random variables. If we now think of [L”] as the collection of the classes [£] of
equivalent random variables & € L?, and define

[€]+ [n] = [€ + 7).

al€] = [a&], where ais a constant,

1Tl = 1€,

then [L”] becomes a normed linear space.

In functional analysis, we ordinarily describe elements of a space [L?] not as
equivalence classes of functions, but simply as functions. In the same way we do
not actually use the notation [L”]. From now on, we no longer think about sets
of equivalence classes of functions, but simply about elements, functions, random
variables, and so on.

It is a basic result of functional analysis that the spaces L?, p > 1, are complete,
i.e., that every fundamental sequence has a limit. Let us state and prove this in
probabilistic language.

Theorem 7 (Cauchy Test for Convergence in the pth Mean). A necessary and suffi-
cient condition that a sequence (§,),>1 of random variables in LP converges in the
mean of order p to a random variable in L7 is that the sequence is fundamental in
the mean of order p.

PROOF. The necessity follows from Minkowski’s inequality. Let (&) be fundamen-
tal (|§, — &nll, — 0, n, m — 0). As in the proof of Theorem 5, we select a subse-

quence (&,,) such that &, *> ¢, where £ is a random variable with |, < co.
Let n; = 1 and define n; inductively as the smallest n > ny_; for which

& — &l < 27
foralls > n, t > n. Let
Ap={w: &y —nl 227
Then by Chebyshev’s inequality

< E‘§nk+1 _§Hk|p < 2—2kp _
- 2—kp - 2k

P(Ax)

As in Theorem 5, we deduce that there is a random variable £ such that &,, =3 &.

We now deduce that |§, — £[, — 0 as n — oo. To do this, we fix ¢ > 0 and
choose N = N(¢) so that |&, — &, < e forall n > N, m > N. Then for any fixed
n > N, by Fatou’s lemma (Sect. 6)

E |£n _£|p = E{ lim |£n _gnk|p} =E {hmlgffn - gnk|p}

< liminfE|[§, — &, [’ = liminf §, — &, [|) <e.
nE—00 ny—00
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Consequently E |, — P — 0, n — 0. It is also clear that since £ = (£ — &,) + &,
we have E [£[P < oo by Minkowski’s inequality.

This completes the proof of the theorem.

=

Remark 1. In the terminology of functional analysis a complete normed linear
space is called a Banach space. Thus L”, p > 1, is a Banach space.

Remark 2. If 0 < p < 1, the function |¢[, = (E[£[P)!/? does not satisfy the
triangle inequality (22) and consequently is not a norm. Nevertheless the space (of
equivalence classes) I, 0 < p < 1, is complete in the metric d(§, ) = E [€ — .

Remark 3. Let L™ = L*(Q), %, P) be the space (of equivalence classes of) random
variables & = &(w) for which ||¢] s < o0, where ||€]|o, the essential supremum of &,
is defined by

[€]loc = esssup €] = inf{0 < ¢ < w0: P(|¢] > ¢) = 0}.
The function | - || is a norm, and L* is complete in this norm.

6. PROBLEMS

1. Use Theorem 5 to show that almost sure convergence can be replaced by con-
vergence in probability in Theorems 3 and 4 of Sect. 6.
2. Prove that L* is complete.

3. Show thatif &, 5 &andalso¢, 5 7 then £ and 7 are equivalent (P(¢ # 1) = 0).
4. Let&, 5 1 1 7, and let £ and 7 be equivalent (P{£ # n} = 0). Show that

P{|£n_77n| 25} -0, n— oo,

for every € > 0.
5. Let &, LA & M LA 1. Show that if ¢ = ¢(x,y) is a continuous function, then

P(Enstta) = 0(€,) (Slutsky’s lemma).
6. Let (&, — €)2 5 0. Show that £2 > £2,

7. Show that if &, < C, where C is a constant, then this sequence converges in
probability:
d P
&L—C=¢,—C.

[e¢]
n=1

8. Let (£,),>1 have the property that .
that &, — 0 (P-a.s.).

9. Let (&,),>1 be a sequence of identically distributed random variables. Show
that

E|&u|P < oo for some p > 0. Show
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10.

11.

12.
13.
14.

15.

16.

17.

18.

19.
20.
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0
Elél <o« ) P{l&]>en} <0, >0

n=1
0

@ZP & > <oo,a>0:>é—>0(P-a.s.).
=1 n n

Let (&,),>1 be a sequence of random variables. Suppose that there are a
random variable £ and a sequence {nm;} such that ¢, — ¢ (P-a.s.) and
maxy, , <i<nm & — &n—1| — 0 (P-a.s.) as k — co. Show that then §, — &
(P-a.s.).

Let the d-metric on the set of random variables be defined by

” = E Eree——

and identify random variables that coincide almost surely. Show that d =
d(&, ) is a well defined metric and that convergence in probability is equiva-
lent to convergence in the d-metric.

Show that there is no metric on the set of random variables such that conver-
gence in that metric is equivalent to almost sure convergence.

LetX; <X, <...andX, P, X. Show that X, — X (P-a.s)).

Let X, — X (P-a.s.). Then also n= >}/, Xy — X (P-a.s.) (Cesaro summa-
tion). Show by an example that convergence P-a. s. here cannot be replaced by
convergence in probability.

Let (92, %, P) be a probability space and X, P, X. Show that if the measure P
is atomic, then X,, — X also with probability one. (A set A € .Z is an P-atom
if for any B € .# either P(B n A) = P(A) or P(B n A) = 0. The measure P
is atomic if there exists a countable family {A,} of disjoint P-atoms such that
P(U,Z144) = 1)

By the (first) Borel-Cantelli lemma, if Y~ ; P(|¢,| > €) < oo for any € > 0,
then £, — 0 (P-a.s.). Show by an example that convergence &, — 0 (P-a.s.)
may hold also under the condition 372 | P(|&,| > €) = o0, & > 0.

(To the second Borel-Cantelli lemma.) Let Q = (0,1), = %((0,1)), and P
Lebesgue measure. Consider the events A, = (0, 1/n). Show that >, P(A,) =
o, but each w € (0,1) can belong only to finitely many sets Ay, ..., A/,
i.e. P{A,i.0.} = 0.

Give an example of a sequence of random variables such that lim sup §, = o
and liminf &, = —oo with probability one, but nevertheless there is a random
variable n such that &, 2 n.

Let ) be an at most countable set. Prove that &, LN & implies &, — & (P-a.s.).
Let Aq,Az,... be independent events and Y.~  P(A4,) < oo. Prove that
Sy = Y;_, 1(Ay) fulfills the following extension of the second Borel-Cantelli
lemma:

S
hyrln Es. 1 (P-a.s.).
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21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

Let (X,),>1 and (Y,),>1 be two sequences of random variables having the
same finite-dimensional distributions (Fx,, . x, = Fy,,...y,, n > 1). Suppose

X, % X. Prove that Y, then converges in probability, Y, EA% , to a random
variable Y with the same distribution as X.

Let (X,)n>1 be a sequence of independent random variables such that X, Px
for some random variable X. Prove that X is a degenerate random variable.

Show that for any sequence of random variables &1, &o, . .. there is a sequence
of constants ay,as, ... such that §,/a, — 0 (P-a.s.).
Let &1,&5,... be a sequence of random variables and S, = & + --- + &,

n > 1. Show that the set {S, — }, i.e. the set of w € € such that the series
D i>1 &k (w) converges, can be represented as

s-1=NuUn {sup\sl—sk| gN—l}.
N>1m>1k>m = 12k

Accordingly, the set {S, -}, where the series } -, &(w) diverges, is repre-

sentable as
{S, »} = U ﬂ U {S;;E IS; — Si| > Nfl}.

N>1m>1k>m

Prove the following version of the second Borel-Cantelli lemma: Let

A1,As, ... be arbitrary (not necessarily independent) events such that
" Z<] P(A; N Ay)
Y P(A) =0 and liminf = <1
n=1 " ( Z P(Ak)>
1<k<n

then P(A, i.0.) = 1.

Show that in the Borel-Cantelli lemma it suffices to assume only pairwise
independence of the events A1, Ao, ... instead of their independence.

Prove the following version of the zero—one law (cf. zero—one laws in Sect. 1
of Chapter 4, Vol. 2): if the events A1, Ao, ... are pairwise independent, then

) ~Jo, if 2P(A,) < o,
Pidui.of = {1, it STP(Ay) = o0.

Let A1, Ao, ... be an arbitrary sequence of events such that lim, P(4,) = 0
and Y, P(A, nA,;1) < 0. Prove that then P{4, i.0.} = 0.

Prove that if 3, P{|{,| > n} < oo, then limsup,(|&,|/n) < 1 (P-a.s.).

Let&, | £ (P-a.s.), E|¢,| < oo,n > 1, and inf, EE, > —oo. Show that then

L' .
&> & e ENG —¢ —0.
In connection with the Borel-Cantelli lemma, show that P{A, i.0.} = 1 if and
only if 3} P(A nA,) = oo for any set A with P(A) > 0.
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32. Let A1, A,, ... be independent events with P(A,) < 1 for all n > 1. Then
P{A,i.0.} = lifand only if P(| JA,) = 1.

33. Let X1, Xa, ... be independent random variables with P{X,, = 0} = 1/n and
P{X, = 1} = 1 — 1/n. Let E, = {X, = 0}. Show that > | P(E,) = o0,
Zle P(E,) = o. Conclude from these that lim,, X,, does not exist (P-a. s.).

34. Let X1, X3, ... be a sequence of random variables. Show that X, A 0 if and
only if

X"

1+ X"

In particular, if S, = X; + - - - + X,,, then

E — 0 for some r > 0.

Sn - ESn P (Sn - ES/1)2
On T =on P E
n 0« n?+ (S, — ES,)?

Show that g
max |Xk\£>0=>—" R0
1<k<n n

for any sequence Xi, Xs, . . ..

35. Let X1, X5, ... be independent identically distributed Bernoulli random vari-
ables with P{X, = +1} = 1/2. Let U, = Y,_,;(Xx/2*), n > 1. Show
that U, — U (P-a.s.), where U is a random variable uniformly distributed
on (—1,+1).

11 The Hilbert Space of Random Variables with Finite
Second Moment

1. An important role among the Banach spaces L”, p > 1, is played by the space
L? = L%(Q,.#,P), the space of (equivalence classes of) random variables with
finite second moments.
If ¢ and € L?, we put
(&m) =E&n. (D

It is clear that if £,n, ¢ € L? then

(ag + bn? C) = a(é'? C) + b(777<')5 a? b e R?
(£,6)>0

and
(€, =0=E=0.

Consequently (£, 7) is a scalar product. The space L? is complete with respect to
the norm

HEXRIEE )
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induced by this scalar product (as was shown in Sect. 10). In accordance with the
terminology of functional analysis, a space with the scalar product (1) is a Hilbert
space.

Hilbert space methods are extensively used in probability theory to study prop-
erties that depend only on the first two moments of random variables (“L2-theory”).
Here we shall introduce the basic concepts and facts that will be needed for an ex-
position of L2-theory (Chapter 6, Vol. 2).

2. Two random variables & and 7 in L? are said to be orthogonal (¢ L n) if (&,7) =
E &n = 0. According to Sect. 8, £ and 7 are uncorrelated if Cov(&,n) = 0, i.e., if

E&n=ECEn.

It follows that the properties of being orthogonal and of being uncorrelated coin-
cide for random variables with zero mean values.
A set M < L2 is a system of orthogonal random variables if £ L 7 for every

§neM(§#mn).
If also |£|| = 1 for every £ € M, then M is an orthonormal system.

3.Let M = {n1,...,m,} be an orthonormal system and ¢ any random variable in
L?. Let us find, in the class of linear estimators Y., a;7;, the best mean-square
estimator for & (cf. Subsection 2 of Sect. 8).

A simple computation shows that

2 n 2 n n
=|{— Zaﬂh = (5 - Zaim, §— Zaml)
H€H2 - 22“: 5 771 (Zamz,20m>

= [¢]* - 22611‘(5,771') + Zaiz

= |¢)* - Zlem |2+Z|al (& m)?

E‘g Zami

> |¢]* - Z 1€, m)I%, 3)
i=1

where we used the equation

ai2 — 261,'(6,77{) = |ai - (gani>|2 - |<£a771)|2

It is now clear that the infimum of E |§ Zl 1 a,n,| over all real a4, ...,a, is
attained for a; = (&, m;), i = 1,
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Consequently the best (in the mean-square sense) linear estimator for £ in terms
of m1,...,m, s

£= Y& “)
i=1

Here
2

A=infE|¢ —El¢-¢° = M2§]£m 5)

Z alnl
(compare (17), Sect. 4, Chap. 1 and (13), Sect. 8).

Inequality (3) also implies Bessel’s inequality: if M = {n1,72,...} is an or-
thonormal system and & € L2, then

Z (&, m)? < €)% (6)

and equality is attained if and only if

n

€ =Lim. Y (& m)m (7)

i=1

The best linear estimator of £ is often denoted by E(§ [n1,...,m,) and called the
conditional expectation (of £ with respect to 7)1, . .., 7,) in the wide sense.

The reason for the terminology is as follows. If we consider all estimators ¢ =
©(m,...,my) of € in terms of ny,...,n, (Where ¢ is a Borel function), the best
estimator will be ¢* = E(£|n1,...,m,), i.e., the conditional expectation of £ with
respect to 71, ..., 7, (cf. Theorem 1, Sect. 8). Hence the best linear estimator is, by
analogy, denoted by E(¢ |71, ...,n,) and called the conditional expectation in the
wide sense. We note that if 771, . . . , 1, form a Gaussian system (see Sect. 13 below),
then E(¢|ny,...,m,) and E(&|n1, ..., n,) are the same.

Let us discuss the geometric meaning of £ = E(f [ 01,y ).

Let £ = Z{n1,...,n.} denote the linear manifold spanned by the orthonormal
system of random variables 71, . .., n, (i.e., the set of random variables of the form
er;l an;, a; € R)

Then it follows from the preceding discussion that £ admits the “orthogonal de-
composition”

E=E+(6-9), (8)

whereé € Zand§ — é 1 Z in the sense that £ — é 1 Aforevery A € Z. Itis
natural to call £ the projection of £ on % (the element of £ “closest” to &), and to
say that & — & is perpendicular to £.

4. The concept of orthonormality of the random variables 7y, . . ., 7, makes it easy
to find the best linear estimator (the projection) £ of £ in terms of 771, . . ., 1,,. The sit-
uation becomes more complicated if we give up the hypothesis of orthonormality.
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However, the case of arbitrary 7, ...,7, can in a certain sense be reduced to the
case of orthonormal random variables, as will be shown below. We shall suppose
for the sake of simplicity that all our random variables have zero mean values.

We shall say that the random variables 71, . .., n, are linearly independent if the
equation

n
dlam=0 (P-as)
i=1
is satisfied only when all a; are zero.
Consider the covariance matrix

R = Enn*

of the vector n = (11, . ..,7,)*, where * denotes the transpose. It is symmetric and
positive semi-definite, and as noticed in Sect. 8, can be diagonalized by an orthogo-
nal matrix O:

O*RO = D,
where
dq 0
D= .
0 d,

has nonnegative elements d;, the eigenvalues of R, i.e., the zeros of the characteristic
equation det(R — AE) = 0, where E is the identity matrix.
If 1, ...,m, are linearly independent, the Gram determinant (det R) is not zero
and therefore d; > 0. Let
Vdi 0

0 dn

and
b= B’IO*n. 9

Then the covariance matrix of [ is

EBB* =B 'O*Enn*OB~! = B1O*ROB™! = E,

and therefore 5 = (1, ..., B,) consists of uncorrelated random variables. It is also
clear that

n = (OB)B. (10)

Consequently if 71, . . ., 1, are linearly independent there is an orthonormal sys-

tem such that (9) and (10) hold. Here

g{nlv"'ann}:${517~~';ﬂ11}~
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This method of constructing an orthonormal system (31, ..., 3, is frequently in-
convenient. The reason is that if we think of 7); as the value of the random sequence
(m,...,m,) at the instant i, the value S; constructed above depends not only on the
“past,” (1, ..., n;), but also on the “future,” (911, ..., n,). The Gram-Schmidt or-
thogonalization process, described below, does not have this defect, and moreover
has the advantage that it can be applied to an infinite sequence of linearly indepen-
dent random variables (i.e., to a sequence in which every finite set of the variables
are linearly independent).

Let 11,72, . . . be a sequence of linearly independent random variables in L2. We
construct a sequence £1, €, . . . as follows. Let &1 = 71 /||n1|. If €1, ..., &,—1 have
been selected so that they are orthonormal, then

c, = L?”) (11)
1700 — Tl
where 1), is the projection of 7, on the linear manifold .#(e1, . ..,&,_1) generated
by (M1, .-+ Mu—1):
n—1
fn = Y (s x)Er (12)
k=1

Since 71, . . ., n, are linearly independent and Z{ny, ..., m,—1} = L{e1,...,en—1},
we have |1, — 7,| > 0 and consequently &, is well defined.
By construction, ||g,|| = 1 for n > 1, and it is clear that (¢,, &) = 0 for k < n.

Hence the sequence €1, €2, . . . is orthonormal. Moreover, by (11),
M = ﬁn + bngna
where b, = |n, — 7,| and 7, is defined by (12).
Now let 01, ..., n, be any set of random variables (not necessarily linearly inde-
pendent). Let det R = 0, where R = |r;;| is the covariance matrix of (71, ..., M),
and let

rank R =r < n.

Then, from linear algebra, the quadratic form

n

Q(a) = Z rijaiaj7 a = (ala"'aaﬂ)a

ij=1

has the property that there are n — r linearly independent vectors a(V), ..., a"=")
such that Q(a®) = 0,i=1,...,n—r.

But )
Q(a) = E (Z akﬂk) ~

k=1
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Consequently

n
Za,(cl)nk =0, i=1,...,n—r,
k=1
with probability 1.

In other words, there are n — r linear relations among the variables 71, ...,n,.
Therefore if, for example, 71, ..., 7, are linearly independent, the other variables
Tr41, - - -, Mn can be expressed linearly in terms of them, so that Z{n,...,n,} =
Z{m,...,n}. Hence it is clear that by means of the orthogonalization process
we can find r orthonormal random variables 1, ..., &, such that n,...,n, can be
expressed linearly in terms of them and Z{ny,...,n,} = L{e1,..., e}

5.Let 71,72, . .. be a sequence of random variables in L. Let & = Z{n1,n2 ...}
be the linear manifold spanned by 701,12, ..., i.e., the set of random variables of
the form Z?:l ami,n > 1, a; € R. Denote & = L{m,n2,...} the closed linear
manifold spanned by 71,132, . . ., i.e., the set of random variables in . together with
their mean-square limits.

We say that a set 11,72, ... iS a countable orthonormal basis (or a complete
orthonormal system) in L? if:

(@) m1,m2, ... 1is an orthonormal system,
(b) g{nla n2,.- } = L2'

A Hilbert space with a countable orthonormal basis is said to be separable.
By (b), for every ¢ € L? and a given £ > 0 there are numbers a1, . . ., a, such that

S
i=1

<e.

Then by (3)

<e.

Hs = (&)
i=1

Consequently every element of a separable Hilbert space L? can be represented as

8

§= . (&, mi)ni, (13)

i=1

or more precisely as
n
¢ =Llim. 2(5, )i
=

We infer from this and (3) that Parseval’s equation holds:

le)> =1 ), geL? (14)
i=1
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It is easy to show that the converse is also valid: if 71,72, . .. is an orthonormal
system and either (13) or (14) is satisfied, then the system is a basis.
We now give some examples of separable Hilbert spaces and their bases.

Example 1. Let Q = R, % = %(R), and let P be the Gaussian measure,

)= - =0 (15)
We find easily that
Dyp(x) = —xp(x),
D?p(x) = (x* = D)p(x), (16)
D3p(x) = (3x — x*)p(x),

It follows that H, (x) are polynomials (the Hermite polynomials). From (15) and (16)
we find that

Ho(x) = 1,

Hl (x) =X,

Hy(x) = x* — 1,

Hj(x) = x* — 3x,

A simple calculation shows that
0
(Hm7Hn) = Hm(x)Hn(x) P(dx)
-
= H, (x)H, (x)(x) dx = nl6y,

—0o0

where 6,,, is the Kronecker delta (0, if m # n, and 1 if m = n). Hence if we put

the system of normalized Hermite polynomials {h,(x)},>0 will be an orthonormal
system. We know from functional analysis (see, e.g., [52], Chapter VII, Sect. 3)

that if
a0

lim [ M P(dx) < o0, (17)

cl0 J_op
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the system {1, x, x2, ...} is complete in L?, i.e., every function £ = £(x) in L? can
be represented either as >, a;7;(x), where 7;(x) = x', or as a limit of these func-
tions (in the mean-square sense). If we apply the Gram—Schmidt orthogonalization
process to the sequence 71 (x), n2(x), ... with 7;(x) = x/, the resulting orthonor-
mal system will be precisely the system of normalized Hermite polynomials. In the
present case, (17) is satisfied. Hence {h,(x)},>0 is a basis and therefore every ran-
dom variable £ = &£(x) on this probability space can be represented in the form

£(x) = Lim. DUE hi)hi(x). (18)
i=0

Example 2. Let 2 = {0,1,2, ...} and let P = {P;, Ps, ...} be the Poisson distri-
bution .
Po= N 01 Ao
x!
Put Af(x) = f(x) —f(x—1) (f(x) = 0, x < 0), and by analogy with (15) define the

Poisson—Charlier polynomials

I () = S

b nzl =1 (19)
Since
o0
(Hrm Hn) = Z H;n(-x)Hn(-x)Px = Cnamny
x=0

where ¢, are positive constants, the system of normalized Poisson—Charlier polyno-
mials {m,(x)}n>0, T (x) = IL,(x)/+/Cn, is an orthonormal system, which is a basis
since it satisfies (17).

Example 3. In this example we describe the Rademacher and Haar systems, which
are of interest in function theory as well as in probability theory.

Let Q = [0,1], # = #([0,1]), and let P be Lebesgue measure. As we men-
tioned in Sect. 1, every x € [0, 1] has a unique binary expansion

X1 X2
X=—+=

2 22+...7

where x; = 0 or 1. (To ensure uniqueness of the expansion, we agree to consider only
expansions containing an infinite number of zeros. Thus out of the two expansions

1—1+0+0+ —0+1+1+
2 2 922 923 T2 92 ' 93

we choose the first one.)
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&), £2(),

1

1+ l—h- 1+ —

0 1 1 0 1 % 31

Fig. 30 Bernoulli variables

We define random variables &; (x), £2(x), ... by putting

&n(x) = x,.

Then for any numbers a;, equal to 0 or 1,

P{x:é-l:ala'--agn=an}

a  az an a 2 a, 1
{x2+22+ tor X< St +2n+2n}
o - I T N |
B e ST on T on | [ T on
It follows immediately that &1, &o, ... form a sequence of independent Bernoulli

random variables (Fig. 30 shows the construction of &§; = &;(x) and &, = &> (x)).
If we now set R,(x) = 1 — 2&,(x), n > 1, it is easily verified that {R,} (the
Rademacher functions, Fig. 31) are orthonormal:

1
ER.R, = J Ry(X)Ry(x) dx = Sy
0

Ri(x) Ry,
l4+—= == ™
I Lo
| | | |
| | I |
| | 1 |
I [
I ! TRRTRNE
X s 13 X
0 ;_% % > 0 r4 I2 '4
I | H I I }
L .
1 | I i i I
I I [ T
| I 1 | | i
I I I I | :
g I 1 i | [

Fig. 31 Rademacher functions
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Notice that (1, R,) = ER, = 0. It follows that this system is not complete.

However, the Rademacher system can be used to construct the Haar system,
which also has a simple structure and is both orthonormal and complete.

Againlet Q = [0,1) and .# = %([0,1)). Put

H,(x) = VPR; 11 (x) el <x< & n=2+k1<k<?,j>1,
’ 0, otherwise.

It is easy to see that H,(x),n > 3, can also be written in the form

2m/2’ 0<x< 27(WH~1)’

Honyy(x) = =272, 2=(mth) <x <27 m ;=12 ...,
0, otherwise,
J—1 . m
Honij(x) = Hongy | x — TR j=1...,2" m=1,2,...

Figure 32 shows graphs of the first eight functions, to give an idea of the structure
of the Haar functions.

It is easy to see that the Haar system is orthonormal. Moreover, it is complete
bothin L' andin L2, i.e., if f = f(x) € L? for p = 1 or 2, then

[REEE TS

0 k=1

P
dx — 0, n— oo.

The system also has the property that
Z(fv Hk)Hk()C) _)f(x)v n— oo,
k=1

with probability 1 (with respect to Lebesgue measure).

In Sect. 4, Chap. 7, Vol. 2 we shall prove these facts by deriving them from gen-
eral theorems on the convergence of martingales. This will, in particular, provide a
good illustration of the application of martingale methods to the theory of functions.

6. If 7)1, .., my is a finite orthonormal system then, as was shown above, for every
random variable & € L? there is a random variable ¢ in the linear manifold . =
ZL{n,...,nn}, namely the projection of £ on .Z, such that

I€ — €| = inf{€ = ¢[: ¢ € Ln1,. .. ma}}-
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Hl.(x)‘ Hz(x)“ H:(-’f)“ H‘(x)n
1 '—‘-: 1 | 2121 212 T
i : : [
1 1 | [
i I 1 I |
1 1 | [
: i : .
e 0 : 0f— 0 fdics
O—+—+—+—+> O——F+—+—F> — e
NN 2 U A B 2 B E Rk 3 S
. - .
i ! P! -
1 i | |
i ! o .
-1 -1+ L e w2 L _— L Lo
Hi(x), Hq(x), Hi (), Hy(),
24> 24— 2 ™ 24 ™
i ' i il
1 [ 1 11
H I 13 11
1 [ 11 1
i I I [
| 1 1 11
i I 1 (B ]
| | I 1
| 11 11 1]
0 > 0—4—{-—1—!—»—: (}-—-1-4——}—1—»—: 0———-¢—+—-H—|—;;
IBEREREUER P4 RN
i D P P
11 11 11 1
[ 11 11 1
P 11 [ 1
1 I [ 1
1 I [ )
i 1 [ Il
—24 Wl —24 N -2 ! —2 !

Fig. 32 The Haar functions Hy (x), ..., Hsg(x)

Here é = >, (& m)n;. This result has a natural generalization to the case when
11,72, ... is a countable orthonormal system (not necessarily a basis). In fact, we
have the following result.

Theorem. Let 11,12, ... be an orthonormal system of random variables, and £ =
ZL{m,n2, ...} the closed linear manifold spanned by the system. Then there is a
unique element & € £ such that

|€ = €Il = inf{Jl¢ — ¢|: ¢ € Z}. (20)
Moreover,

€ =Lim. ) (& m)m 2D
i=1

and &€ — €1 ¢, (e 2.

PROOF. Letd = inf{||¢ — ¢||: ¢ € £} and choose a sequence (1, Ca, . .. such that
[€ — || — d. Let us show that this sequence is fundamental. A simple calculation
shows that
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2

16 = Gull* = 201G — &% + 2Gn — €J° — 4

Gn + Cm
T_f

It is clear that ({, + (,)/2 € Z; consequently [[(¢, + Cn)/2] — €||* > d? and
therefore ¢, — (ul|? — 0, n,m — .

The space L? is complete (Theorem 7, Sect. 10). Hence there is an element é
such that ¢, — £| — 0. But .Z is closed, so & € .Z. Moreover, ||¢, — £| — d, and
consequently € — £| = d, which establishes the existence of the required element.

Let us show that ¢ is the only element of -Z with the required property. Let £ € £
and let

l€ =€) =€ — €] = d.
Then (by Problem 3)
|€ + € — 26)% + € — &> = 2]|€ — €J* + 2|€ — €] = 4d*.
But o o
1€+ € —2¢)* =43 (£+ &) — €] > 4d>.

Consequently |€ — £|2 = 0. This establishes the uniqueness of the element of -Z
that is closest to &. . o
Now let us show that £ — € L ¢, ( € Z. By (20)

€ —&—c¢ > €€

for every ¢ € R. But

€ — € = c¢))® = € — &1 + 2[¢]? — 2(€ - €, <C).

Therefore

Al¢l? > 2(¢ = £, eC). (22)
Take ¢ = A\(€ — €, (), A € R. Then we find from (22) that

(€ =& O [N[¢I? — 20] > o.

We have A\?||¢]|?> — 2\ < 0if ) is a sufficiently small positive number. Consequently
(£_€7<) =0, CEX

It remains only to prove (21).

The set .Z = Z{n1,n2,...} is a closed subspace of L? and therefore a Hilbert
space (with the same scalar product). Now the system 7,72, ... is a basis for .Z
and consequently

€ =1im. Y (€ m)me (23)
k=1

But £ — & L i, k > 1, and therefore (€,7) = (£,m), k > 0. This, with (23)
establishes (21).

This completes the proof of the theorem.

O
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Remark. As in the finite-dimensional case, we say that f is the projection of £ on
£ = L{m,na,...}, that £ — ¢ is perpendicular to . and that the representation

E=E+(E-9)

is the orthogonal decomposition of £.

We also denote & by E(& | 1,72, ...) (cf. E(€ |1, ..., 7,) in Subsection 3) and
call it the conditional expectation in the wide sense (of & with respect to 71,72, . . .).
From the point of view of estimating & in terms of 71,72, . . ., the variable f is the
best linear estimator, with error

A=EE—EP=E=&7 = €1” = DI )l
i=1

which follows from (5) and (23).

7. PROBLEMS

1. Show that if £ = Li.m. &, then ||€,| — |£]|-
2. Show that if £ = Li.m. ¢, and = Li.m.n, then (&,,n,) — (&, 7).
3. Show that the norm || - | has the parallelogram property

1€ +nl* + 1€ —nl* = 2(I€1* + Inl*)-

4. Let (&,...,&) be a family of orthogonal random variables. Show that they
have the Pythagorean property,

n 2 n
D&l =Dl lEl”
i=1 i=1

5. Let&y, &9, . .. be asequence of orthogonal random variables, S, = &1+ - -+&,,.
Show that if 3~ | E£2 < oo then there is a random variable S with E $? < oo
such that Lim. S, = S,i.e. S, — S| = E|S, — S| - 0,n — o0.

6. Show that the Rademacher functions R, can be defined as

R,(x) = sign (sin 2"mx), 0<x<1,n=12,...
7. Prove that, for ¥ < .7,
Il > IE€|9)| for& e L*(F),

where the equality holds if and only if £ = E(£|¥) a.s.
8. Prove thatif £,m e L?(F),E(¢|n) =n,and E(n] &) = &, then £ = na.s.
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9. Suppose we are given three sequences ({4,1(1)), (%(2)) and (54,,(3)) of o-
subalgebras of .#, and let £ be a bounded random variable. Suppose we know
that

gn(l) c gn@) c gn(f” for each n,
E¢lg™) By E€19®) B

Prove that E(¢ | %(2)) LN 7.

12 Characteristic Functions

1. The method of characteristic functions is one of the main tools of the analytic
theory of probability. This will appear very clearly in Chapter 3 in the proofs of
limit theorems and, in particular, in the proof of the central limit theorem, which
generalizes the de Moivre—Laplace theorem. In the present section we merely define
characteristic functions and present their basic properties.

First we make some general remarks.

Besides random variables which take real values, the theory of characteris-
tic functions requires random variables taking complex values (see Subsection 1
of Sect. 5).

Many definitions and properties involving random variables can easily be carried
over to the complex case. For example, the expectation E { of a complex random
variable ¢ = £ + in will exist if the expectations E ¢ and E 7 exist. In this case we
define E¢ = E€¢ + i En. It is easy to deduce from the Definition 6 (Sect. 5) of the
independence of random elements that the complex random variables (; = &1 + in;
and (5 = & + iny are independent if and only if the pairs (£1,71) and (€2, 12) are
independent; or, equivalently, the o-algebras %, ,,, and ., ,, are independent.

Besides the space L? of real random variables with finite second moment, we
shall consider the Hilbert space of complex random variables { = & + in with
E|¢|? < oo, where [¢]? = £2 + n? and the scalar product (1, (2) is defined by
E (1o, where (s is the complex conjugate of ¢. The term “ random variable” will
now be used for both real and complex random variables, with a comment (when
necessary) on which is intended.

Let us introduce some notation.

When a vector @ € R" is involved in algebraic operations, we consider it to be a
column vector,

a
a= )
An
and a* to be a row vector, a* = (al7 ...,ay). If a and b € R", their scalar product

a*
(a,b)is X,|_; a;b;. Clearly (a,b) =
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If a € R" and R = |ry is an n by n matrix,

(Ra,a) = a*Ra = Z rija;d;. (1)
ij=1
2. Definition 1. Let F = F(x) be an n-dimensional distribution function in
(R", B(R")), x = (x1,...,x,)*. Its characteristic function is
o(1) =f ¢dF(x), teR". (2)

Definition 2. If £ = (&;,...,&,)* is a random vector defined on the probability
space (€2, .#, P) with values in R", its characteristic function is

@ (t) =J ¢ dFe(x), teR", (3)

where F¢ = Fe(x) is the distribution function of the vector { = (&1,...,&,)%,
x=(x1,...,%,)%.

If F(x) has a density f = f(x) then

o) = [ reo

In other words, in this case the characteristic function is just the Fourier transform
of f(x).

It follows from (3) and Theorem 7 of Sect. 6 (on change of variable in a Lebesgue
integral) that the characteristic function ¢ () of a random vector can also be defined
by

pe(t) =Ee ") reR" 4)

We now present some basic properties of characteristic functions, stated and
proved for n = 1. Further important results for the general case will be given as
problems.

Let { = ¢{(w) be arandom variable, F¢ = F¢(x) its distribution function, and

@e(t) = Ee®

its characteristic function.
We see at once that if 7 = a& + b then

©n (l) _ Eeitn _ Eeit(a£+b) _ eitb Eeiaté'

Therefore _
(1) = e ar). (5)
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Moreover, if &1, &9, . . ., &, are independent random variables and S, = &+ - -+
&,, then
s, () = [ [ e (0. 6)
j=1
In fact,

ps, = Eeit(§1+"'+5n) — Eeitgl - eilgu
n
S B Ee = [ e ),
j=1

where we have used the property that the expectation of a product of independent
(bounded) random variables (either real or complex; see Theorem 6 of Sect. 6, and
Problem 1) is equal to the product of their expectations.

Property (6) is the key to the proofs of limit theorems for sums of independent
random variables by the method of characteristic functions (see Sect. 3, Chap. 3). In
this connection we note that the distribution function Fj, is expressed in terms of the
distribution functions of the individual terms in a rather complicated way, namely
Fs, = F¢, % --- % F¢,, where * denotes convolution (see Subsection 4 of Sect. 8).

Here are some examples of characteristic functions.

Example 1. The characteristic function of a Bernoulli random variable £ with
P=1)=p,P((=0)=g,p+qg=11>p>0,is

we(t) = pe' +q.
If &y, ..., &, are independent identically distributed random variables like &, then,
writing T,, = (S, — np)//npq, we have
or, (l‘) _ EeiT,,t _ efit«/np/q[peit/\/rﬁ + q]n
= [pe"V e/ w) 4 ge=itv/p/ma)]n, 7
Notice that it follows that as n — o0

_2 Sn_np
or,(t) > e 2 T, = . (8)
(1) /Pq

Example 2. Let £ ~ A (m, 0?), |m| < 00, 0 > 0. Let us show that

(Pg(t) _ eirm—1202/2. (9)
Letn = (£ —m)/o. Thenn ~ .4#7(0,1) and, since

itm

pe(t) = ¢™py(a1)

by (5), it is enough to show that
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on(t) = e 12, (10)
We have
@n(t) — Eei — 1 * itxefx2/2 dx
V2T J_ o
1 (* & (i) _e &

_ —x“/2 _ —Xx /2
- e dx = X'e dx

V2T f_oc ,;) n! ,;) n! \/2r J-
_ i (it)" (20— 1)1 = i (it)®" (2n)!

= (2n)! C & (2n)! 2l
_ i B W S

n=0 2 n! 7

where we have used the formula (see Problem 7 in Sect. 8)

o¢]
2n ,—x%/2 _ 2n _
x"e dx=En™" = (2n— 1)L
AV, 271— J_m

Example 3. Let £ be a Poisson random variable,

—A\k
P@:m:eHA,k:QL~~

Then

0

e}
Eeit£ _ 2 itk 6 Z

k=0

= exp{A(e" — 1)}. 1)

3. As we observed in Subsection 1 of Sect.9, with every distribution function in
(R, #(R)) we can associate a random variable of which it is the distribution func-
tion. Hence in discussing the properties of characteristic functions (in the sense ei-
ther of Definition 1 or Definition 2), we may consider only characteristic functions
(1) = e (1) of random variables £ = &(w).

Theorem 1. Let £ be a random variable with distribution function F = F(x) and
() =Ee™

its characteristic function. Then o has the following properties:

(1) lp(0)] < p(0) =1

(2) ©(¢) is uniformly continuous for t € R;

(3) @(t) = p(—1);

(4) ©(1) is real-valued if and only if F is symmetric (§,dF(x) = § ,dF(x)), B €
A(R), —B = {—x: x € B};

(5) if E|€|" < oo for some n > 1, then ") () exists for every r < n, and
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P (1) = f (ix)"e"™ dF (x), (12)
R
(r)
Ee = 7 .,(0)7 (13)
Z ’) eal0), (14)
where |e,(1)| < 3E|E|" and &, (t) — 0, t — 0;
(6) if '®"(0) exists and is finite then E £* < oo;
M if E|€|" < wforalln > 1 and
n\1/n
limsupm = 1 < 0,
n n T
then ”
_ Z (lt) Ef" (15)
n=0 nl
Sorall |t] < T.

PROOF. Properties (1) and (3) are evident. Property (2) follows from the inequality
(1 +h) = p(0)] = [E€™(e™ —1)] < E[e" —1]

and the dominated convergence theorem, according to which E |¢* — 1| — 0 as
h— 0.

Property (4). Let F be symmetric. Then if g(x) is a bounded odd Borel function,
we have , g(x) dF(x) = 0 (observe that for simple odd functions this follows di-
rectly from the definition of the symmetry of F). Consequently SR sintxdF(x) =0
and therefore

o(t) = Ecostt.
Conversely, let @¢ (1) be a real function. Then by property (3)

pe(t) = pe(—1) = pe(t) = @e(t), 1€R.

Hence (as will be shown below in Theorem 2) the distribution functions F_; and
F¢ of the random variables —¢ and £ are the same, and therefore (by Theorem 1 of
Sect. 3)

P(eB) =P(—{eB)=P({ec-B)

for every B € A(R).
Property (5). If E |¢|" < oo, we have E |§|" < oo for r < n, by Lyapunov’s
inequality (28) (Sect. 6).
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Consider the difference quotient
et h) = o) b (€ 1)
h h

Since )
e —1

h <

%m,

and E |£] < oo, it follows from the dominated convergence theorem that the limit

) ih§ 1
1@&%()
h—0 h

exists and equals

. et —1 i z
E e lim ( ) =iE(¢™) =i f xe™ dF (x). (16)
h—0 h —o0
Hence ¢’ (¢) exists and
. © :
o(t) = i(E&e™) = iJ xe'™ dF (x).
—

The existence of the derivatives go(’)(t)7 1 < r < n, and the validity of (12),
follow by induction.

Formula (13) follows immediately from (12). Let us now establish (14).

Since

l’l

e” = cosy + isiny [cos 01y + isin fqy]

for real y, with |61 < 1 and |02| < 1, we have

ltf 2

g)n [cos 01 (w)t€ + isin O3 (w)i€] 17

and

n!

Eei't = 2 (T (.t?n [E€" +£,(1)], (18)
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where
eq(t) = E[€"(cos 01 (w)i€ + isin by (w)t& — 1)].

It is clear that |, (7)| < 3 E |£"|. The theorem on dominated convergence shows that
eq(t) = 0,1 — 0.

Property (6). We give a proof by induction. Suppose first that ”(0) exists and
is finite. Let us show that in that case E €2 < oo. By L’Hopital’s rule and Fatou’s
lemma,

1 [¢'(2h) —¢'(0) | ¢'(0) — ¢'(=2h)
Vi — 1 -
#'(0) = lim 5 [ 2h * 2h
L 20(2h) —2(=2h) 1
= lim - = Jim 5 [p(2h) — 20(0) + p(~20)
. D gihx _ p—ihx 2
_H5@<2h>ﬂW)
e 0] 0
[ (Y < [ (300 ar
h—0 J_ X —oph—0 \ hx
0
=—J x* dF (x)
—o0

Therefore,
o0
J x* dF(x) < —¢"(0) < o0.
—o0

k . - +o0 ok o ok _
Now lg,ot +2)(0) exist, finite, and let § " x* dF (x) < oo. If S.goo x* dF(x) = 0,
2%+2 %
then {~_ x**2dF(x) = 0 also. Hence we may suppose that {~  x**dF(x) > 0.
Then, by Property (5),

L,D(Qk) (l‘) _ f_ (ix)leitx dF()C)

and therefore, .
(0800 = [ e aci)

—00

where G(x) = §* _ w?* dF(u).
Consequently the function (—1)¥¢(2¥) (£)G~1(o0) is the characteristic function

of the probability distribution G(x) - G~*(c0) and by what we have proved,

o0
Gil(oo)f x? dG(x) < 0.
-0
But G~!(o0) > 0, and therefore

o¢] o8]
J ¥ 2 dF(x) = J x*dG(x) < 0.
—w

—00
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Property (7). Let 0 < #9 < T. Then, by Stirling’s formula (6) (Sect. 2 of Chap. 1)
we find that

E |l 1/n 1 E |¢| 1/n
limsup& < — = limsupM <
n o n

1
E |¢|n 1/n
= lim sup <|£10> < 1.
n!

Consequently the series > [E |£|"#/n!] converges by Cauchy’s test, and therefore
the series Y.~ [ (it)"/r!] E£" converges for |t| < to. But by (14), forn > 1,

" i)
o(t) = ; o E&™+Ra(1),
where |R, ()] < 3(|#|"/n!) E |£|". Therefore

AV

o) = 3 1
r=0 :

r

E¢r

for all |¢| < T. This completes the proof of the theorem.
O

Remark 1. By a method similar to that used for (14), we can establish that if
E|¢|" < oo for some n > 1, then

p(t) = i lk(tk;'s)k Jm xe dF (x) + M=o en(t—s), 19)

|
=0 n:

where |e,(t —s)| < 3E|¢"

,and g,(t —s) > Oast—s — 0.

Remark 2. With reference to the condition that appears in Property (7), see also
Subsection 9, below, on the “uniqueness of the solution of the moment problem.”

4. The following theorem shows that the characteristic function is uniquely deter-
mined by the distribution function.

Jx)

v

|

|

|
- } .
0 4 a+e¢ b b+¢
Fig. 33
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Theorem 2 (Uniqueness). Let F and G be distribution functions with the same char-
acteristic function, i.e.

JOO ™ dF (x) = JOO ™ dG(x) (20)

forallt € R. Then F(x) = G(x).
PROOF. Choose a and b € R, and ¢ > 0, and consider the function f¢ = f°(x)
shown in Fig. 33. We show that

f f5(x) dF (x J £5(x) dG(x Q1)

Let n > 0 be large enough so that [a, b + €] < [—n, n], and let the sequence
{0,} be such that 1 > 4, | 0, n — oo. Like every continuous function on [—n, 1]
that has equal values at the endpoints, f© = f°(x) can be uniformly approximated
by trigonometric polynomials (the Weierstrass—Stone theorem, see [28]), i.e., there

is a finite sum
k
“( - 22
filx Zak exp (mxn> 22)

such that
sup |f*(x) —f; ()| < bn. (23)
—n<x<n
Let us extend the periodic function 7 (x) to all of R, and observe that

sup |fs (x)| < 2.

Then, since by (20) and (22)
J fo(x)dF(x J fr(x)dG(x

n n

=|| frar—| r° dG’

we have

U £e(x) dF (x J £5(x) dG(x

n n

SfrdF = g dG’ + 26,

IN

IA

0
J = dF — f f,fdG‘+25,,

+2F ([—n,n]) + 2G([—n,n]),
(24)
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where F(A) = {, dF(x), G(A) = {, dG(x). As n — oo, the right-hand side of (24)
tends to zero, and this establishes (21).

As e — 0, we have f°(x) — I (x). It follows from (21) by the dominated
convergence theorem that

J; ‘I(a,b] ()C) dF(x) = Jﬁ ‘I(a,b] (x) dG(x),

ie., F(b) — F(a) = G(b) — G(a). Since a and b are arbitrary, it follows that F(x) =
G(x) forallx € R.

This completes the proof of the theorem.

m]
5. The preceding theorem says that a distribution function F = F(x) is uniquely de-
termined by its characteristic function ¢ = ¢(t). The next theorem gives an explicit
representation of F in terms of ¢.

Theorem 3 (Inversion Formula). Let F = F(x) be a distribution function and

(t) = JOC ™ dF (x)

—00
its characteristic function.

(a) For any pair of points a and b (a < b) at which F = F(x) is continuous,
1 C —ita __ ,—ith
F(b) — F(a) = lim — J %gp(t) dt. (25)
e i

®) I §” » le(t)| dt < oo, the distribution function F(x) has a density f(x),

F(x) = Jxoof (v) dy (26)
and .
flx) = % f_w e () dr. ()
PROOF. We first observe that if F(x) has density f(x) then
p(r) = f@o " f (x) dx, (28)

and (27) is just the Fourier transform of the (integrable) function ¢(¢). Integrating
both sides of (27) and applying Fubini’s theorem, we obtain
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b 1 b o] )
F(b) — F(a) = J flx)dx = o [J e "o() dt] dx

a a —0o0
1 0 b )

= o(t J e ™dx| dt
o) (t) )
1 0 e—ita _ e—itb

) @(t)iit dt.

After these remarks, which to some extent clarify (25), we turn to the proof.
(a) We have

1 C e*ita o efitb

o, = — — () dt
xS e AU
1 C —ita __ ,—ith 0
N [ f ™ dF(x)] dt
2m J_. it —o0
1 Q0 ¢ L—ita _ ,—ith
- - [ f € T dt] dF (x)
27 —0 —c it
0
= J U.(x) dF(x), 29)
-
where we have put
1 C e—ita _ pith
\IJC - D 1 = 4 dt
O =or) T ¢

and applied Fubini’s theorem, which is applicable in this case because

b
J\ e*ltxdx
a

e~ ita _ e*ltb e~ ita _ e*ttb

<b-—a

and

In addition,

1 (© sint(x —a) —sint(x — b)

\ch(.x) = % " dt
1 <=4 giny — 1 <0 giny (30)
a 2 —c(x—a) v 2 —c(x—b) u

The function

f .
o(s,1) :J sinv
s v
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is uniformly continuous in s and ¢, and
gls,t) > 7 31

ass | —ooand ¢ 1 oo (see [35], 3.721 or “Dirichlet integral” in Wikipedia). Hence
there is a constant C such that |V, (x)| < C < oo for all ¢ and x. Moreover, it follows
from (30) and (31) that
U (x) > U(x), c¢— o0,

where

0, x<a,x>bh,

U(x) = %, x=a,x=b,
1, a<x<b.

Let i be the measure on (R, %Z(R)) such that u(a,b] = F(b) — F(a). Recall
that by assumption a and b are continuity points of F(x), hence F(a—) = F(a),
F(b—) = F(b) and p(a) = pu(b) = 0. Then if we apply the dominated convergence
theorem and use the formulas of Problem 1 of Sect. 3, we find that, as ¢ — 0,

B, — f Z U, (x) dF(x) — f; W (x) dF (x)

= jula,b) + bufa} + Lufb} = F(b) - F(a).

Hence (25) is established.
(b) Let §_[io(t)| dt < oo. Write

10 =5 [ emeta

:%_OC

It follows from the dominated convergence theorem that this is a continuous function
of x and therefore is integrable on [a, b]. Consequently we find, applying Fubini’s
theorem again, that

Lbf(x) dx = Lb % <f0000 e (1) dt) dx

Il
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L8]
8
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for all points a and b of continuity of F(x).
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Hence it follows that
F(x) = J f(y)dy, xeR,
—00

and since f(x) is continuous and F(x) is nondecreasing, f(x) is the density of F(x).
This completes the proof of the theorem.
o

Remark. The inversion formula (25) provides a second proof of Theorem 2.

Theorem 4. A necessary and sufficient condition for the components of the random
vector & = (&1,...,&,)* to be independent is that its characteristic function is the
product of the characteristic functions of the components:

n
Eelhéit—+nt) — H Ee™  (t1,...,1,)* e R".
k=1

PROOF. The necessity follows from Problem 1. To prove the sufficiency we let
F(x1,...,x,) be the distribution function of the vector § = (&1,...,&,)* and
Fi(x), the distribution functions of the &, 1 < k < n. Put G = G(x1,...,x,) =
F1(x1) - - Fyu(xy). Then, by Fubini’s theorem, for all (#1,...,%,)* € R"

n
J ei(tlh+ ) dG(xlv te axn) = H J g”“)‘k dFk(xk)
" k=1YR
n
_ 1_[ E ¢é = E &t +0&)
k=1

_ J‘ ei(l1xl+"‘+l"x") dF(_xl7 - ,xn).

Therefore by Theorem 2 (or rather, by its multidimensional analog; see Problem 3)
we have F = G, and consequently, by the theorem of Sect. 5, the random variables
&, ..., &, are independent.
O

6. Theorem 1 gives us necessary conditions for a function to be a characteristic func-
tion. Hence if ¢ = () fails to satisfy, for example, one of the first three conclusions
of the theorem, that function cannot be a characteristic function. We quote without
proof some results in the same direction.

Bochner—Khinchin Theorem. Let o(t) be continuous, t € R, with ©(0) = 1.
A necessary and sufficient condition that p(t) is a characteristic function is that it is
positive semi-definite, i.e., that for all real t1, . . . , t, and all complex A1, ..., Ay, n =
1,2,...,

D o(t — )N > 0. (32)

ij=1
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The necessity of (32) is evident since if (¢ S e™ dF(x) then

Z ot — tj))\i;\j = JOO i )\keith

ij=1 0 k=1

2
dF(x) >0

The proof of the sufficiency of (32) is more difficult. (See [31], XIX.2.)

Polya’s Theorem. Let a continuous even function ¢(t) satisfy ©(t) > 0, p(0) =
1, ¢(t) = 0 ast — oo and let () be convex on (—,0). (Hence also on (0, 0).)
Then (t) is a characteristic function ([31], XV.2).

This theorem provides a very convenient method of constructing characteristic
functions. Examples are

=l
9

p1(f) = e

1_|t|7 |t| < 17
1) =
2(t) {o, | > 1.

Another is the function (3(¢) drawn in Fig. 34. On [—a, a], the function 3 ()
coincides with 4 (f). However, the corresponding distribution functions F and F’s
are evidently different. This example shows that in general two characteristic func-
tions can be the same on a finite interval without their distribution functions being
the same.

%[f)‘

Fig. 34

Marcinkiewicz’s Theorem. [f a characteristic function has the form exp Z(t),
where P (t) is a polynomial, then this polynomial is of degree at most two ([65],
7.3).

It follows, for example, that e™" is not a characteristic function.

7. The following theorem shows that a property of the characteristic function of a
random variable can lead to a nontrivial conclusion about the nature of the random
variable.
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Theorem 5. Let ¢ (1) be the characteristic function of the random variable .

(@) If |pe(to)| = 1 for some tg # 0, then £ is a lattice random variable concentrated
at the points a + nh, h = 27 /|ty|, that is,

> Pl =a+nhy =1, (33)

n=—a0

where a is a constant.

(b) If |pe (t)| = |pe(at)| = 1 for two different points t and at, where « is irrational,
then £ is degenerate, that is P{{ = a} = 1, where a is some number.

(©) If |pe (t)| = 1, then € is degenerate.

PROOF. (a) If |p¢(to)| = 1, tp # O, there is a number a such that ¢(f9) = €%
Then

, © o
fifoa — J pifox dF(x) - 1= J pito(x—a) dF(x) =

—0o0 —0

Q0 0

1 :f costo(x—a)dF(x):>J [1—costy(x —a)]dF(x) = 0.
—00 —0o0

Since 1 — costo(x — a) > 0, it follows from property H (Subsection 2 of Sect. 6)

that
1=costy(§ —a) (P-a.s.),

which is equivalent to (33).
(b) It follows from |p¢(#)| = |pe(at)| = 1 and from (33) that

i P{ —a—i—n}: Z P{ —b+tm}=1.

n=-—0o0 m=—ao0
If £ is not degenerate, there must be at least two common points:

21 2 2 21
a+ —ny=b+ —my, +*I’l2—b+*ﬂ12,
t ot ot

in the sets

2 2
{aJrZrn,n:O,il,...} and {b+7;m,m=0,i1,--~},
e

whence 5 5
Y8 ™
7("1 —ng) = a(ml —my),

and this contradicts the assumption that « is irrational. Conclusion (c) follows
from (b).

This completes the proof of the theorem.

O
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8. Leté = (&,...,&)™ be arandom vector and
gﬁg(l‘) :Eei(t’g), t= (t17~-~7tk)*7

its characteristic function. Let us suppose that E |§;|" < oo for some n > 1,i =

1, ..., k. From Holder’s and Lyapunov’s inequalities (Sect. 6, (29), and (27) respec-
tively) it follows that the (mixed) moments E(&;" - - - £*) exist for all nonnegative
Vi,..., suchthatvy + -+ + vy < n.

As in Theorem 1, this implies the existence and continuity of the partial deriva-

tives
ovitetuk

W‘Pf(tla-nafk)
..o

for v1 4+ -+ + 1 < n. Then if we expand ¢ (1, ..., #) in a Taylor series, we see
that
_ iv1+m+yk (V17~~~,Vk) V1 Vi n
ety ) = D, ' g 2t to(ll), (34
L 78|
vi+-4u<n

where || = [t1| + - + |t| and

mé”hn-,l/k) — E£1V1 . ka
is the mixed moment of order* v = (v1, ..., ).
Now @¢(t1, ..., ) is continuous, ¢¢ (0, ...,0) = 1, and consequently this func-

tion is different from zero in some neighborhood |¢| < ¢ of zero. In this neighbor-
hood the partial derivative

au1+~--+w
—— o f,...,1
aﬁl . at;:k g(pf( 1 k)

exists and is continuous, where log z denotes the principal value of the logarithm (if
z = re'?, we take log z to be log r + if). Hence we can expand log e(ti, ... 1) by
Taylor’s formula,

ittt

(V15ees0k)

—_— S
Vl!"'l/k! ¢

log pe(tr,... . 1) = Z

vit+F+<n

it +o(lr"),  (35)

where the coefficients s are the (mixed) semi-invariants or cumulants of

order v = (vq,...,1x) of € = (&1,..., &)™

* We write the integer-valued vector v row-wise, since it is not subject to algebraic operations.
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Observe that if £ and 7 are independent, then

log ¢e1n(t) = log e (t) + log v, (1), (36)
and therefore
Sél;l;] Ve) _ Sém,u.,l/k) + Sg;jl""’yk). (37)

(It is this property that gives rise to the term “semi-invariant” for sé”l o)y

To simplify the formulas and make (34) and (35) look “one-dimensional,” we
introduce the following notation.
If v = (v1,...,14) is a vector whose components are nonnegative integers, we
put
vi=uv!lul, W=+, =1k
We also put sé") = sg’l """ W ) = méyl """ “),
Then (34) and (35) can be written

14

l v) v n
pet) = 3, —rm 1+ o(li]), (38)
lv|<n "
vl
log e (1) = 2 st + o). (39)
|v|<n V!

The following theorem and its corollaries give formulas that connect moments
and semi-invariants.

Theorem 6. Let § = (&1,...,&)* be a random vector with E |§|" < o0, i =
.k, n>1.Then forv = (11, ..., v) such that |[v| < n
m(y) _ Z 1 1—[ ()\(P)) (40)
3 ql ,\(1)| )
AM 4o A @ =p
(v) _ (71)‘171 V! ()\(n))
¢ = > 7 A A@] ng ) (41)
AW 4 2@ =p p=1

where Y\ ..., @~ indicates summation over all ordered sets of nonnegative
integral vectors \P) | |\P)| > 0, whose sum is v.

PROOF. Since
pe (1) = exp(log @e (1)),
if we expand the function exp by Taylor’s formula and use (39), we obtain
N !
1 iMoo n
D Ysg A+ o). (42)

pe(r) =1+ i
=1 \1<N<n
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Comparing terms in #* on the right-hand sides of (38) and (42), and using |)\(1)| +
. ‘)\(4)| = ‘)\(1) + o+ 2@

Moreover,
Z‘M ()\) A n
logpe(t) =log |1+ ] e+ ol (43)
1< < 7
For small z we have the expansion
log(1+z Z zq + o(z%).

Using this in (43) and then comparing the coefficients of #* with the corresponding
coefficients on the right-hand side of (38), we obtain (41).
O

Corollary 1. The following formulas connect moments and semi-invariants:

(v) 1 V! = AD)qr
mt) = s i 44)
3 Z lovopm (XM .. (X)IK\H[E ]7 (
AW e AG ) ril-on (AN (AW i1
1) (g = 1) | il
w) _ 3 (=1D)* (¢ —1)! v! [
s = m 45)
13 1o M1 .o (NE 3 ’
AW+ AG v} rileeor! (AN (A1) i1

where (A ot rA® Z 1} denotes summation over all unordered sets of different

nonnegative integral vectors \V), |)\(7)| > 0, and over all ordered sets of positive
integral numbers r; such that ry AL 4 A0 =,

To establish (44) we suppose that among all the vectors AD @ that occur
in (40), there are r; equal to A ... r equal to AW (5 > 0,
r1+ -+ 1. = q), where all the \(%) are different. There are ¢!/(ry!...,r!) dif-
ferent sets of vectors, corresponding (except for order) with the set {)\(1), o A@ }.
But if two sets, say, {\(1), ..., A@} and {AX(V), ... \@} differ only in order, then

RO B = N OX 2 . . . . .
Hp:1 S¢ = Hp:1 s¢ . Hence if we identify sets that differ only in order, we
obtain (44) from (40).

Formula (45) can be deduced from (41) in a similar way.

Corollary 2. Let us consider the special case when v = (1,...,1). In this case

the moments myg V) — = E& - &, and the corresponding semi-invariants are called
simple.

Formulas connecting simple moments and simple semi-invariants can be read
off from the formulas given above. However, it is useful to have them written in a
different way.

For this purpose, we introduce the following notation.



12 Characteristic Functions 349

Let £ = (&1,...,&)* be a vector, and Iz = {1,2,...,k} its set of indices. If
I < I, let & denote the vector consisting of the components of & whose indices
belong to I. Let x (/) be the vector {x1,...,xx} for which x; = 1ifi € I, and
Xi = 0if i ¢ I. These vectors are in one-to-one correspondence with the sets I < I¢.
Hence we can write

In other words, me¢ (1) and s¢(I) are simple moments and semi-invariants of the
subvector &; of &.

In accordance with the definition given in Subsection 3 of Sect. 1, Chap. 1, a
decomposition of a set I is an unordered collection of disjoint nonempty sets I, such
that},, 1, = I.

In terms of these definitions, we have the formulas

me(l) = > [ ]se), (46)

=1 p=1
q
se) = Y, (=1 g =D [me(n), (47)
=1 p=1

where 22271 1,1 denotes summation over all decompositions of I, 1 < g < N (),
with N(I) being the number of elements of the set I.

We shall derive (46) from (44). If v = x(I) and \() - - . 4+ \@ =y, then A(") =
X(Ip), I, < I, where the A®) are all different, AP =l = 1, and every unordered
set {x(1),...,x(Iy)} is in one-to-one correspondence with the decomposition / =
Zﬁzl I,. Consequently (46) follows from (44).

In a similar way, (47) follows from (45).

Example 4. Let £ be a random variable (k = 1) and m,, = mé") =E¢, s, = sg‘).

Then (40) and (41) imply the following formulas:

mp = S1,
mo = S + s%,
ms = S3 + 3S1S2 + S%, (48)

my =S4 + 3s% + 45153 + GS%SQ + s‘f,

and
sp =my = E,
So = Mo —m% = Var¢,
§3 = m3 — 3mims + 2m§7 49)

Sq4 = My — 3m% —dmims + 12m%m2 — 6m‘11,
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Example 5. Let £ ~ 4 (m, 0?). Since, by (9),

log e (1) = itm — ——,

we have s1 = m, so = o? by (39), and all the semi-invariants, from the third on, are
zero: s, = 0, n > 3.

We may observe that by Marcinkiewicz’s theorem a function exp Z(r), where
& is a polynomial, can be a characteristic function only when the degree of that
polynomial is at most 2. It follows, in particular, that the Gaussian distribution is
the only distribution with the property that all its semi-invariants s, are zero from a
certain index onward.

Example 6. If £ is a Poisson random variable with parameter A > 0, then by (11)

log @e(t) = A(e" — 1).

It follows that
Sp=A (50)

foralln > 1.

Example 7. Let £ = (£1,...,&,)* be a random vector. Then

me(1) = s¢(1),
me(1,2) = 5¢(1,2) + se(1)5¢(2)
me(1,2,3) = s5¢(1,2,3) + se(1,2)5¢(3) + 5¢(1,3)5¢(2) (51
+5e(2,3)5e(1) + se(Dse(2)se(3),

These formulas show that the simple moments can be expressed in terms of the
simple semi-invariants in a very symmetric way. If we put §; = &, = -+ - = &, we
then, of course, obtain (48).

The group-theoretical origin of the coefficients in (48) becomes clear from (51).
It also follows from (51) that

Sg(l, 2) = ng(l, 2) — mg(l)m5(2) = E§1§2 — Efl Efg7 (52)
i.e., s¢(1,2) is just the covariance of &; and &.

9. Let £ be a random variable with distribution function F = F(x) and characteristic
function ¢ (). Let us suppose that all the moments m, = E£", n > 1 exist.

It follows from Theorem 2 that a characteristic function uniquely determines a
probability distribution. Let us now ask the following question (uniqueness for the
moments problem): Do the moments {m, },>1 determine the probability distribu-
tion uniquely?
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More precisely, let F and G be distribution functions with the same moments, i.e.
o0 0
J X'dF(x) = J X" dG(x) (53)
—00 —o0

for all integers n > 0. The question is whether F and G must be the same.
In general, the answer is “no.” To see this, consider the distribution F with density

A
ke, x>0,
f('x) - {07 X S O,

where a > 0, 0 < A < %, and k is determined by the condition SSC f(x)dx = 1.
Write 5 = atan A and let g(x) = 0 for x < 0 and

g(x) = ke“”‘k[l +esin(BxY)], el <1, x> 0.

It is evident that g(x) > 0. Let us show that
© A
J X'e™ ™ sin fx* dx = 0 (54)
0

for all integers n > 0.
For p > 0 and complex ¢ with Reg > 0, we have (see [1], Chapter 6, formula

6.1.1) . I
J Pl dr = .
0 q°

Takep = (n+ 1)/A\, ¢ = a + iB3, t = x*. Then

0 Q0
J MO /N =1} = (atiB)x \ ) A=1 gy )\J e~ (atiB)x g
0 0

0 0
=\ J e cos BxNdx — i\ ‘[ X'e= sin Bx dx
0 0

D)

~ DAL £ jtan Ar) (DA (55

But

(1 + itan Am)"™HD/A = (cos A + isin M) "FD/A (cos M)~ D/A

_ eifr(nJrl)(COS )\Tr)f(nJrl)/)\

= cosm(n+ 1) - cos(Ar)~ /A

since sin(n + 1) = 0.

Hence the right-hand side of (55) is real and therefore (54) is valid for all inte-
gral n > 0. Now let G(x) be the distribution function with density g(x). It follows
from (54) that the distribution functions F and G have equal moments, i.e., (53)
holds for all integers n > 0.
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We now give some conditions that guarantee the uniqueness of the solution of
the moment problem.

Theorem 7. Let F = F(x) be a distribution function and (1, = S |x|"dF (x). If

1/n
lim sup “7 < o0, (56)

n—oo

the moments {my},>1, where m, = {* - X" dF (x), determine the distribution func-
tion F = F(x) uniquely.

PROOE. It follows from (56) and conclusion (7) of Theorem 1 that there isa tyg > 0
such that, for all |¢| < 7y, the characteristic function

o(t) = JOO ™ dF (x)

—0

can be represented in the form
S (i)
§ 0
and consequently the moments {m,, },>1 uniquely determine the characteristic func-

tion (¢) for |¢| < 1.
Take a point s with |s| < /2. Then, as in the proof of (15), we deduce from (56)

that ”
tf
=S (

k=0

for |t — 5| < t9, where
w .
e (s) = ikf xe™ dF (x)
-0

is uniquely determined by the moments {m,},>1. Consequently the moments de-
termine ¢(f) uniquely for |¢| < 21y. Continuing this process, we see that {n, },>1
determines (¢) uniquely for all 7, and therefore also determines F(x).

This completes the proof of the theorem.

|

Corollary 3. The moments uniquely determine the probability distribution if it is
concentrated on a finite interval.

Corollary 4. A sufficient condition for the moment problem to have a unique solu-

tion is that 12
lim sup (man) ™ (57)
n—0o0 2n
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For the proof it is enough to observe that the odd moments can be estimated in
terms of the even ones, and then use (56).

Example. Let F(x) be the normal distribution function,

F(x) = e 2" gy,

1
\V2mo?

Then mao, 41 = 0, ma, = [(2n)!/2"n!]0?", and it follows from (57) that these are the
moments only of the normal distribution.

Finally we state, without proof:
Carleman’s test for the uniqueness of the moments problem. ([31], VIL.3)

(a) Let {my},>1 be the moments of a probability distribution, and let

o8]
Z 1/2n =

Then they determine the probability distribution uniquely.
(b) If {my}u>1 are the moments of a distribution that is concentrated on [0, ),
then the solution will be unique if we require only that

0
Z 1/2n =

10. Let F = F(x) and G = G(x) be distribution functions with characteristic func-
tions f = f(¢) and g = g(r), respectively. The following theorem, which we give
without proof, makes it possible to estimate how close F' and G are to each other (in
the uniform metric) in terms of the closeness of f and g.

Theorem (Esseen’s Inequality). Let G(x) have derivative G’ (x) with sup |G’ (x)| <
C. Then for every T > 0

f(1) — ()
t

2 (T 24 ,
sup |[F(x) — G(x)| < = dt + 7 5UP |G (x)]. (58)
x u x

™ Jo

11. We present two tables of characteristic functions ¢(¢) of some frequently used
probability distributions (see Tables 2.2 and 2.3 of distributions and their parameters
in Subsection 1 of Sect. 3).

12. PROBLEMS

1. Let ¢ and 7 be independent random variables, f(x) = f1(x) + if2(x), g(x) =
g1(x) +iga(x), where fi (x) and g;(x) are Borel functions, k = 1, 2. Show that
if E|f(£)| < oo and E|g(n)| < oo, then

Elf(&)s(n)| < o
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Table 2.4
Discrete distributions |Characteristic functions
Discrete uniform %1‘;—;, (1 —ée™)
Bernoulli q + pe'
Binomial lq + pe']"
Poisson exp{\(e’ — 1)}
Geometric e
—
.
Negative binomial [%]
ge'
Table 2.5
DIStrlblglonig having a Characteristic functions
ensity
Uniform o _gita
on [a,b] it(b—a)
Normal, or Gaussian exp{itm - "22'2 }

VEL((n41)/2) _exp{—+/n}|1]

Gamma 1—iB)~
I(a+8) 4 (i)' (a+k)
Beta INEY) 120 KT (a+B+k) T(1+k)
Exponential ﬁ
Two-sided exponential %
Chi-square (1 — 2ir)="/?

1

S @)L 2yl

Student, or z-distribution I'(n/2) 22(m=1) (jn—1)! =
for integer m = %
Cauchy el
and
Ef(§sg(n) =Ef(&) - Egn).
2. Leté = (&1,...,&)* and E [[€]" < oo, where [|€]| = +4/>] €7. Show that

n ok
pelt) = X T EwE + =0l
k=0 """

where t = (t1,...,t,)* and g,(t) — 0, t — 0.
3. Prove Theorem 2 for n-dimensional distribution functions F = F,(x1, . ..
and G = G, (x1,...,%,).

7-xn)



12 Characteristic Functions 355

4.

10.

11.

12.

Let F = F(x1,...,x,) be an n-dimensional distribution function and ¢ =
o(t1, ..., t,) its characteristic function. Using the notation (12) of Sect. 3, es-
tablish the inversion formula

1 c c N e—itkak _ e—ifkhk
P bl = i _ - — (1, ..., 1) dty - - dty.
((l, ] 1m (27’(’)” J;c j—c 1]:[1 ilk @( b ’ ) !

c—00

(We are to suppose that (a, ] is an interval of continuity of P(a, b], i.e., for
k=1,...,nthe points ay, b are points of continuity of the marginal distribu-
tion functions F(x;) which are obtained from F(x1,...,x,) by taking all the
variables except x; equal to +00.)

Let ¢4 (), k > 1, be characteristic functions, and let the nonnegative numbers
i k > 1, satisfy > A\ = 1. Show that Y Ay (¢) is a characteristic function.

. If (2) is a characteristic function, are Re (#) and Im () characteristic func-

tions?

. Let 1,2 and @3 be characteristic functions, and @19 = @ip3. Does it

follow that o = 3?

Prove the formulas for characteristic functions given in Tables 2.4 and 2.5.
Let £ be an integral-valued random variable and ¢¢(7) its characteristic func-
tion. Show that

1 (" .
P =k) = %J e Moe(t)dt, k=0, +1, £2....

—T

2m
thonormal basis in the space L?> = L*([—m, 7], #([—n, ])) with Lebesgue
measure /i.
In the Bochner-Khinchin theorem the function ¢(¢) under consideration is
assumed to be continuous. Prove the following result (due to Riesz) showing
to what extent we can get rid of the continuity assumption.
Let ¢ = ¢(r) be a complex-valued Lebesgue measurable function such that
©(0) = 1. Then ¢ = (¢) is positive semi-definite if and only if it equals
(Lebesgue almost everywhere on the real line) some characteristic function.
Which of the following functions

Show that the system of functions {Le”\”, n=20=1,... } forms an or-
L

o) = 0<k<2  p@)=e M k>2
o(r) = (1 + 1)~ o(r) =1+

1—1e3, |t <1, 1—1e], |t <1/2,
o= {11 = [l <y
0, lf] > 1, L/(4fe]), [t > 1/2,

are characteristic functions?
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13. Let ¢(r) be the characteristic function of a distribution F = F(x). Let {x,} be
the set of discontinuity points of F (AF(x,) = F(x,) — F(x,—) > 0). Show
that

fim 7 | e(F &= Y (AFG)2

n>1
14. The concentration function of a random variable X is

O0(X;l) =supP{x <X <x+1}.
x€R

Show that:
(a) If X and Y are independent random variables, then

O(X +Y;1) <min(Q(x;1), 0(Y;1)) foralll> 0;

(b) There exists x] such that Q(X;/) = P{xj] < X < x] + [} and the
distribution function of X is continuous if and only if Q(X;0) = 0.
15. Let (my),>1 be the sequence of moments of a random variable X with distribu-
tion function F = F(x) (my = § . x*dF(x)). Show that (m,),>1 determines
F = F(x) uniquely whenever the series 220:1 %sk absolutely converges for
some s > 0.
16. Let (1) = §
that

0

", €™ dF(x) be the characteristic function of F = F(x). Show

17. Show that every characteristic function (¢) satisfies the inequaltiy 1—Re ¢(2¢)
< 4[1 — Re(r)].

18. Suppose a characteristic function ((¢) is such that p(f) = 1 + f(¢) + o(?),
t — 0, where f(t) = —f(—t). Show that then (¢) = 1.

19. Show that the functions

e =S (in)t k.
onl) = — o —

are characteristic functions for any n > 1.

20. Prove that - R -
2 1-— t ‘

= f L=Reol) f x| dF (x).
0]

2
T™J_ oo t -
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21. Let a characteristic function ¢(f) be such that p(r) = 1 + O(|¢|*), t — 0,
where a € (0, 2]. Show that the random variable £ with characteristic function
©(t) has then the following property:

P{|¢] > x} = 0O(x™ %), x— .

22. If ¢(t) is a characteristic function, then | (7)|? is also a characteristic function.

23. Let X and Y be independent identically distributed random variables with zero
mean and unit variance. Prove using characteristic functions that if the distri-
bution F of (X + ¥)/+/2 is the same as that of X and Y, then F is the normal
distribution.

24. If ¢ is a characteristic function, then so is M=) for any A > 0.

25. The Laplace transform of a nonnegative random variable X with distribution
function F is the function F' = F()) defined by

A~

F(\) =Ee ™ = J e MdF(x), \>0.
[0,00)

Prove the following criterion (S. N. Bernstein): a function f = f(\) on (0, )
is the Laplace transform of a distribution function F = F(x) on [0, c0) if and
only if this function is completely monotone (i.e., the derivatives f (”)()\) of
any order n > 0 exist and (—1)"f"()\) > 0).

26. Let () be a characteristic function. Show that so are

1 o
f o(ut)du and f e "o(ut) du.
0 0

13 Gaussian Systems

1. Gaussian, or normal, distributions, random variables, processes, and systems play
an extremely important role in probability theory and in mathematical statistics. This
is explained in the first instance by the central limit theorem (Sect. 4 of Chap. 3), of
which the De Moivre-Laplace limit theorem is a special case (Sect. 6 of Chap. 1).
According to this theorem, the normal distribution is universal in the sense that the
distribution of the sum of a large number of random variables or random vectors,
subject to some not very restrictive conditions, is closely approximated by this dis-
tribution.

This is what provides a theoretical explanation of the “law of errors” of applied
statistics, which says that errors of measurement that result from large numbers of
independent “elementary” errors obey the normal distribution.
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A multidimensional Gaussian distribution is specified by a small number of
parameters; this is a definite advantage in using it in the construction of simple
probabilistic models. Gaussian random variables have finite second moments, and
consequently they can be studied by Hilbert space methods. Here it is important
that in the Gaussian case “uncorrelated” is equivalent to “independent,” so that the
results of L2-theory can be significantly strengthened.

2. Let us recall that (see Sect.8) a random variable £ = &(w) is Gaussian, or nor-

mally distributed, with parameters m and o2 (¢ ~ A (m,0?)), |m| < w©, 02 > 0,
if its density f¢ (x) has the form
1 —(x—m)? /202
Jelx) = e ; (D
2mo

where 0 = ++/02. (This quantity o is called the standard deviation of ¢ from its
mean value E &, cf. Definition 5 in Sect. 4 of Chap. 1.)

As o | 0, the density f¢ (x) “converges to the §-function supported at x = m.” It is
natural to say that ¢ is normally distributed with meanm and 02 = 0 (£ ~ A4 (m, 0))
if ¢ has the property that P(§ = m) = 1.

We can, however, give a definition that applies both to the nondegenerate (o> > 0)
and the degenerate (02 = 0) cases. Let us consider the characteristic function
pe(t) =Ee™, teR.

If P(§ = m) = 1, then evidently

pe(r) = ™, )
whereas if £ ~ A4 (m,0?), 02 > 0,
L)05([) _ eitm—(1/2)t202. 3)

It is obvious that when o2 = 0 the right-hand sides of (2) and (3) are the same.
It follows, by Theorem 1 of Sect. 12, that the Gaussian random variable with pa-
rameters m and o2 (|m| < o0, ¢ > 0) must be the same as the random variable
whose characteristic function is given by (3). The approach based on characteristic
functions is especially useful in the multidimensional case.

Let¢ = (&1,...,&)™ be arandom vector and

@e(t) = Ee S 1= (r,...,1,)* € R", 4)
its characteristic function (see Definition 2, Sect. 12).

Definition 1. A random vector £ = (&1,...,&,)* is Gaussian, or normally dis-
tributed, if its characteristic function has the form

Ve (t) _ ei(t,m)f(l/Q)(Rt,z)’ 5)
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where m = (my, ... ,m,)*, |m| < o0, and R = |ry| is a symmetric positive semi-
definite n X n matrix; we use the abbreviation { ~ A4 (m, R).

This definition immediately makes us ask whether (5) is in fact a characteristic
function. Let us show that it is.

First suppose that R is nonsingular. Then we can define the inverse A = R~! and
the function

A1/ |
f(x) = (271_),,/2 exp{_i(A(x - m)v (x - m))}7 (6)
where x = (x1,...,x,)* and JA| = det A. This function is nonnegative. Let us show

that
J CUDF () dy — tm—(1/2)(Be).

or equivalently that

. A|1/2
I EJ el(t,x—m)(2ﬂ-)n/2 o= (WD AG—m).(=m)) gy _ p=(1/2)(R1) )

Let us make the change of variable
x—m= QOu, t=O0v,

where O is an orthogonal matrix such that

O*RO = D,
and
d 0
D= .
0 dy

is a diagonal matrix with d; > 0 (see the proof of the lemma in Sect. §). Since
|R| = detR # 0, we have d; > 0,i = 1,. .., n. Therefore

Al = R =dt-oody ®)
Moreover (for notation, see Subsection 1, Sect. 12)

i(t,x —m) — $(A(x —m), x — m)

i(Ov, Ou) — £(AOu, Ou)
i(Ov)*Ou — £(Ou)*A(Ou)
= iv*u — u*O*AOu

= iv¥u — %u*D_lu.
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Together with (9) of Sect. 12 and (8), this yields

I, = (2m)™"2(d, - - -dn)fl/QJ exp(ivu — Ju*D~u) du

= [ [@rd)~'? JOO

k=1 —®

. ui .
exp (lvkuk — Qdk) duy, = 1_[ exp(—%v,%dk)
k k=1

exp(—2v*Dv) = exp(—3v*O*ROV) = exp(—11*Rt) = exp(—3(Rt,1)).

It also follows from (6) that
f F(x)dx = 1. )

R
Therefore (5) is the characteristic function of a nondegenerate n-dimensional
Gaussian distribution (see Subsection 3, Sect. 3).
Now let R be singular. Take £ > 0 and consider the positive definite symmetric
matrix R® = R + ¢E, where E is the identity matrix. Then by what has been proved,

% (1) = expli(r, m) — 5(R°t, 1)}

is a characteristic function:
G0 = | e ar),

where F.(x) = F.(x1,...,x,) is an n-dimensional distribution function.
Ase — 0,
*(1) = (1) = expli(t, m) — 3(Re, 1)}

The limit function () is continuous at (0, ..., 0). Hence, by Theorem 1 and Prob-
lem 1 of Sect. 3, Chap. 3, it is a characteristic function.
Thus we have shown that Definition 1 is correct.

3. Let us now discuss the meaning of the vector m and the matrix R = |ry| that
appear in (5). Since
n 1 n
1 ) =i(t,m)— L(Re, 1) =i ) tme — = et 10
og we(t) = i(t, m) — 5(Re, 1) 11;1 KM 2k;1rklkl7 (10)

we find from (35) of Sect. 12 and the formulas that connect the moments and the
semi-invariants that

my = Sgl,o,...,o) =E&,...,m, = Séo,.“,o,1) =E¢,.
Similarly

r =50 = Vargy, g = s = Cov (&1, &),
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and generally

ru = Cov(&, &).

Consequently m is the mean-value vector of € and R is its covariance matrix.
If R is nonsingular, we can obtain this result in a different way. In fact, in this
case & has a density f(x) given by (6). A direct calculation then shows that

Egk = Jxkf(x) dx = my, (11)
Cov(&, &) = J.(xk — ) (x; — my)f (x) dx = ry.

4. Let us discuss some properties of Gaussian vectors.
Theorem 1

(a) The components of a Gaussian vector are uncorrelated if and only if they are
independent.

(b) A vector £ = (&1,...,&,)* is Gaussian if and only if, for every vector \ =
(A1, ..., \)™ € R" the random variable (§,\) = A& + -+ + N&, has a
Gaussian distribution.

PROOF. (a) If the components of £ = (&1, ..., &,)* are uncorrelated, it follows from
the form of the characteristic function ¢ () that it is a product of characteristic
functions:

pe(t) = [ | pe.(t)-
k=1

Therefore, by Theorem 4 of Sect. 12, the components are independent.
The converse is evident, since independence always implies lack of correlation.
(b) If £ is a Gaussian vector, it follows from (5) that

2
Eexp{ir(€1A1 + - + E\)} = exp {it(E )\kmk> — Q(Zrk/)\k)\l)} , LER,

and consequently
(&A) ~ «/V(Z Ak, ZVHAMI)-

Conversely, to say that the random variable (£, \) = &A1+ - -+, A, is Gaussian
means, in particular, that

EeN = exp {i E(&,\) — 1 Var(g, ,\)} = exp {iZ)\k E&— L3 AN cov(gk,g,)}.

Since Aj,..., A, are arbitrary it follows from Definition 1 that the vector £ =
(&1,...,&,) is Gaussian.

This completes the proof of the theorem.

O
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Remark. Let (g) be a Gaussian vector with 6 = (01, ...,0;)* and{ = (&1, ..., &)*.
If § and & are uncorrelated, i.e., Cov(6;,§) =0,i=1,...,k;j=1,...,1 they are

independent.
The proof is the same as for conclusion (a) of the theorem.

Let £ = (&1,...,&)* be a Gaussian vector; let us suppose, for simplicity, that
its mean-value vector is zero. If rank R = r < n, then (as was shown in Sect. 11),
there are n — r linear relations connecting &1, . .., &,. We may then suppose that,
say, &1, ...,&, are linearly independent, and the others can be expressed linearly
in terms of them. Hence all the basic properties of the vector £ = (&1,...,&,)*
are determined by the first » components (&1, ..., &) for which the corresponding
covariance matrix is already known to be nonsingular.

Thus we may suppose that the original vector £ = (&1,...,&,)* had linearly
independent components and therefore that |R| > 0.

Let O be an orthogonal matrix that diagonalizes R,

O*RO = D.

As was pointed out in Subsection 3, the diagonal elements of D are positive and
therefore determine the inverse matrix. Put B> = D and

B =B tO*¢.
Then it is easily verified that

Eel8) — Eoif*t = o= (1/2)(E).

i.e., the vector 8 = (f1,...,53,)* is a Gaussian vector with components that are
uncorrelated and therefore (by Theorem 1) independent. Then if we write A = OB
we find that the original Gaussian vector £ = (&1, ..,&,)™ can be represented as

§=Ap, 12)

where 8 = (B1,...,0,)* is a Gaussian vector with independent components,
Br ~ A(0,1). Hence we have the following result. Let £ = (&1,...,&,)* be a
vector with linearly independent components such that E¢, = 0, k = 1,.. ., n. This
vector is Gaussian if and only if there is a Gaussian vector 8 = (51, ..., 8,)* with
independent components 1, ..., 8y, Bx ~ 4°(0,1), and a nonsingular matrix A of
order n such that £ = AS. Here R = AA™* is the covariance matrix of £.

If |R| # 0, then by the Gram—Schmidt method (see Sect. 11)

gk:ék+bk€ka k=1,...,l’l, (13)
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where, since € = (€1,...,&,)* ~ A(0, E) is a Gaussian vector,
k=l
& = (& ener (14)
I=1
b = & — &l 15)
and
LA &) = Llen, e, (16)
We see immediately from the orthogonal decomposition (13) that
& = E(&|&-1,-.-.6&). a7
From this, with (16) and (14), it follows that in the Gaussian case the conditional
expectation E(&; | &—1, ..., &) is a linear function of (&1, ...,&—1):
k=1
E(| &1, 61) = ), aibs. (18)
i=1
(This was proved in Sect. 8 for the case k = 2.)

Since, according to a remark to Theorem 1 of Sect. 8, E(& | &—1,-..,&1) is an
optimal estimator (in the mean-square sense) for & in terms of &;,...,&—_1, it
follows from (18) that in the Gaussian case the optimal estimator is linear.

We shall use these results in looking for optimal estimators of 0 = (61, ...,6;)*

in terms of £ = (&1, ..., &)* under the hypothesis that (6*, £*)* is Gaussian. Let
mg =E0, me=EE
be the column-vectors of mean values and
Rgg = Cov(6,6) = | Cov(0;,0;)], 1<i,j<k,

RQE = COV(Q,&) = H COV(Q,',@)H, 1<i< k? 1 S] < lv
Ree = Cov(,€) = | Cov(&, &), 1<i,j<],

the covariance matrices. Let us suppose that R¢¢ has an inverse. Then we have the
following theorem (cf. Theorem 2 in Sect. 8).

Theorem 2 (Theorem on Normal Correlation). For a Gaussian vector (60*,£*)*,
the optimal estimator E(0| £) of 0 in terms of &, and its error matrix

A =E[0—E(@[)][0—E@® )]
are given by the formulas

E(0]€) = mp + RoeR (& — me), (19)
A = Rgp — RoeRg, (Roe)™. (20)
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PROOF. Form the vector
n=(0—my) — RpeR (& — me). 1)

We can verify at once that E7(§ —m¢)™ = 0, i.e., i is not correlated with (§ —myg).
But since (6*,£*)* is Gaussian, the vector (n*,£*)* is also Gaussian. Hence by
the remark on Theorem 1, 1 and § — m¢ are independent. Therefore 7 and § are
independent, and consequently E(n | £) = En = 0. Therefore

E[6 — mg | €] — RoeRee (€ — me) = 0,

which establishes (19).
To establish (20) we consider the conditional covariance

Cov(0,601&) = E[(6 —E(0]£))(0 —E@]£))* [£]. (22)
Since § — E(0| &) = n, and 1) and & are independent, we find that
Cov(0, 0]¢) = E(mn™* |€) = Enn™
= Rgo + R%R& R&R 'R — 2Roc Ry ReeRe Ry,

Since Cov(6, 0] &) does not depend on “chance,” we have
A =ECov(d, 0]¢) = Cov(d, 0]¢),

and this establishes (20).
]

Corollary. Let (0,&1,...,&,)" be an (n + 1)-dimensional Gaussian vector, with
&1, ..., &, independent. Then

Cov(6 5,
Var &

Cov? Cov™(0,&)
Var &;

E@|&, ..., &) =EO+ Z —E¢),

A = Varf — Z

(cf. (12) and (13) in Sect. 8).

5. Let &1, &9, . .. be a sequence of Gaussian random vectors that converge in proba-
bility to £. Let us show that £ is also Gaussian.

In accordance with (a) of Theorem 1, it is enough to establish this only for ran-
dom variables.

Letm, = E&,, 03 = Var &,. Then by Lebesgue’s dominated convergence theo-
rem

. . 2.2 . . .
lim ™= (1/2)0:7 — Jim E ¢ = E ¢/,
n—0oo n—0oo
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It follows from the existence of the limit on the left-hand side that there are numbers
m and o2 such that

m= lim m,, o= lim o2
n—o0 n—ao0

Consequently
E o6 — eitm—(1/2)0212

ie., &~ A (mo?).

It follows, in particular, that the closed linear manifold £ (&1, &, . ..} generated
by the Gaussian variables &7, £, . . . (see Subsection 5, Sect. 11) consists of Gaussian
variables.

6. We now turn to the concept of Gaussian systems in general.

Definition 2. A collection of random variables £ = (£, ), where « belongs to some
index set 2, is a Gaussian system if the random vector (&4, , . .. ,&q,)* is Gaussian
for every n > 1 and all indices a4, . . ., o, chosen from 2.

Let us notice some properties of Gaussian systems.

(a) If £ = (&), o € 2, is a Gaussian system, then every subsystem &' = (£,/),
o € A" < 2, is also Gaussian.

(b) If £,, a € 2, are independent Gaussian variables, then the system & =
(€a), a € 2, is Gaussian.

(c) If ¢ = (£,), @ € 2, is a Gaussian system, the closed linear manifold £ (¢),
consisting of all variables of the form Y, ca,&q,, together with their mean-
square limits, forms a Gaussian system.

Let us observe that the converse of (a) is false in general. For example, let £&; and
n1 be independent and &; ~ .47(0,1), 1 ~ .47(0, 1). Define the system

&y m)) if & >0,
(5’")‘{(51,|m) it &) < 0. 23)

Then it is easily verified that £ and 7 are both Gaussian, but (£, 7) is not.

Let £ = (€4 )aeu be a Gaussian system with mean-value “vector” m = (m,,), « €
2, and covariance “matrix” R = (ro8)a,gen, Where m, = E£,. Then R is evidently
symmetric (ro3 = rg.) and positive semi-definite in the sense that for every vector
¢ = (€q)aeu With values in R and only a finite number of nonzero coordinates ¢,

(Re, ¢) = Z ragcacs > 0. (24)
B

We now ask the converse question. Suppose that we are given a parameter set
A = {a}, a “vector” m = (my)aeo and a symmetric positive semi-definite “ma-
trix” R = (ra)a,pen- Do there exist a probability space (€2,.%#, P) and a Gaussian
system of random variables £ = (£, )aeg On it, such that
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Ega = m()m
Cov(€n,&8) = rap, «,BeA?
If we take a finite set v, .. . , vy, then for the vector 71 = (mq,, - - ., Mq,)* and
the matrix R = (r43), @, 8 = a1,...,q,, we can construct in R" the Gaussian
distribution Fy, o, (X1, ..,%,) with characteristic function

1
Re, 1)}, 1= (tay,---rta,)™

(1) = expli(t,m) — 5

It is easily verified that the family
{Foy . on(x1, .. x0); 045 € A}

is consistent. Consequently by Kolmogorov’s theorem (Theorem 1, Sect. 9, and Re-
mark 2 on this) the answer to our question is positive.

7.1f A = {1,2,...}, then in accordance with the terminology of Sect. 5 the system
of random variables £ = (£, )aen is a random sequence and is denoted by £ =
(&1,&2, .. .). A Gaussian sequence is completely described by its mean-value vector
m = (my,ma, . ..) and covariance matrix R = ||r;|, r;j = Cov(&;, ;). In particular,
if ryj = 020, then & = (£1,&2,...) is a Gaussian sequence of independent random
variables with & ~ A (m;, 02), i > 1.

When 20 = [0,1], [0, o), (=0, ®©), ..., the system & = (&), ¢ € A, is a
random process with continuous time.

Let us mention some examples of Gaussian random processes. If we take their
mean values to be zero, their probabilistic properties are completely described by
the covariance matrices |ry|. We write (s, ) instead of r, and call it the covariance
function.

Example 1. If 20 = [0, c0) and
r(s, t) = min(s, 1), (25)

the Gaussian process B = (B,),>¢ with this covariance function (see Problem 2) and
By = 01is a Brownian motion or Wiener process.

Observe that this process has independent increments; that is, for arbitrary #; <
ty < --- < t, the random variables

Bi, —B,...,B,, = B;,_,

are independent. In fact, because the process is Gaussian it is enough to verify only
that the increments are uncorrelated. But if s < # < u < v then

E[B; — B,|[B, — B.] = [r(t,v) — r(t,u)] — [r(s,v) — r(s,u)]
=(@t—1t)—(s—s)=0.
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Remark. The example of the renewal process built constructively (Subsection 4,
Sect. 9) based on a sequence of independent identically distributed random variables

01,02, ..., suggests that it may be possible to construct a version of the Brownian
motion in a similar manner.
In fact, there are such constructions using a sequence &1, &2, ... of independent

identically distributed standard Gaussian random variables & ~ .47(0,1).
For example, form the variables

= — Z . _5"1/2 sin((n + 1/2)mt), te€[0,1]. (26)

The “two series” theorem stated below (Theorem 2 in Sect. 3, Chap. 4, Vol. 2)
implies that the series specifying B, converges (P-a.s.) for each ¢ € [0, 1]. A more
detailed analysis shows that this series converges (P-a.s.) uniformly and therefore
B = (B;)o<i<1 has (P-a.s.) continuous paths. This process has Gaussian finite-
dimensional distributions, which follows from Theorem 1 (b) and the statement in
Subsection 5 on preserving the Gaussian distribution under taking the limit in proba-
bility for Gaussian random variables. It is not hard to see that the covariance function
of this process is r(s, t) = E B;B; = min(s, t).

Thus the process B = (B;)o</<1 satisfies all the requirements specifying the
Brownian motion process, but, what is more, it has (P-a.s.) continuous paths. As a
rule continuity of paths (a desirable property justified by physical applications) is
included in the definition of the Brownian motion. As we see, the process with this
property does exist.

Let us describe one more well-known way of constructing the Brownian motion
based on the Haar functions H,(x), x € [0,1],n = 1,2,..., introduced in Subsec-
tion 5 of Sect. 11.

Using them, we construct the Schauder functions S,(t),t € [0,1],n =1,2,...:

0 — J H, () dx. @7
0

Then if &y, &1, &2, ... is a sequence of independent identically distributed random
variables with standard normal distribution, §; ~ .4#7(0, 1), then the series

B = Zlfnsn(ﬁ (28)

converges uniformly in ¢ € [0, 1] with probability one. The process B = (B;)o</<1
is the Brownian motion.

Example 2. The process BY = (BY), 1 € 2, with 2 = [0, 1], B§ = 0 and
r(s, ) = min(s, t) — st (29)

is a conditional Wiener process or a Brownian bridge (observe that since r(1,1) = 0
we have P(BY = 0) = 1).
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Example 3. The process X = (X;), t € 2, with A = (—0, 0) and

r(s, 1) = eIl (30)
is a Gauss—Markov process.

8. We state now another interesting property of the Brownian motion, whose proof
illustrates very well an application of the Borel-Cantelli lemma (Sect. 10), or rather
of Corollary 1 to it.

Theorem 3. Let B = (B,),>¢ be the standard Brownian motion. Then, with proba-

bility one,

2T
Jim D) Bio-s = Byonr? =T G
k=1
forany T > 0.

PROOF. Without loss of generality we can take 7 = 1. Let

A,f—{w: 25}.

Since the random variables Byo—» — B(t_1)2—» are Gaussian with zero mean and
variance 27", we have

on
Var( Z (BkQ—n — B(k—l)Qn)2> = 2_n+1.

k=1

on

Z (Bia— — Bg—1)2-)* — 1
=1

Hence, by Chebyshev’s inequality, P(A%) < ¢=227+1 and therefore
[00) 0
DIP@A) <e2 Yo =272 < o0, (32)
n=1 n=1

The required statement (31) follows from this bound and Corollary 1 to the Borel—
Cantelli lemma (Sect. 10). O

9. PROBLEMS

1. Let &, &2, &3 be independent Gaussian random variables, & ~ .47(0,1). Show

that
&1+ 6283
V1482

(In this case we encounter the interesting problem of describing the nonlinear
transformations of independent Gaussian variables &1, . . ., &, whose distribu-
tions are still Gaussian.)

2. Show that the “matrices” R = (r(s,?))s e specified by the functions (s, ) in
(25), (29), and (30) are positive semi-definite.

~ A (0,1).
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3. Let A be an m x n matrix. An n x m matrix A® is a pseudoinverse of A if there
are matrices U and V such that

AA®PA = A, A® = UA* = A*V.

Show that A® exists and is unique.

4. Show that (19) and (20) in the theorem on normal correlation remain valid
when R, is singular provided that Rg; is replaced by Rg

5. Let (6,&) = (01,...,0;&1,...,&)™ be a Gaussian vector with nonsingular
matrix A = Ry — R(?ER;‘&. Show that the distribution function

P(9§a|§) = P(91 <ai,..., 0 Sak|§)
has (P-a.s.) the density p(ay, ..., a; | &) defined by

N

G o~ b —E@1€)* A a —E@1€)}.

6. (S. N. Bernstein). Let £ and 7 be independent identically distributed random
variables with finite variances. Show that if £ + 7 and £ — 7 are independent,
then & and 7 are Gaussian.

7. Mercer’s theorem. Let r = r(s,t) be a continuous covariance function on
[a,b] x [a,b], where —00 < a < b < 0. Prove that the equation

)\Jb r(s,Hu(t)dt = u(s), a<s<b,

has infinitely many values Ay > 0 and the corresponding system of continuous
solutions {u, k > 1}, which form a complete orthonormal system in L?(a, b),

such that ”
rls,r) = Y O,
k=1 k

where the series converges absolutely and uniformly on [a, b] X [a, b].

8. LetX = {X,, t > 0} be a Gaussian process with EX, = 0 and covariance func-
tion r(s, 1) = e I 5,6 > 0. Let0 <ty <--- <tyandletfy, ., (x1,...,%,)
be the density of X;,, ..., X;,. Prove that

n

—1/2
ﬁl,...,t,, (xl’ o 7xn) _ [(2ﬂ)n 1_[ (1 _ 62(tf1ti))]

i=2

2 1< _ otic1—ty) )2
xexp{—xl—z(xl ¢ Sio1) }
i=2

1— eZ(t,',lft,)
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11.

12.

13.

14.

15.

2 Mathematical Foundations of Probability Theory

Letf = {f,, n > 1} < L?(0,1) be a complete orthonormal system and (&,)
1ndependent identically distributed ./ (0, 1)-random variables. Show that B, =
Y1 &n So fu(u) du is the Brownian motion process.

. Prove that for Gauss1an systems (&, 71,...,7,) the conditional expectations

E(¢|n1,...,n,) are the same as the conditional expectations (§ 71, 1)
in the wide sense.

Let (§,m,-.., ) be a Gaussian system. Determine the structure of the con-
ditional moments E(£" |71, ...,m), n > 1 (as functions of 7y, . .., me).

Let X = (Xi)1<k<n and ¥ = (¥x)1<k<, be Gaussian random sequences with
EX; =EY;, Var X, = Var ¥y, 1 < k <n, and

Cov(Xy, X)) < Cov(Yy, Y)), 1<kI<n.
Prove Slepyan’s inequality:

P{ sup Xk<x} §P{ sup Yk<x}, X €ER.
1<k<n 1<k<n

Prove that if B® = (B°)0<,§1 is a Brownian bridge, then the process B =
(By)i>0 with B, = (1 +1)B ?/(1+z) is a Brownian motion.

Verfy that if B = (B;),;>0 is a Brownian motion, then so are the following
processes:

Bl(l) = —B;

B,(Q) =By, t >0, and B( ) = =0;
B,(S) =By — B, s>0;
3(4)=BT—BT,, for0<t<T, T>0;

1
B(5) fBaz,, a > 0 (automodelling property).

For a Gaussian sequence X = (Xj)i1<x<, denote m = max;<x<, EX; and

o2 = maxj<i<n Var X;, and let

— > < .
P{lrgfm%(n(Xk EX;) > a} <1/2 forsome a

Then the following Borel’s inequality holds:

P{ max X > x} < QW(W),
1<k<n

g

where ¥(x) = (2m) V2 (" e™"/2 dy.
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16.

17.

18.

19.

20.

Let (X, Y) be a two-variate Gaussian random variable with EX = EY = 0,
. . E

EX? > 0, EY? > 0 and correlation coefficient p= ﬁ Show that

P{XY <0} =1—-2P{X >0,Y >0} = 7" arccos p.

Let Z = XY, where X ~ .#/(0,1) and P{Y = 1} = P{Y = —1} = 1. Find
the distributions of pairs (X, Z) and (Y, Z) and the distribution of X + Z. Show
that Z ~ .#7(0, 1) and that X and Z are uncorrelated but dependent.
Give a detailed proof that the processes (B;)o</<1 defined by (26) and (28) are
Brownian motions.
Let B* = (B, + put),;>0 be a Brownian motion with a drift.

(a) Find the distribution of Bl + Bl., 1 < 5.

1o
(b) Find E B}, B}, and E B} B!\ B, for 1y < t; < 5.
For the process B* as in the previous problem, find the conditional distribu-
tions

P(B), € |B1)

fort; < t9 and t; > t9 and

P(Bi, € - | By, By,)

1o

fortg < t; < to.



Chapter 3

Convergence of Probability Measures.
Central Limit Theorem

In the formal construction of a course in the theory of probability, limit theorems appear
as a kind of superstructure over elementary chapters, in which all problems have finite,
purely arithmetical character. In reality, however, the epistemological value of the theory
of probability is revealed only by limit theorems. Moreover, without limit theorems it is
impossible to understand the real content of the primary concept of all our sciences — the
concept of probability.

B. V. Gnedenko and A. N. Kolmogorov,

“Limit Distributions for Sums of Independent Random Variables” [34]

1 Weak Convergence of Probability Measures and Distributions

1. Many of the fundamental results in probability theory are formulated as limit
theorems. Bernoulli’s law of large numbers was formulated as a limit theorem; so
was the de Moivre-Laplace theorem, which can fairly be called the origin of a gen-
uine theory of probability and, in particular, which led the way to numerous inves-
tigations that clarified the conditions for the validity of the central limit theorem.
Poisson’s theorem on the approximation of the binomial distribution by the “Pois-
son” distribution in the case of rare events was formulated as a limit theorem. After
the example of these propositions, and of results on the rate of convergence in the
de Moivre-Laplace and Poisson theorems, it became clear that in probability it is
necessary to deal with various kinds of convergence of distributions, and to establish
the rate of convergence requires the introduction of various “natural” measures of
the distance between distributions.

In the present chapter we shall discuss some general features of the convergence
of probability distributions and of the distance between them. In this section we take
up questions in the general theory of weak convergence of probability measures in
metric spaces. (This is the area to which J. Bernoulli’s law of large numbers, as
well as the de Moivre—Laplace theorem, the progenitor of the central limit theorem,
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A.N. Shiryaev, Probability-1, Graduate Texts
in Mathematics 95, DOI 10.1007/978-0-387-72206-1_3



374 3 Convergence of Probability Measures. Central Limit Theorem

belong.) From Sect. 3, it will become clear that the method of characteristic func-
tions is one of the most powerful means for proving limit theorems on the weak
convergence of probability distributions in R". In Sect. 7, we consider questions of
metrizability of weak convergence. Then, in Sect. 9, we turn our attention to a differ-
ent kind of convergence of distributions (stronger than weak convergence), namely
convergence in variation. Proofs of the simplest results on the rate of convergence
in the central limit theorem and Poisson’s theorem will be given in Sects. 11 and 12.
In Sect. 13 the results on weak convergence of Sects. 1 and 2 are applied to certain
(conceptually important) problems of mathematical statistics.

2. We begin by recalling the statement of the law of large numbers (Sect.5 of
Chap. 1) for the Bernoulli scheme.

Let &1, &5, . .. be a sequence of independent identically distributed random vari-
ables with P(§; = 1) = p, P(§ = 0) = ¢, p + ¢ = 1. In terms of the concept of
convergence in probability (Sect. 10, Chap. 2), Bernoulli’s law of large numbers can

be stated as follows:
Sn P
— =P, n— oo, (1)
n

where S, = & + - -+ + &,. (It will be shown in Chapter 4, Vol. 2 that in fact we have
convergence with probability 1.)
We put

Sn
F,,(x)zP{gx},

n

L, x=p,
F(x)_{() x<5

where F(x) is the distribution function of the degenerate random variable £ = p.
Also let P, and P be the probability measures on (R, Z(R)) corresponding to the
distributions F, and F.

In accordance with Theorem 2 of Sect. 10, Chap. 2, convergence in probability,

2

P e d .
S./n — p, implies convergence in distribution, S,/n — p, which means that

Sn
er(%) - Es0) neen ®
for every function f = f(x) belonging to the class C of bounded continuous func-
tions on R.
Since

cr(3)- o o= fran

(3) can be written in the form

Lf( dx»ff P(dx), feCR), )
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or (in accordance with Sect. 6 of Chap. 2) in the form

L F(x) dF(x) — f f)dF(), feC. )

In analysis, (4) is called weak convergence (of P, to P, n — 0) and written
P, 5 P (cf. Definition 2 below). It is also natural to call (5) weak convergence of
F, to F and denote it by F,, > F.

Thus we may say that in a Bernoulli scheme

&Pp:anF. (6)
n

It is also easy to see from (1) that, for the distribution functions defined in (2),

Fy(x) = F(x), n— o,
for all points x € R except for the single point x = p, where F(x) has a discontinuity.

This shows that weak convergence F,, — F does not imply pointwise conver-
gence of F,(x) to F(x) as n — oo, for all points x € R. However, it turns out that,
both for Bernoulli schemes and for arbitrary distribution functions, weak conver-
gence is equivalent (see Theorem 2 below) to “convergence in general” in the sense
of the following definition.

Definition 1. A sequence of distribution functions {F,}, defined on the real line,
converges in general to the distribution function F (notation: F,, = F) if, as n — o0,

Fulx) = F(x), x € C(F),
where C(F) is the set of points of continuity of F = F(x).

For Bernoulli schemes, F = F(x) is degenerate, and it is easy to see (see Prob-
lem 7 of Sect. 10, Chap. 2) that

(n:ﬂs(&ia.

n
Therefore, taking account of Theorem 2 below,

(220) =R e m=r= (3 2) @

n

and consequently the law of large numbers can be considered as a theorem on the
weak convergence of the distribution functions defined in (2).
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Let us write

Fu(x) =P {S" _pnp < x}7
npq

1 29
B V 2T —o0

The de Moivre-Laplace theorem (Sect. 6, Chap. 1) states that F,,(x) — F(x) for all
x € R, and consequently F,, = F. Since, as we have observed, weak convergence
F, % F and convergence in general, F,, = F, are equivalent, we may therefore say
that the de Moivre-Laplace theorem is also a theorem on the weak convergence of
the distribution functions defined by (8).

These examples justify the concept of weak convergence of probability measures
that will be introduced below in Definition 2. Although, on the real line, weak con-
vergence is equivalent to convergence in general of the corresponding distribution
functions, it is preferable to use weak convergence from the beginning. This is be-
cause in the first place it is easier to work with, and in the second place it remains
useful in more general spaces than the real line, and in particular for metric spaces,
including the especially important spaces R”, R*, C, and D (see Sect.3 of Chap-
ter 2).

F(x) e 2du.

3. Let (E, &, p) be a metric space with metric p = p(x,y) and o-algebra & of Borel
subsets generated by the open sets, and let P, Py, Ps, ... be probability measures
on (E, &, p).

Definition 2. A sequence of probability measures {P,} converges weakly to the
probability measure P (notation: P, > P) if
| 760 Pt~ [ 700 Piav) ©
E E
for every function f = f(x) in the class C(E) of continuous bounded functions
onkE.

Definition 3. A sequence of probability measures {P,} converges in general to the
probability measure P (notation: P, = P) if

P.(4) — P(4) (10)

for every set A of & for which
P(0A) = 0. 11)

(Here 0A denotes the boundary of A:

0A = [A] N [A],

where [A] is the closure of A.)
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The following fundamental theorem shows the equivalence of the concepts of
weak convergence and convergence in general for probability measures, and con-
tains still other equivalent statements.

Theorem 1. The following statements are equivalent.

IO P, =P,

(M) limsup P,(A) < P(4), A closed,
(M) liminf P, (A) > P(A), A open,
(IV) P, = P.

PROOF. (I)=(II). Let A be closed and

fX(X)=[1—p(x’A)]+7 >0,

3

where
p(x,A) = inf{p(x,y): y € A}, [X]Jr = max][0, x].

Let us also put
A® = {x: p(x,A) < &}

and observe that A | Aase | 0.
Since f5 (x) is bounded, continuous, and satisfies

PAA) = [ 1) Pafae) < [ 110 Pota)
we have
limsup P, (4) < limsup ff (x) Pa(dy)
_ ij(x) P(dx) < P(A%) | P(4), &0,

which establishes the required implication.

The implications (II) = (III) and (IIT) = (II) become obvious if we take the
complements of the sets concerned.

(Ill) = (IV). Let A° = A\QA be the interior, and [A] the closure, of A. Then
from (II), (IIT), and the hypothesis P(0A) = 0, we have

limsup P,(A) < limsup P, ([A]) < P([A]) = P(A4),

liminf P, (A) > liminf P,(A°) > P(4%) = P(4),

and therefore P,(A) — P(A) for every A such that P(0A) = 0.
(IV) — (I). Let f = f(x) be a bounded continuous function with |f(x)| < M.
We put
D= {treR: P{x: f(x) =t} # 0}
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and consider a decomposition Ty = (fo,11, ..., %) of [-M, M]:
M=ty<thh<---<t, =M, k>1,
with; ¢ D, i = 0,1,..., k. (Observe that D is at most countable since the sets
f~Y{t} are disjoint and P is finite.)
Let B; = {x: #; < f(x) < t;+1}. Since f(x) is continuous and therefore the set

f(t;,tiy1) is open, we have 0B; < f~{t;} U f~1{t;11}. The points t;,t;,1 ¢ D;
therefore P(0B;) = 0 and, by (IV),

k—1 k—1
D4 Pu(B) — > t:P(By). (12)
i=0 t=0

But

<

k—1
f £(x) Puldx) = ). 1Py (B))
E i=0

L £() Py(dr) — f £(x) P(dx)

k=1 k=1
+ | Pu(B) = > 1 P(B)
i=0 i=0

+ 2 4 P(B) — L F(x) P(d)

<9 tig —t;
< Ogr?g‘cm]il(lﬂ 1)

b

k—1 k—1
+ Z 1 Pn(B[) — Z t; P(B,)
i=0 i—0

whence, by (12), since the Ty (k > 1) are arbitrary,

lim L £(x) Py(dx) = L_ £(x) P(dx).

This completes the proof of the theorem. |

Remark 1. The functions f(x) = I (x) and f5 (x) that appear in the proof that (I) =
(IT) are respectively upper semicontinuous and uniformly continuous. Hence it is
easy to show that each of the conditions of the theorem is equivalent to one of the
following:

V) §,.f(x) Py(dx) — §.f(x) P(dx) for all bounded uniformly continuous f (x);
(VD) §,.f(x) Py(dx) — §.f(x) P(dx) for all bounded functions satisfying the Lip-
schitz condition (see Lemma 2 in Sect. 7);
(VID) limsup §.f(x) P,(dx) < §.f(x) P(dx) for all bounded f(x) that are upper
semicontinuous (imsupf(x,) < f(x), x, — x);
(VI lim inf §, f(x) P,(dx) > §,f(x) P(dx) for all bounded f(x) that are lower
semicontinuous (liminf, f(x,) > f(x), x, — x).
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Remark 2. Theorem 1 admits a natural generalization to the case when the proba-
bility measures P and P, defined on (E, &, p) are replaced by arbitrary (not nec-
essarily probability) finite measures ( and p,,. For such measures we can introduce
weak convergence 1, —> p and convergence in general 11, = g and, just as in
Theorem 1, we can establish the equivalence of the following conditions:

A*) pn =

(IT*) lim sup 1, (A)
(Or*) lim inf g, (A)
(V¥ 1y = p.

Each of these is equivalent to any of (V*)—(VIII*), which are (V)—(VIII) with P,
and P replaced by u,, and p.

wu(A), where A is closed and p,(E) — u(E);

<
> u(A), where A is open and p,(E) — u(E);

4. Let (R, Z(R)) be the real line with the system Z(R) of Borel sets generated by
the Euclidean metric p(x,y) = |x—y| (compare Remark 2 in Sect. 2, Chapter 2). Let
P and P,, n > 1, be probability measures on (R, #(R)) and let F and F,, n > 1,
be the corresponding distribution functions.

Theorem 2. The following conditions are equivalent:

(1) P, > P,
@) P, =P,
(3) Fy = F,
4) F, = F.

PROOF. Since (2) <(1)<(3), it is enough to show that (2) <(4).
If P, = P, then in particular

P,(—00,x] > P(—00,x]

for all x € R such that P{x} = 0. But this means that F,, = F.

Now let F,, = F. To prove that P, = P it is enough (by Theorem 1) to show that
liminf, P,(A) > P(A) for every open set A.

If A is open, there is a countable collection of disjoint open intervals Iy, Io, . . .
(of the form (a, b)) such that A = Zf:l I. Choose € > 0 and in each interval
Iy = (ax, by) select a subinterval I, = (ag, by] such that ai, b}, € C(F) and P(Iy) <
P(I})+e-27%. (Since F(x) has at most countably many discontinuities, such intervals
I, k > 1, certainly exist.) By Fatou’s lemma,

0
lim inf P,,(4) = liminf )" P,(I)
n n =1
[e¢] [e¢]
> Z limninf P,(Iy) > Z 1imninf P, ().
k=1 k=1

But
Pu(Iy) = Fu(by) — Fulay) — F(by) — Flay) = P(Iy).
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Therefore

Q0
hmlan Z () Z (P(I) —€-27%) = P(A) —¢.

&MS

Since € > 0 is arbitrary, this shows that lim inf, P,(A) > P(A) if A is open.
This completes the proof of the theorem. i

5.Let (E, &) be a measurable space. A collection £ (E) < & of subsets is a deter-
mining class if whenever two probability measures P and Q on (E, &) satisfy

P(A) = Q(A) forall A e J(E)
it follows that the measures are identical, i.e.,
P(A) =Q(A) forallAe é&.

If (E,&,p) is a metric space, a collection 71 (E) < & is a convergence-
determining class if whenever probability measures P, P, P,, . .. satisfy

P.(A) > P(A) forall A€ #(E) with P(0A) =0
it follows that
P.(A) — P(A) forall A e E with P(0A) =

When (E,&) = (R, B(R)), we can take a determining class J(R) to be the
class of “elementary” sets # = {(—o0,x], x € R} (Theorem 1 in Sect. 3, Chap. 2).
It follows from the equivalence of (2) and (4) of Theorem 2 that this class % is also
a convergence-determining class.

It is natural to ask about such determining classes in more general spaces.

For R", n > 2, the class JZ of “elementary” sets of the form (—o0,x] =
(—00,x1] x -+ x (—00,x,], where x = (x1,...,x,) € R", is both a determining
class (Theorem 2 in Sect. 3, Chap. 2) and a convergence-determining class (Prob-
lem 2).

For R® the cylindrical sets are the “elementary” sets whose probabilities uniquely
determine the probabilities of the Borel sets (Theorem 3 in Sect. 3, Chap. 2). It turns
out that in this case the class of cylindrical sets is also the class of convergence-
determining sets (Problem 3).

We might expect that the cylindrical sets would still constitute determining
classes in more general spaces. However, this is, in general, not the case.

For example, consider the space (C, #(C), p) with the uniform metric p (see
Subsection 6 in Sect. 2, Chap. 2). Let P be the probability measure concentrated on
the element x = x(r) = 0,0 < ¢ < 1, and let P, n > 1, be the probability measures
each of which is concentrated on the element x = x,(¢) shown in Fig. 35. It is easy
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ﬂl

l__.___

xR

I/n 2/n

Fig. 35

to see that P,(A) — P(A) for all cylindrical sets A with P(0A) = 0. But if we
consider, for example, the set

A={aeC:la(t)| <3, 0<1<1} € %(0),

then P(0A) = 0, P,(A) = 0, P(A) = 1 and consequently P, = P. (%,(C) is the
o-algebra generated by open sets, see Subsection 6 in Sect. 2 of Chap. 2.)

Therefore the class of cylindrical sets in this case is a determining, but not a
convergence-determining class.

6. PROBLEMS

1. Let us say that a function F = F(x), defined on R™, is continuous at x € R™
provided that, for every € > 0, there is a ¢ > 0 such that |F(x) — F(y)| < e for
all y € R™ that satisfy

x—de <y<x-+de,

where e = (1,...,1) € R™. Let us say that a sequence of distribution functions
{F,} converges in general to the distribution function F (F, = F) if F,(x) —
F(x) for all points x € R™, where F = F(x) is continuous.
Show that the conclusion of Theorem 2 remains valid for R, m > 1. (See

the Remark 1 on Theorem 1.)

2. Show that the class 2 of “elementary” sets in R" is a convergence-determining
class.

3. Let E be one of the spaces R*, C, or D. Let us say that a sequence {P,} of
probability measures (defined on the o-algebra & of Borel sets generated by
the open sets) converges in general in the sense of finite-dimensional distribu-

tions to the probability measure P (notation: P, L P)ifP,(A) —» P(A), n —
oo, for all cylindrical sets A with P(0A) = 0.
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For R®, show that
(P, L P) = (P, = P).

Does this conclusion hold for C and D?
4. Let F and G be distribution functions on the real line and let

L(F,G) =inf{h>0: F(x—h) —h<G(x) <F(x+h)+h}

be the Lévy distance (between F and G). Show that convergence in general is
equivalent to convergence in the Lévy metric:

(F, = F) < (L(F,,F) — 0).

5. Let F, = F and let F be continuous. Show that in this case F,(x) converges
uniformly to F(x):

sup |F,(x) — F(x)] = 0, n— oo.
X

6. Prove the statement in Remark 1 on Theorem 1.
Establish the equivalence of (I*)—(IV*) as stated in Remark 2 on Theorem 1.
8. Show that P, -> P if and only if every subsequence {P,/} of {P,} contains a
subsequence {P,} such that P, = P.
9. Give an example of probability measures P, P, on (R, Z(R)), n > 1, such
that P, > P, but convergence P,(B) — P(B) need not hold for all Borel sets
B e A(R).

10. Give an example of distribution functions F = F(x), F,, = F,(x), n > 1, such
that F, > F, but sup, |F,(x) — F(x)| - 0, n — 0.

11. In many handbooks on probability theory the statement (4) = (3) of Theo-
rem 2 on convergence of distribution functions F,, n > 1, to a distribution
function F is related to the names of Helly and Bray. In this connection we
propose to prove the following statements:

(a) Helly—Bray Lemma. If F,, = F (see Definition 1), then

~

b b
i | 0)dFy ) = [ ¢(x) aro)
n a a
where a and b are continuity points of the distribution function F' =
F(x) and g = g(x) is a continuous function on [a, b].
(b) Helly—Bray Theorem. If F,, = F and g = g(x) is a continuous function
on R, then

Q0 o0

lim g(x)dF,(x) = J g(x) dF(x).

n —0 —o0
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12. Show that if F,, = F and the sequence (S x| dF, (x)) N is bounded for some
n>1
b > 0, then

limf X[ dF (x) = f\x|“dF(x), 0<a<b,
limkaan(x) = Jxde(x) forany k = 1,2,...,[b], k # b.

13. Let F,, = F and m = med(F), m, = med(F,) be the medians of F and F),
respectively (see Problem 5 in Sect.4, Chap. 1). Suppose that m and m,, are
uniquely defined for all n > 1. Prove that m, — m.

14. Let F be a distribution function that is uniquely determined by its moments
a = Scfoo K dF(x), k = 1,2,... Let (F,),>1 be a sequence of distribution
functions whose moments converge to those of F,

0 Q0
anj = f xden(x) — a; = J xde(x), k=1,2,...
—0o0 —0a0
Show that then F,, = F.
15. Prove the following version of the law of large numbers (due to Khinchin): Let
X1,Xa,... be pairwise independent identically distributed random variables

with a finite expectation EX; = m, andletS, = X;+---+X,. Then S, /n L m.

2 Relative Compactness and Tightness of Families
of Probability Distributions

1. If we are given a sequence of probability measures, then before we can consider
the question of its (weak) convergence to some probability measure, we have of
course to establish whether the sequence converges at all to some measure, or has at
least one convergent subsequence.

For example, the sequence {P,}, where Py, = P, P3,.1 = Q, and P and Q are
different probability measures, is evidently not convergent, but has the two conver-
gent subsequences {Ps,} and {Pg,11}.

It is easy to construct a sequence {P,} of probability measures P,,, n > 1, that
not only fails to converge, but contains no convergent subsequences at all. All that
we have to do is to take P,, n > 1, to be concentrated at {n} (that is, P,{n} = 1).
In fact, since liirln P.(a, b] = 0 whenever a < b, a limit measure would have to be

identically zero, contradicting the fact that 1 = P,(R) —-» 0, n — oo. It is interesting
to observe that in this example the corresponding sequence {F,} of distribution

functions,
1, x>n
F,(x) =1/ -
n() {O, x <n,
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is evidently convergent: for every x € R,
F,(x) > G(x) = 0.

However, the limit function G = G(x) is not a distribution function (in the sense of
Definition 1 of Sect. 3, Chap. 2).

This instructive example shows that the space of distribution functions is not
compact. It also shows that if a sequence of distribution functions is to converge
to a limit that is also a distribution function, we must have some conditions that
will prevent mass from “escaping to infinity.” (See in this connection Problem 3 in
Sect. 3.)

After these introductory remarks, which illustrate the kinds of difficulty that can
arise, we turn to the basic definitions.

2. Let us suppose that all measures are defined on the metric space (E, &, p).

Definition 1. A family of probability measures & = {P,;a € 2} is relatively
compact if every sequence of measures from & contains a subsequence which
converges weakly to a probability measure.

We emphasize that in this definition the limit measure is to be a probability mea-
sure, although it need not belong to the original class 2. (This is why the word
“relatively” appears in the definition.)

It is often far from simple to verify that a given family of probability measures is
relatively compact. Consequently it is desirable to have simple and useable tests for
this property. We need the following definitions.

Definition 2. A family of probability measures &7 = {P,;« € 2} is tight if, for
every € > 0, there is a compact set K < E such that

sup P (E\K) < . ()
ael
Definition 3. A family of distribution functions F = {F,;« € 2} defined on
R", n > 1, is relatively compact (or tight) if the same property is possessed by
the family & = {P,;« € 2} of probability measures, where P, is the measure
constructed from F,.

3. The following result is fundamental for the study of weak convergence of proba-
bility measures.

Theorem 1 (Prokhorov’s Theorem). Let & = {P,;« € 2} be a family of proba-
bility measures defined on a complete separable metric space (E, &, p). Then & is
relatively compact if and only if it is tight.
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PROOF. We shall give the proof only when the space is the real line. (The proof
can be carried over (see [9], [76]), almost unchanged, to arbitrary Euclidean spaces
R", n > 2. Then the theorem can be extended successively to R*, to o-compact
spaces; and finally to general complete separable metric spaces, by reducing each
case to the preceding one.)

Necessity. Let the family & = {P,; «a € 2} of probability measures defined on
(R, B(R)) be relatively compact but not tight. Then there is an £ > 0 such that for
every compact set K © R

sup P, (R\K) > ¢,

and therefore, for each interval I = (a, b),

sup P, (R\I) > ¢.

It follows that for every interval I, = (—n,n), n > 1, there is a measure P, such
that
P, (R\,) > €.

Since the original family 27 is relatively compact, we can select from {P,, },>1 a
subsequence {Pank} such that Pa”k % Q, where Qis a probability measure.

Then, by the equivalence of conditions (I) and (I) in Theorem 1 of Sect. 1, we
have

liin sup Pa,, (R\I,) < Q(R\I,) 2)
—00

for every n > 1. But Q(R\I,) | 0, n — o0, and the left side of (2) exceeds € > 0.
This contradiction shows that relatively compact families are tight.

To prove the sufficiency we need a general result (Helly’s theorem) on the sequen-
tial compactness of families of generalized distribution functions (Subsection 2 of
Sect. 3, Chap. 2).

Let .# = {G} be the collection of generalized distribution functions G = G(x)
that satisfy:

(1) G(x) is nondecreosing;
2) 0< G(~), G(+o) < 1;
(3) G(x) is continuous on the right.

Then .# clearly contains the class of distribution functions .# = {F} for which
F(—o0) = 0and F(4+w) = 1.

Theorem 2 (Helly’s Theorem). The class .% = {G} of generalized distribution
Sfunctions is sequentially compact, i.e., for every sequence {G,} of functions from
S we can find a function G € % and a subsequence {n;} < {n} such that

G (¥) = G(x), Kk — oo,

for every point x of the set C(G) of points of continuity of G = G(x).
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PROOF. Let T = {x1,x2,...} be a countable dense subset of R. Since the sequence
of numbers {G,(x1)} is bounded, there is a subsequence N; = {ngl),nél), ...} such
that Gn_(l) (x1) approaches a limit g; as i — o0. Then we extract from N; a subse-

quence Ny = {n?),n?), ...} such that G 2 (x2) approaches a limit g2 as i — 00;

and so on.
Define a function Gr(x) on the set T < R by

GT(X[) = &i, X; € T7

and consider the “Cantor” diagonal sequence N = {ngl),ng), ...}. Then, for each
x; € T,as m — o0, we have

Gnr(nm) ()C,') e GT(.X,').
Finally, let us define G = G(x) for all x € R by putting
G(x) = inf{Gr(y): ye T, y > x}. 3)

We claim that G = G(x) is the required function and G (x) — G(x) at all points
x of continuity of G.

Since all the functions G, under consideration are nondecreasing, we have
G (x) <G @ (y) for all x and y that belong to T and satisfy the inequality x <'y.
Hence Gr(x) % Gr(y) for such x and y. It follows from this and (3) that G = G(x)
is nondecreasing.

Now let us show that it is continuous on the right. Let x; | x and d = limy G(xy).
Clearly G(x) < d, and we have to show that actually G(x) = d. Suppose the con-
trary, that is, let G(x) < d. It follows from (3) that there isay € T, x < y,
such that Gr(y) < d. But x < x; < y for sufficiently large k, and therefore
G(xx) < Gr(y) < d and lim G(x;) < d, which contradicts d = limy G(x;). Thus
we have constructed a function G that belongs to .7

We now establish that G, ) (x%) — G(x°) for every x° € C(G).

Ifx° < y e T, then

lim sup Gn,(,,'”) (xo) < lim sup Gn’(nm) (y) = Gr(y),
m m

whence

limsup G, o (%) <inf{Gr(y): y >, ye T} = G(x°). 4)

m

On the other hand, let x' <y < x%, y e T. Then

G(x') < Gr(y) = lim G on(y) =liminf G o (y) < liminf G o (xY).

m
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Hence if we let x! 1 x° we find that

G(xo—) < liminf Gn(m (xo). )

But if G(x’~) = G(x°) then (4) and (5) imply that G w(x°) — G(x°),
m — 0. !

This completes the proof of the theorem.

|

We can now complete the proof of Theorem 1.

Sufficiency. Let the family &2 be tight and let {P,} be a sequence of probability
measures from Z2. Let {F, } be the corresponding sequence of distribution functions.

By Helly’s theorem, there are a subsequence {F, } < {F,} and a generalized
distribution function G € .# such that F,, (x) — G(x) for x € C(G). Let us show
that because &2 was assumed tight, the function G = G(x) is in fact a genuine
distribution function (G(—) = 0, G(+x) = 1).

Take & > 0, and let I = (a, b] be the interval for which

sup P,(R\I) < ¢,

or, equivalently,
1—e<P,lab], n>1.

Choose points @', b’ € C(G) such that @’ < a, b’ > b. Then 1 — ¢ < P, (a,b] <
P,(d,b'] = F,(b') — F,(d/) — G@') — G(d). Tt follows that G(+o0) —
G(—w) = 1, and since 0 < G(—o) < G(4+o) < 1, we have G(—©) = 0
and G(+0o0) = 1.

Therefore the limit function G = G(x) is a distribution function and F,, =
G. Together with Theorem 2 of Sect. 1 this shows that P, R Q, where Q is the
probability measure corresponding to the distribution function G.

This completes the proof of Theorem 1. o

4. PROBLEMS

1. Carry out the proofs of Theorems 1 and 2 for R", n > 2.
2. Let P, be a Gaussian measure on the real line, with parameters m, and
o2, a € 2. Show that the family &2 = {P,; o € 2} is tight if and only if

(%)
Ima| < a, oigb, ac.

3. Construct examples of tight and nontight families & = {P,; a € 2} of prob-
ability measures defined on (R*, (R™)).

4. Let P be a probability measure on a metric space (E, &, p). The measure P is
said to be tight (cf. Definition 2), if for any € > 0 there is a compact set K € E
such that P(K) > 1 — e. Prove the following assertion (“Ulam’s theorem”):
Each probability measure on a Polish space (i.e., complete separable metric
space) is tight.
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5. Let X = {X,;a € A} be a family of random vectors (X,, € R, a € 2) such
that sup,, E [X4|" < oo for some r > 0. Show that the family & = {P,;a €
2} of distributions P, = Law (X,,) is tight.

3 Proof of Limit Theorems by the Method of Characteristic
Functions

1. The proofs of the first limit theorems of probability theory—the law of large
numbers, and the de Moivre-Laplace and Poisson theorems for Bernoulli schemes—
were based on direct analysis of the distribution functions F,, which are expressed
rather simply in terms of binomial probabilities. (In the Bernoulli scheme, we are
adding random variables that take only two values, so that in principle we can find
F, explicitly.) However, it is practically impossible to apply a similar direct method
to the study of more complicated random variables.

The first step in proving limit theorems for sums of arbitrarily distributed random
variables was taken by Chebyshev. The inequality that he discovered, and which is
now known as Chebyshev’s inequality, not only makes it possible to give an ele-
mentary proof of James Bernoulli’s law of large numbers, but also lets us establish
very general conditions for this law to hold, when stated in the form

g

for sums S, = & + --- + &,, n > 1, of independent random variables. (See Prob-
lem 2.)

Furthermore, Chebyshev created (and Markov perfected) the “method of mo-
ments” which made it possible to show that the conclusion of the de Moivre-Laplace
theorem, written in the form

S - ES 1 x 2
On — Eon o —u?/2 g (_
{ =5, < x} \/TJ e du (= ®(x)), 2)

is “universal,” in the sense that it is valid under very general hypotheses concerning
the nature of the random variables. For this reason it is known as the Central Limit
Theorem of probability theory.

Somewhat later Lyapunov proposed a different method for proving the central
limit theorem, based on the idea (which goes back to Laplace) of the characteristic
function of a probability distribution. Subsequent developments have shown that
Lyapunov’s method of characteristic functions is extremely effective for proving
the most diverse limit theorems. Consequently it has been extensively developed
and widely applied.

In essence, the method is as follows.

S, ES,

n n

25}—>0, n — o0, everye > (), €))]
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2. We already know (Chap. 2, Sect. 12) that there is a one-to-one correspondence
between distribution functions and characteristic functions. Hence we can study the
properties of distribution functions by using the corresponding characteristic func-
tions. It is a fortunate circumstance that weak convergence F), = F of distributions
is equivalent to pointwise convergence ¢, — ¢ of the corresponding characteristic
functions. Namely, we have the following result, which provides the basic method
of proving theorems on weak convergence for distributions on the real line.

Theorem 1 (Continuity Theorem). Let {F,} be a sequence of distribution functions
F, = F,(x), x € R, and let {¢,} be the corresponding sequence of characteristic
functions,
o0
n(t) = J e dF,(x), teR.
—0a0
() If F, 5 F, where F = F(x) is a distribution function, then ¢, (t) — ©(t), t € R,
where ¢(t) is the characteristic function of F = F(x).
(2) If limy, o, (2) exists for each t € R and p(t) = lim,, ,(¢) is continuous at t = 0,
then ¢(t) is the characteristic function of a probability distribution F = F(x),

and
F,>F.

The proof of conclusion (1) is an immediate consequence of the definition of
weak convergence, applied to the functions Re e?* and Im e,
The proof of (2) requires some preliminary propositions.

Lemma 1. Let {P,} be a tight family of probability measures. Suppose that every
weakly convergent subsequence {P,} of {P,} converges to the same probability
measure P. Then the whole sequence {P,} converges to P.

PROOF. Suppose that P,, -» P. Then there is a bounded continuous function f =
f(x) such that

| 0 Patan) = | 700) Pas).

It follows that there exist £ > 0 and an infinite sequence {n’} < {n} such that

>e>0. 3)

L £() P () — f £(x) P(dx)

By Prokhorov’s theorem (Sect. 2) we can select a subsequence {P,~} of {P,/} such
that P,» > Q, where Q is a probability measure.
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By the hypotheses of the lemma, Q = P, and therefore

| #00 Pustan) = | s Pra).

which leads to a contradiction with (3). This completes the proof of the lemma.
m]

Lemma 2. Let {P,} be a tight family of probability measures on (R, Z(R)). A nec-
essary and sufficient condition for the sequence {P,} to converge weakly to a prob-
ability measure is that for each t € R the limit lim, @, (t) exists, where p,(t) is the
characteristic function of P,:

%m:Lmey

PROOEF. If {P,} is tight, by Prohorov’s theorem there is a subsequence {P, } and
a probability measure P such that P,, -> P. Suppose that the whole sequence {P,}
does not converge to P (P, % P). Then, by Lemma 1, there is a subsequence {P,}
and a probability measure Q such that P,» > Q, and P # Q.

Now we use the existence of lim,, ¢, (¢) for each t € R. Then

n"

limJ e Py (dx) = lim | €™ P, (dx)
n’ R R

and therefore

J e™ P(dx) = f ¢™ Q(dx), teR.
R

R

But the characteristic function determines the distribution uniquely (Theorem 2,
Sect. 12, Chap. 2). Hence P = Q, which contradicts the assumption that P, 5 P.

The converse part of the lemma follows immediately from the definition of weak

convergence.
[}

The following lemma estimates the “tails” of a distribution function in terms of
the behavior of its characteristic function in a neighborhood of zero.

Lemma 3. Let F = F(x) be a distribution function on the real line and let p = (1)
be its characteristic function. Then there is a constant K > 0 such that for every
a>0

J M@ggfh—mﬂmw @)
|x|>1/a a Jo
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PROOF. Since Re ¢() = SOBOO cos tx dF (x), we find by Fubini’s theorem that

JO [ (1 — costx) dF(x)] dt

1
Jm [; 1—wwsmjm]dF()
f

lfU—Mﬂmm=

aJo

= - dF()C),
K Jixi>1/a

. :
——inf (1-22) —1—sin1> 1,
K piz1 y

so that (4) holds with K = 7. This establishes the lemma.

m]

PROOF OF CONCLUSION (2) OF THEOREM 1. Let ¢, (t) — ¢(t), n — oo, where
©(t) is continuous at 0. Let us show that it follows that the family of probability
measures {P,} is tight, where P, is the measure corresponding to F,,.

By (4) and the dominated convergence theorem,

PR (-1 1)} - Jxlzwdm){ [[1-recuonar

LK J:[l — Re ()] dt

a

where

asn — .
Since, by hypothesis, ((¢) is continuous at 0 and ¢(0) = 1, for every ¢ > 0 there
is an a > 0 such that

for all n > 1. Consequently {P,} is tight, and by Lemma 2 there is a probability
measure P such that

Hence
on(t) = J e™ P,(dx) — J ™ P(dx),
-0 -0
but also ¢, () — ©(t). Therefore (¢) is the characteristic function of P.
This completes the proof of the theorem. 0
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Corollary 1. Let {F,} be a sequence of distribution functions and {p,} the corre-
sponding sequence of characteristic functions. Also let F be a distribution function
and o its characteristic function. Then F, = F if and only if ©,(t) — (1) for all
teR.

Remark 1. Let 7,11, 72, . . . be random variables and F,, SF, n- In accordance with
the definition 4 of Sect. 10, Chap. 2, we then say that the random variables n1,m2, . . .
converge to 1 in distribution, and write ), 4, 1.

Since this notation is self-explanatory, we shall frequently use it instead of
F,, 5F n when stating limit theorems.

3. In the next section, Theorem 1 will be applied to prove the central limit theorem
for independent but not identically distributed random variables. We will prove it as-
suming the condition known as Lindeberg’s condition. Then we will show that Lya-
pounov’s condition implies Lindeberg’s condition. In the present section we shall
merely apply the method of characteristic functions to prove some simple limit the-
orems.

Theorem 2 (Khinchin’s Law of Large Numbers). Let £1,&o, ... be a sequence of
independent identically distributed random variables with E |1| < o0, S, = & +
oo+ & and EEy = m. Then S,,/n—P>m, that is, for every e > 0

n

P{Sm’ZE}HO, n — oo.

n

PROOF. Let ¢(t) = E e and g, ,(f) = Ee™/". Since the random variables are

independent, we have
t n
esmlt) = ¢ (5]

by (6) of Sect. 12, Chap. 2. But according to (14) of Sect. 12, Chap. 2
o(t) =1+itm+o(t), t— 0.

Therefore for each given 7 € R

t R 1
go(f)=1+lfm+0 -], n— o,
n n n

t 1 n )
Ps,/n(t) = [1 +i-m+o ()] _y oim
n n

itm

and therefore

The function (1) = ¢ is continuous at 0 and is the characteristic function of the
degenerate probability distribution that is concentrated at m. Therefore



3 Proof of Limit Theorems by the Method of Characteristic Functions 393
and consequently (see Problem 7 in Sect. 10, Chap. 2)

S, P
— —m.
n

This completes the proof of the theorem.
O

Theorem 3 (Central Limit Theorem for Independent Identically Distributed
Random Variables). Let £1,&a, ... be a sequence of independent identically dis-
tributed (nondegenerate) random variables with E£? < co and S, = &, + -+ + &,.
Then as n — o0

S, —ES
p{_— < — R 5
{Bom <) e, xer ®)
where ) .
(x) = — /2 gy,
(x) 27TJ—ooe u

PROOF. Let E¢; = m, Varé; = o2 and

o(t) = Ee&—m),

Then if we put

(1) =Ee iS5 —ES

n = X T A —a (0
i P 4/ Var S,
we find that
(t) B t n

©n =¥ U\/;l .

But by (14) of Sect. 12, Chap. 2
22
olt) = 1—07—&-0@2), t—0

Therefore

0'212 1 " 2
W) =[1- 22 = I
onlt) [ Mw(ﬂ)] et

as n — oo for fixed 1.
The function e~*"/2 is the characteristic function of a normally distributed ran-
dom variable with mean zero and unit variance (denoted by .#7(0,1)). This, by
Theorem 1, establishes (5). In accordance with Remark 1 this can also be written in
the form
S, —ES, 4
4/ Var S,

This completes the proof of the theorem.
|

A(0,1). (6)
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The preceding two theorems have dealt with the behavior of the probabilities of
(normalized and centered) sums of independent and identically distributed random
variables. However, in order to state Poisson’s theorem (Sect. 6, Chap. 1) we have
to use a more general model.

Let us suppose that for each n > 1 we are given independent random variables
&1,y - - -5 Ean- In other words, let there be given a triangular array

&1
a1, E22
31, €32, E33

of random variables, those in each row being independent. Put S,, = £,1 + - - - + &

Theorem 4 (Poisson’s Theorem). For each n > 1 let the independent random vari-
ables &1, . . ., Eqn be such that

P(gnk = 1) = Pnk, P(é.nk = O) = qnk

with pa. + que = 1. Suppose that
n

max -0 Z —>A>0, n— oo
1§k§npnk ) k_lpnk )

Then, for eachm = 0,1,.. .,

e\

m!

P(S, =m) — , n— 0. @)

PROOE. Since A A
E e = pue’ + qu

for 1 < k < n, we have
©s, (t) = EeitS,, = H(Pnkeit + QHk)
k=1
=[]0 +pule’ — 1)) = expfr(e = 1)}, n— 0.
k=1

The function ¢ () = exp{\(e”—1)} is the characteristic function of the Poisson dis-
tribution (Example 3 in Sect. 12, Chap. 2), so that (7) is established. This completes
the proof of the theorem.

O

If () denotes a Poisson random variable with parameter A, then (7) can be
written like (6), in the form

Su iﬂ(/\).
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4. PROBLEMS

1. Prove Theorem 1 for R*, n > 2.

2. Let&y, &, . . . be asequence of independent random variables with finite means
E |¢,| and variances Var &, such that Var §, < K < oo, where K is a constant.
Use Chebyshev’s inequality to prove the law of large numbers (1).

3. In Corollary 1, show that the family {,} is uniformly continuous and that
wn — @ uniformly on every finite interval.

4. Let&,, n > 1, be random variables with characteristic functions ¢, (t), n>1.

Show that &, < 0if and only if ¢, (1) — 1, n — o0, in some neighborhood of

t=0.

5. Let X;,Xs, ... be a sequence of independent identically distributed random
vectors (with values in R¥) with mean zero and (finite) covariance matrix T.
Show that

Xi+ -+ X d

N A (0,T).

(Compare with Theorem 3.)
6. Let £1,&2,... and 11,79, ... be sequences of random variables such that &,

and 7, are independent for each n. Suppose that &, 4, & 4, nasn — o,
where ¢ and 7 are independent. Prove that the sequence of two-dimensional
random variables (&,,7,) converges in distribution to (£, 7).
Let f = f(x,y) be a continuous function. Verify that the sequence
f(&,,m,) converges in distribution to f(&, ).
7. Show by an example that in the statement (2) of Theorem 1 the condition of
continuity at zero of the “limiting” characteristic function () = li’£n on(2)

cannot be, in general, relaxed. (In other words, if the characteristic function
©(t) of F is not continuous at zero, then it is possible that ¢, (1) — ©(z), but
F, ~ F.) Establish by an example that without continuity of ¢(¢) at zero the
tightness property of the family of distributions P,, with characteristic func-
tions ¢, (t), n > 1, may fail.

4 Central Limit Theorem for Sums of Independent Random
Variables: I—Lindeberg’s Condition

In this section we prove the Central Limit Theorem for (normalized and centered)
sums S, of independent random variables &1, &s, ..., &,, n > 1, under the classical
Lindeberg condition. In the next section we will consider a more general set-up: first,
the Central Limit Theorem will be stated for a “triangle array” of random variables,
and, secondly, it will be proved under the so-called non-classical conditions.

Theorem 1. Let £1,&o, . .. be a sequence of independent random variables with fi-
nite second moments. Let m;, = E¢&, 0,? = Var& > 0,8, = &+ -+ &,
D? =Y_, of and let Fy = Fy(x) be the distribution function of &.

Suppose that the following “Lindeberg’s condition” holds: for any e > 0
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1 n
L = f (x— m)2dF(x) » 0, n—w. (1)
Drzz ];1 {x: |x—my|>eD,}
Then S _Es
n n d
— — A4(0,1). 2
4/ Var S, 0,1) @)
PrROOF. Without loss of generality we may assume that m; = 0, k > 1. Denote
pul1) = ", T, = sl = .05, (1) = B, r, (1) = E€™.
Then
_ BTy _ E itSi/Dn _ N L *
or,(t) =Ee"" =Ee —%OS”(D) —kljlgok(Dn) 3)

and by Theorem 1 of Sect. 3 for the proof of (2) it suffices to show that for any 7 € R

or,(t) —> e , n— 0. (@)

9 2
e‘V—l—i-iy-i-—l?y ,

2 3

y* 02y
LA =4 2
e +1 5 30

which hold for any real y with some 6; = 6;(y), 82 = 05(y) such that |0;] < 1,
|f2] < 1, we find that

o0

2
oi(t) = Ee" = J 91(56)

—00

e dFy(x) = f 1+ i+

[x|>eDy

t2 2 05t 3
+J (1 i 2 Bl )dFk(x)
|x|<eD, 2 6

)dFk (x)

2 2 |t|3

t f f
=1+ 0,x dFk(x)f—f x? dFy (x) + J O2)x|® dFy(x)
2 Jiy>en, 2 Jixj<ep, 6 Jix<en,

(we have used here that m;, = Siooo xdF;(x) = 0 by assumption).
Therefore

t 12 9 12 9
(pk<f) =1—-— X dFk(x) + — 91)6 dFk(x)
D, 2D3 |x|<eD, 2D1% |x|>eD,
1P | .
— 0o |x|° dFy(x). (5)
6D2 |x|<eD,
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Since ) )
bf 01x2dFk(x)’ < §J x? dFy(x),
|x|>eD, |x|>eD,
we have )
3 J 01x° dFi(x) = 6, J X2 dF(x), (6)
|x|>eD, |x|>eD,

where 01 = 6, (1, k,n) and |0, | < 1/2.
In the same way

=6 x|

1 1 D, 1
‘f f 02|x|3dFk(x)’ < f S x3 dF(x) < - f eD,x? dFy(x)
6 Jjx<eD, x| <eD, 6 Jjx<eD,

and therefore

1 .
- J O2)x|? dFi(x) = 6, f eD,x* dFi(x), (7
6 Jixj<en, x| <eD,

where 0y = 05 (t,k,n) and 05| < 1/6.
Now let

1 1
Ak,, = 7J x2 dFk(x), Bkn = —= f x2 dFk(x).
Dy Jj<en, D} Jj>en,

n n

Then by (5)~(7)

t 12 Awn ~ ~
@k(ﬁ) =1 Tk + IQHIBkn + |l|3€92Akn (= 1+ Ckn)~ (8)
Note that .
Z (Akn + Bkn) =1 (9)
k=1

and according to Condition (1)
> B —0, n— . (10)
k=1

Therefore for all sufficiently large n

< 2.2 3
112?%<n|Ck,,| < t%e” + et an
and
n
DGl < 2 + et (12)

k=1
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Now we use that for any complex number z with |z| < 1/2
log(1 +2z) =z + 0|z,

where 6 = 6(z) with |#] < 1 and log is the principal value of the logarithm (log z =
log |z| + iargz, —m < argz < 7). Then (8) and (11) imply that for small enough
€ > 0 and sufficiently large n

t
log ¢k<5) — 1og(1 + Cin) = Cin + Opn| Cin?,

where |6,| < 1. Therefore we obtain from (3) that

2

%—i—logngH()* —-&- Zlogtpk( ) = *+2Ckn+ Zekn|ckn

But

*"-anckn (1—2Akn>+t 201tkn)Bkn

k=1

n
+ €‘t|3 Z 92(t7 k7 n)Aer
k=1

and in view of (9), (10) for any § > 0 we can find a large enough ny and an € > 0
such that for all n > ng
2 - Z Cin| <

- 2
Next, by (11) and (12)

n n
’ Z an\Ckn|2‘ < ax |Crn] - 2 |G| < (262 + €]t]?) (2 + €|t]?).
k=1 =t= k=1
Therefore for sufficiently large n we can choose € > 0 to satisfy the inequality

‘Zekn\ckn ' g

so that
2
‘5 + logapT”(t)‘ < 4.
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Thus for any real ¢

t2/2 _ 1

or,(t)e

)

hence )
or,(t) > e’ 2 n— .

[}

2. Consider some particular cases where Lindeberg’s condition (1) is fulfilled, so
that the Central Limit Theorem is valid.

(a) Suppose that Lyapunov’s condition holds, i.e., for some § > 0

1
—5 Z El& —mi**° >0, n— . (13)
Dyt o
Take an € > 0, then
0
E|§k—mk|2+5 = J \x—mk|2+5dFk(x)
— 00
> f [k — 2 dFy(x)
{x: |x—mi|>eD,}
> €6DZJ (x — my)? dFy(x),
{x: |x—m|>eD,}
consequently
L anJ (x—mk) dFk( ) l L anE|fk—mk|2+5.
D% k=1 J{x: [x—my|>eD,} el D3+5 k=1

Therefore Lyapunov’s condition implies Lindeberg’s condition.
(b) Let&y, &, . .. be independent identically distributed random variables with m =
E ¢, and variance 0 < 02 = Var&; < c0. Then

n
|x—m|? dF;.(x)= J lx—m|? dF; (x)—0,
D*% chIJX [x—m|>eDy} no? x: |x—m|>eo2/n}
since {x: [x —m| > eo?\/n} | &, n— wand o? = E[& —m|? < 0.

Thus Lindeberg’s condition is fulfilled and hence Theorem 3 of Sect.3

follows from Theorem 1 just proved.
(c) Let &y, &, . .. be independent random variables such that for all n > 1

€] < K < o0,

where K is a constant and D,, — o0 as n — 0.
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Then by Chebyshev’s inequality

f b — me 2 dFy(x) = E[(& — m0)? 1(& — mg] > eD,)]
{x: |x—my|>eDy}

2
o
< (2[()2 P{|& — mi| > eD,} < (2K)262lk)2.
Hence
1< 2K)?
7ZJ lx — my|2dFi(x) < (2 )2 —0, n— .
Dn k=1 Y{x: |x—m|>eD,} € Dn

Therefore Lindeberg’s condition is again fulfilled, so that the Central Limit Theorem
holds.

3. Remark 1. Let 7, = S;# and Fr,(x) = P(T, < x). Then the statement (2)
means that for any x € R

Fr,(x) > ®(x), n— oo.
Since ®(x) is continuous, convergence here is uniform (Problem 5 in Sect. 1), i.e.,

sup |Fr,(x) — ®(x)] - 0, n — oo. (14)

XER
In particular, this implies that

x—ES,

P{s, §x}—<I>( -

)—>0, n — oo.

This fact is often stated by saying that S, for sufficiently large n is approximately
normally distributed with mean E S,, and variance Dg = Vars,.

Remark 2. Since by the above remark convergence Fr, (x) — ®(x), n — o0, is uni-
form in x, it is natural to ask about the rate of convergence in (14). When &1,&o, . ..
are independent identically distributed random variables with E |&; |3 < o, the an-
swer to this question is given by the Berry—Esseen theorem (inequality):

El¢& —E&
ady/m

where C is a universal constant whose exact value is unknown so far. At present the
following inequalities for this constant are known:

V10+ 3
621

(the lower bound was obtained by Esseen [29], for the upper bound see [87]).
The proof of (15) is given in Sect. 11 below.

sup |Fr,(x) — ®(x)| < C (15)

0.4097 = < C <0.469



4 Central Limit Theorem: I 401

Remark 3. Now we state Lindeberg’s condition in a somewhat different (and even
more compact) form, which is especially appropriate in the case of a “triangle array”
of random variables.

Let &1, &9, ... be a sequence of independent random variables, let m;, = E &,
of = Var&, D2 = Y7 0t > 0,n > 1, and & = &I;—’"‘ With this notation
Condition (1) takes the form

L D E[I(Ign] = €)] —0, n— oo, (16)
k=1

IfS, = &+ - +&m, then Var S, = 1 and Theorem 1 says that under Condition (16)
d
Sy — A(0,1).

In this form the Central Limit Theorem is true without assuming that &,;’s have
the special form f‘gﬂ In fact, the following result holds, which can be proved by
repeating word by word the proof of Theorem 1.

Theorem 2. Let for eachn > 1

§n17§n2, s agrm

be independent random variables such that E &, = 0 and Var S, = 1, where S,, =
fnl + -+ Enrr
Then Lindeberg’s condition (16) is sufficient for convergence S, N4 (0,1).

4. Since

2 2 2
lrgka%{n Egnk S €+ ];1 E[Enkl(‘gn” 2 5)],

it is clear that Lindeberg’s condition (16) implies that

2 _, —
1%1?; E¢,— 0, n— oo 17

Remarkably, subject to this condition the validity of the Central Limit Theorem
automatically implies Lindeberg’s condition.

Theorem 3. Let for eachn > 1

gnlvana s agnn

be independent random variables such that E &, = 0 and Var S, = 1, where S,, =
En1+- - -+ & Suppose that (17) is fulfilled. Then Lindeberg’s condition is necessary

and sufficient for the Central Limit Theorem, S, N4 (0, 1), to hold.

Sufficiency follows from Theorem 2. For the proof of the necessity part we will
need the following lemma (cf. Lemma 3 in Sect. 3).
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Lemma. Let £ be a random variable with distribution function F = F(x), E{ = 0,
Var & = v > 0. Then for any a > 0

| ware < 5 her(voa) - 1+ 31, as)
|x|>1/a a

where f(t) = E e is the characteristic function of €.

PROOF. We have
L oo 1 5 ”
Ref(t)71+§’yt =57 - [1fcostx dF(x)

1
=~y — J [1 — costx] dF(x J [1 — costx] dF(x)
2 Ix|<1/a \x|>1/a

1 1
— N2 — ¢ f x* dF (x 2a2f x*dF (x)
2 2 Jii<1/a IX|[>1/a

(; 2 _ ) Lma X2 dF(x).

Letting ¢t = +/6a we obtain (18).
O

v

Now we turn to the proof of necessity in Theorem 3. Let

Fu(x) = P{&w < x},  fu(r) = Ee™,

E&y =0, Varé&y = v > 0,
Enk Enk = Ynk 19)

E’Ynk=1, maXVnk—’O n— .
1<k<n

Let log z denote the principal value of the logarithm of a complex number z (i.e.,
logz =log|z| + iargz, —m < argz < 7). Then

log nfnk Z log fu(t) + 2mim,
k=1
where m = m(n, t) is an integer. Hence
Relog [ [fiu(t) = Re Y log fu(1). (20)
k=1 k=1

Since
n 1.2
[ [fu() = €27,
k=1

we have
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[ Twt0] > e
k=1

Hence
n n 1
Relog ank(t) = Relog’ nfnk(t)’ — —§t2. 21
k=1 k=1
For |z] < 1
2 2
log(1+z)=Z*§+§f“., (22)

and for |z| < 1/2
|log(1 +2) — 2| < 2. (23)

By (19), for any fixed ¢ and all sufficiently large n we have

1 1
lf()_1|< Wnk 5 k=1,2,...,n. 24)

Hence we obtain from (23), (24)

| sl + () = 0] = G = 1] < 2 a1

< Z rggg Yok * E’Ynk—* max ’ynk—>0 n— o,
therefore
‘ReZlogfnk(t)—ReZ(f,,k(t)—l)‘HO, n— 0. (25)
k=1 k=1

Now (20), (21) and (25) imply that

- 1 - 1
R k() — 1)+ =12 = Refu(t) — 14 = 2yu| — 0, n— .
e 3 0n(0) =)+ 5 = 3 [Refutt) =1+ 5% n— o

Letting t = v/6a we find that for any a > 0

n

> [Refu(V6a) — 1+ 3ayu] — 0, n— oo (26)

k=1
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Finally, we obtain from (26) and (18) with a = 1/ that

Z E gnkl |§nk| > 5 Z J- X ank )

|x|>e

<2 Y [Reful(vBa) — 1 + 3] = 0, n— oz,
k=1

which proves Lindeberg’s condition.
|

5. PROBLEMS

1. Let &,&,... be a sequence of independent identically distributed random
variables with E £2 < oo. Show that

(E} |\5}) 0, n— oo.

2. Give a direct proof of the fact that in the Bernoulli scheme sup, |Fr, (x) — ®(x)|
is of order 1/4/n as n — oo.

3. Let X;,X5,... be a sequence of exchangeable random variables (see Prob-
lem 4 in Sect. 5 of Chap. 2) with EX; = 0, EX% =1 and

Cov(X1,Xz2) = Cov(X7, X3). 27

Prove that they obey the Central Limit Theorem,
1 & d
— 31X 5 4(0,1). (28)
i3

Conversely, if EX,? < o0 and (28) holds, then (27) is fulfilled.

4. Local Central Limit Theorem. Let X1, Xo, ... be independent identically dis-
tributed random variables with EX; = 0, EXf = 1. Assume that their charac-
teristic function ¢(t) = E ¢ satisfies the condition

o0
f lp(#)|"dt < o for some r > 1.

—a0
Show that the random variables S,,/1/n have densities f;,(x) such that
falx) — (27r)_1/26_x2/2, n — oo, uniformly inx € R.
What is the corresponding result for lattice random variables?

5. Let X1, Xs, ... be independent identically distributed random variables with
EX: = 0, EX} = 1. Let d?,d3,... be nonnegative constants such that
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d, =o0(D,), where D2 = Y, d?. Show that the sequence of the weighted
random variables dy X1, d>Xs, . .. fulfills the Central Limit Theorem:

— Z diXe 5 4 (0,1).

”kl

6. Let &1,&9, ... be independent identically distributed random variables with
E¢ =0,E&f = 1. Let (Ta)n>1 be a sequence of random variables taking

values 1,2, ... such that 7, /n P, ¢, where ¢ > 0 is a constant. Show that
Law(7r, Y/2S,) — ®, whereS, =& +--- + &,

(e /%S, 5 #(0,1)). (Note that it is not assumed that the sequences

(Tw)n>1 and (§,),>1 are independent.)

7. Let &1,&o, ... be independent identically distributed random variables with
E¢& =0, E¢Z = 1. Prove that

—1/2 N ~
Law(n 11%13§nsm) Law(|£|), where & ~ 47(0,1).

In other words, for x > 0,

P{n—l/z 1213%(”5’” < x} . \/E-E e /2 dy (: % erf(x)).

Hint: Establish first that this statement holds for symmetric Bernoulli random
variables &1, o, . . ., i.e., such that P(§, = +1) = 1/2, and then prove that the
limiting distribution will be the same for any sequence &7, &5, . . . satisfying the
conditions of the problem. (The property that the limiting distribution does not
depend on the specific choice of independent identically distributed random
variables &1,&s,... with E¢; = 0, E€2 = 1 is known as the “invariance
principle,” cf. Sect.7.)
8. Under the conditions of the previous problem prove that

F’{}fl/2 max [Spy| <x} — H(x), x>0,

1<m<n
where
_ 4 i { (2k + 1)27r2}
— expy ————¢.
™ &2k + 1P 8x2
9. Let X1, Xo, ... be a sequence of independent random variables with

1 1
P{X, = +n%} = 5B P{X,=0}=1- e where 2o > 3 — 1.

Show that Lindeberg’s condition is fulfilled if and only if 0 < 3 < 1.
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10.

11.

12.

13.

3 Convergence of Probability Measures. Central Limit Theorem

Let X;,Xs,... be a sequence of independent random variables such that
|X,| < C, (P-a.s.) and C, = o(D,,), where

D? = Y E(X, —EX,)* - 0.

k=1
Show that
n E n
S}% — A4(0,1), where S, =X; + - +X,.
Let X1, X5, ... be a sequence of independent random variables with EX,, = 0,

E X2 = 02. Assume that they obey the Central Limit Theorem and

k
- 2k)!
E (Dn_l/2 Z;X,) — (Qkk)! for some k > 1.
-

Show that in this case Lindeberg’s condition of order & holds, i.e.,

n

ZJ xCdFy(x) = o(DL), &> 0.
U

(The ordinary Lindeberg’s condition corresponds to k = 2, see (1).)
Let X = X(\) and Y = Y(u) be independent random variables having the
Poisson distributions with parameters A and p respectively. Show that

(XN =) = (Y(p) — )

— A4(0,1) as A — o0, u — 0.
X(A) +Y(p)

Let XY'), . ,X,S'i)l for any n > 1 be an (n + 1)-dimensional random vec-
tor uniformly distributed on the unit sphere. Prove the following “Poincaré’s
theorem™:

1 * 2
lim P{v/n X", <x} = —J e 2 du.
o {\F n+1 = } /27T' —w»

5 Central Limit Theorem for Sums of Independent Random
Variables: II—Nonclassical Conditions

1. It was shown in Sect. 4 that the Lindeberg condition (16) of Sect. 4 implies that
the condition

2
max E&5, — 0
i<k<n gnk
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is satisfied. In turn, this implies the so-called condition of asymptotic negligibility,
that is, the condition that for every ¢ > 0,

P > .
max {l&u] = et =0, n—ow

Consequently, we may say that Theorems 1 and 2 of Sect. 4 provide a condition of
validity of the central limit theorem for sums of independent random variables under
the condition of asymptotic negligibility. Limit theorems in which the condition of
asymptotic negligibility is imposed on individual terms are usually called theorems
with a classical formulation. It is easy, however, to give examples of nondegenerate
random variables for which neither the Lindeberg condition nor the asymptotic neg-
ligibility condition is satisfied, but nevertheless the central limit theorem is satisfied.
Here is the simplest example.

Let &1,&o, ... be a sequence of independent normally distributed random vari-
ables withEE, = 0, Varé; =1, Varg = 282, k> 2. LetS, =& + - + Em
with

Sk = &k

It is easily verified that here neither the Lindeberg condition nor the asymptotic
negligibility condition is satisfied, although the validity of the central limit theorem
is evident, since S, is normally distributed with E S, = 0 and Var §,, = 1.

Theorem 1 (below) provides a sufficient (and necessary) condition for the central
limit theorem without assuming the “classical” condition of asymptotic negligibil-
ity. In this sense, condition (A), presented below, is an example of “nonclassical”
conditions which reflect the title of this section.

2. We shall suppose that we are given a “triangle array” of random variables, i.e.,
for each n > 1 we have n independent random variables

fnla 5112; RN §nn

withE&y =0, Var&y =02 >0, Y, _ 0% = 1. LetS, =& + -+ + &

Fule) = Plew <), #() = 202 [ ey aut) @ ().

Onk

Theorem 1. 7o have
S, > A (0,1), ()

it is sufficient (and necessary) that for every € > 0 the condition

() EJ [ [Fai () — B0 dx — 0, 1 — o0, o)

|x|>e

is satisfied.
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The following theorem clarifies the connection between condition (A) and the
classical Lindeberg condition

(L) ZJ X2 dFy(x) = 0, n— . (3)
k=1 |x|>¢

Theorem 2. 1. The Lindeberg condition implies that condition (A) is satisfied:
(L) = (A).
2. If maxi <4<, E€% — 0asn — oo, the condition (M) implies the Lindeberg
condition (L):
(A) = (L).

PROOF OF THEOREM 1. The proof of the necessity of condition (A) is rather com-
plicated (see [63, 82, 99]). Here we only prove the sufficiency.
Let
fu(t) = Ee™n, fu(t) = Ee™,

ouelt) = f T ), () = f © o (),

—0 —0
It follows from Sect. 12 of Chap. 2 that
Spnk(t) — e_(lzofk)/2’ (p(l) — 6_12/2.

By the corollary of Theorem 1 of Sect.3 , we have S, Loy (0,1) if and only if
() — () as n — oo, for every real t.

We have i
1) Hf,,k —[Tem
k=1

Since | (#)| < 1 and |pu(2)| < 1, we have

1fu(2) \—

nk ﬁ Prk (t)
k=
S Z Vnk( <pnk Z
k=1

J ”xd nk - q)nk)

0 t2 2
2 J < —itx + ) d(Fnk (I),,k) s
— o 2

k=1

“)




5 Central Limit Theorem for Sums of Independent Random Variables: 11 409

where we have used the fact that
o0 Q0
f xKdF . = J *dd,,  for k=1,2.
—00 —0

If we apply the formula for integration by parts (Theorem 11 in Sect. 6, Chap. 2)

to the integral
by 252
J- (e”x —itx + 2) d(Fnk — (I)nk)y

we obtain (taking account of the limits x?[1 — F(x) + Fu(—x)] — 0, and x?[1 —
D (x) + Dpp(—x)] = 0, x > ©)

o A 252
J (e”x —itx + ) d(Fnk — (I)nk)
Y 2

=it JOO (€™ — 1 — itx) (Fur(x) — ®e(x)) dx. Q)

—0
From (4) and (5), we obtain

n

(1) = (0] <

k=1

3
‘t| ZJ |x| |Fnk - nk( )‘dx

x| <e

1o Z J ] Fo () — B ()|

|x|>e

tf (€™ — 1 — itx) (Fo(x) — @pi(x))| dx

—0

< ele? Zakwﬁzf x||[Fue(x) — @i (x)| dx,  (6)

|x]|>e

where we have used the inequality
J. o)~ @ < 207 @
x|<e

which is easily established by using the formula (71) in Sect. 6, Chap. 2.

It follows from (6) that f;,(#) — ¢(¢) as n — o0, because ¢ is an arbitrary positive
number and condition (A) is satisfied.

This completes the proof of the theorem.

O

PROOF OF THEOREM 2. 1. According to Sect. 4, Lindeberg’s condition (L) implies
that max; <4<, 02 — 0. Hence, if we use the fact that >} _, 0% = 1, we obtain

> J X2 d®(x) < J 2dd(x) >0, n—ow. (8)
k=1 x[>e |x|>e/4/max; <x<, 02
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Together with Condition (L), this shows that, for every € > 0,

J x? d[Fu(x) + @, (x)] — 0, n — oo. )

k=1 x|>¢

Let us fix ¢ > 0. Then there is a continuous differentiable even function & = h(x)
for which |h(x)| < x2, |I'(x)| < 4x, and

X2, x| > 2,
hx) = { 0, [l <e.
For h(x), we have by (9)
3 J h(x) d[Fue(x) + B(x)] — 0, 11— . (10)
k=1 x[>e

By integrating by parts in (10), we obtain
[ RO~ Fu) + (1= Bl e
k=1vx2¢€
= Z J h(x) d[Fnk + (I)nk] —> 07
k=1vx=e

i f ]’l/()C) [Fnk('x) + (I)'lk(x)] dx = i h(x) d[Fnk + (I)nk] - 0
k=1Jx<—€ k=1

x<—¢

Since /' (x) = 2x for |x| > 2e, we obtain

3 fl ()~ @l ds =0, oo
k=1 X| =2 <€

Therefore, since ¢ is an arbitrary positive number, we find that (L) = (A).
2. For the function & = h(x) introduced above, we find by (8) and the condition
maxi<i<n Ur?k — 0 that

ZJ h(x) dBpe(x) < Zf Rdby(x) >0, n—ooo. (1)
k=1 Y x|>¢

k=1 x|>e
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If we integrate by parts, we obtain

< Z J h(x)d[(1 — Fu) — (1 — $)]
k=1vx2e

3 J h(x) d[Fo — D]
k=1Yx<—¢

N f' ) dlFu )

+

<2j WO = Fu) = (1= )]l dx
+Zf W ()| — D]

<4 Z J ||| Ft (x) — @i (x)] dlx. (12)

|x|>e

It follows from (11) and (12) that

Z f x* dFy(x) < Z J h(x) dF(x) = 0, n— oo,
|x|>2e |x|>e

i.e., the Lindeberg condition (L) is satisfied.
This completes the proof of the theorem. i

3. PROBLEMS

1. Establish formula (5).

2. Verify relations (10) and (12).

3. Let N = (N;);>0 be a renewal process introduced in Subsection 4 of Sect. 9,
Chap. 2 (N, = Zle (T, <1),T, =01+ + 0, Where 01,09,... isa
sequence of independent identically distributed random variables). Assuming
that 4 = Eo; < o0, 0 < Varo; < oo prove the following central limit

theorem for N:
gty

— = 5 ¥(0,1),
A/ t=3 Var o1

where .47(0, 1) is a normal random variable with zero mean and unit variance.

6 Infinitely Divisible and Stable Distributions

1. In stating Poisson’s theorem in Sect. 3 we found it necessary to use a triangular
array, supposing that for each n > 1 there was a sequence of independent random
variables {£,+},1 <k <n.
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Put
T,=&1+ - +&n n>1 (1)

The idea of an infinitely divisible distribution arises in the following problem:
how can we determine all the distributions that can be expressed as limits of se-
quences of distributions of random variables 7,,, n > 1?

Generally speaking, the problem of limit distributions is indeterminate in such
great generality. Indeed, if £ is a random variable and §, 1 = &, §,x = 0,1 < k <,
then 7,, = ¢ and consequently the limit distribution is the distribution of &, which
can be arbitrary.

In order to have a more meaningful problem, we shall suppose in the present
section that the variables &, 1, ..., &, are, for each n > 1, not only independent,
but also identically distributed.

Recall that this was the situation in Poisson’s theorem (Theorem 4 of Sect. 3).
The same framework also includes the central limit theorem (Theorem 3 of Sect. 3)
for sums Sy = & + -+ + &,, n > 1, of independent identically distributed random
variables &1, &5, . .. . In fact, if we put

& — E&

, D?>=Var§
Var, n A Ony

gn,k =

then

- S, —ES
Tn = Z En,k = A-
k=1 Dy

Consequently both the normal and the Poisson distributions can be presented as

limits in a triangular array. If 7, < T, it is intuitively clear that since 7}, is a sum of
independent identically distributed random variables, the limit variable 7 must also
be a sum of independent identically distributed random variables. With this in mind,
we introduce the following definition.

Definition 1. A random variable T, its distribution Fr, and its characteristic function
or are said to be infinitely divisible 1if, for each n > 1, there are independent

identically distributed random variables 7y, . . . , 7, such that* T 4 -+ -+, (or,
equivalently, Fr = Fy), % --- % Fp , or or = (¢, )").

Remark 1. If the basic probability space on which T is defined is “poor” enough,
it may happen that the distribution function Fr and its characteristic function 7
admit the representations Fy = F x ...+ F(") (n times) and o7 = ()" with
some distribution functions F and their characteristic functions <p(”), whereas the
representation 7 4 n1+- - -+, is impossible. J.L. Doob (see [34]) gave an example
of such a “poor” probability space on which a random variable T is defined having
the Poisson distribution with parameter A = 1 (which is infinitely divisible because
Fr = F® % ...« F with distribution functions F of the Poisson distribution

* The notation & 4 n means that the random variables £ and 7 agree in distribution, i.e., F¢(x) =
Fy(x), xeR.
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with parameter A = 1/n) but there are no random variables 7, and 72 having the
Poisson distribution with parameter A = 1/2.

Having all this in mind, we stress that the above Definition 1 actually tacitely as-
sumes that the probability space (£2,.%, P) is sufficiently “rich” to avoid the effects
pointed out by J.L. Doob (Problem 11).

Theorem 1. A random variable T can be a limit in distribution of sums T, =
22:1 &k if and only if T is infinitely divisible.

PROOF. If T is infinitely divisible, for each n > 1 there are independent identically
distributed random variables &, 1, ..., &, such that T 4 &1+ - + &g, and this
means that Ti T,, n>1.

Conversely, let T}, 2, T. Let us show that T is infinitely divisible, i.e., for each k
there are independent identically distributed random variables 7y, . . ., 7 such that
d
T=m+-+m .
. 1
Choose a k > 1 and represent T, = Z?il &nk,i in the form §,$ b4 C,E ),
where

C,El) = gnk,l + -+ fnk,m ey C,Ek) = §nk,l1(k—1)+1 +-- gnk,nk~

. d . . .
Since T,x — T, n — o0, the sequence of distribution functions corresponding to the
random variables Ty, n > 1, is relatively compact and therefore, by Prohorov’s
theorem, is tight (Sect. 2). Moreover,

P > )] =PV > z,...,¢M > 2) <P(Twu > k2)
and

[P < =) =P < —z,..., ¢ < —2) <P(Tyy < —k).

The family of distributions for C,Sl), n > 1, is tight because of the preceding two in-
equalities and because the family of distributions for T,;, n > 1, is tight. Therefore
there is a subsequence {n;} — {n} and a random vector (71, . .., 7 ), which without
loss of generality may be assumed to be defined on our “rich” probability space,
such that

d
(e G0 S (i),
or, equivalently, that

. 5 .
Eez(AlC,gfl)+~--+AkC,§/)) . Ee’(AlnlJr"'Jr/\Mk)

for any A1, ..., \x € R. Since the variables C,Sjl), e ,,(jk) are independent,

i (1) 4 ... (k) i (1) i, ¢ (K . ;
E /MGy Tt MGT) g MG E MG E e L E M

Therefore
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E ei()\ln1+"'+)\knk) = EMM .. E oM

and by Theorem 4 of Sect. 12, Chap. 2, 01, . . ., 1 are independent. Clearly, they are
identically distributed.
Thus we have

Tn_,»k:C,E,I) ++C)§,k) 1’771++77k
and moreover T, <4 Consequently (Problem 1)

d
T=m+- 4k

This completes the proof of the theorem.
m]

Remark 2. The conclusion of the theorem remains valid if we replace the hypoth-
esis that &, 1, ..., &, are identically distributed for each n > 1 by the condition of
their asymptotic negligibility max; <<, P{|&u| > €} — 0.

2. To test whether a given random variable T is infinitely divisible, it is simplest
to begin with its characteristic function (¢). If we can find characteristic functions
©n (1) such that o(7) = [¢,(7)]" for every n > 1, then T is infinitely divisible.
In the Gaussian case,
o(t) = eirmef(1/2)t202

)

and if we put
Sﬁn(t) _ eitm/nef(1/2)t202/n’

we see at once that p(t) = [¢,(2)]".
In the Poisson case,

o(t) = exp{A(e” — 1)},

and if we put ¢, (t) = exp{(\/n)(e" — 1)} then ¢(t) = [, (2)]".
If a random variable T has a ['-distribution with density

xa—le—x/ﬁ
r ¢ x>0,

r o’
OER IR
0, x <0,
then (see Table 2.5, Sect. 12, Chap. 2) its characteristic function is

1
A= T
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Consequently ¢(7) = [¢n(7)]" where

1
w\l) = ———~—7,
SD () (1—lﬂl)a/”
and therefore T is infinitely divisible.
We quote without proof the following result on the general form of the charac-
teristic functions of infinitely divisible distributions.

Theorem 2 (Kolmogorov-Lévy—Khinchin Representation). A random variable T
is infinitely divisible if and only if its characteristic function has the form ¢(t) =
exp ¥ (t) with

2 2 Q0 . 2
¢<t):itﬁ—t—a+f (e"’*—l e )1” dA(x), @)

2 . 142 x2

where 3 € R, 02 > 0 and \ is a measure on (R, Z(R)) with \{0} = 0.

3. Let &1,&,, ... be a sequence of independent identically distributed random vari-
ablesand S, = & + - - - + &,. Suppose that there are constants b, and a, > 0, and a
random variable T, such that

Sn_bn

an

4T, 3)

We ask for a description of the distributions (random variables 7)) that can be ob-
tained as limit distributions in (3).

If the random variables &1, &, . .. satisfy 0 < 02 = Var&; < oo, then if we put
b, = nE¢& and a, = o+/n, we find by Sect.4 that T has the normal distribution

A(0,1).
If f(x) = 0/m(x®> + #?) is the Cauchy density (with parameter § > 0) and
&1,&, ... are independent random variables with density f(x), the characteristic

function ¢, (1) is equal to eIl and therefore @s,/n(t) = (e~ Oll/myn = =0l je.,
S,/n also has the Cauchy distribution (with the same parameter 6).

Consequently there are other limit distributions besides the normal, for example
the Cauchy distribution.

If we put & = (&/an) — (bu/nay), 1 < k < n, we find that

Sn

LI S 5)
n k=1

a

Therefore all conceivable distributions for T that can appear as limits in (3) are
necessarily (in agreement with Theorem 1) infinitely divisible. However, the specific
characteristics of the variable T, = (S, — b,)/a, may make it possible to obtain
further information on the structure of the limit distributions that arise.
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For this reason we introduce the following definition.

Definition 2. A random variable 7, its distribution function F(x), and its character-
istic function (7) are stable if, for every n > 1, there are constants a, > 0, b,, and
independent random variables &1, . . . , &,, distributed like 7', such that

anT+bni£1+"'+§n (4)
or, equivalently, F((x — b,)/a,) = F * - -« F(x), or

[()]" = [p(ant)]e™". (5)

Theorem 3. A necessary and sufficient condition for the random variable T to be a
limit in distribution of random variables (S, — by)/a,, a, > 0, is that T is stable.

PROOF. If T is stable, then by (4)

i Sn - bn

an

T

where S, = & + - - + &,, and consequently (S, — b,)/ay 4.

Conversely, let £1,&5, ... be a sequence of independent identically distributed
random variables, S, = & + -+ + &, and (S, — b,)/a, 4 T, a, > 0. Let us show
that T is a stable random variable.

If T is degenerate, it is evidently stable. Let us suppose that 7 is nondegenerate.

Choose k > 1 and write

S =G4+ oy ST = Lpmiyurr + o F G,
(1) (k)
g S =y S b
" a, " a
It is clear that all the variables T,Sl), el T,Sk) have the same distribution and

TOST, noow,i=1,... k

Write
Ur(Lk) - T,gl) 44 T,Ek)-

Then we obtain as in the proof of Theorem 1 that

u L g 7®)

I~
I~

I

where T(), 1 < i < k, are independent and 7() = .., = T®)



6 Infinitely Divisible and Stable Distributions 417

On the other hand,
U(k) _ gl +"'+§kn_kbn
n a,
_aﬁ £1+"'+§kn*bkn +bkn*kbn
B ay Akn ay
= a{ Vi + BY, 6)
where
o) = B g _ D = kb
n an ) n an
and b
Vi = 1+ 4 & — kn
Akn
It is clear from (6) that
o _ gk
Vi = ————,
o

where Vy, < T, U,(lk) < TW ...+ TW, n — o0
It follows from the lemma established below that there are constants a®) > 0

and 81 such that o — o and 8 — B® as n — oo. Therefore

d T 4. 70 _ @(1‘)
T =
ak) ’

which shows that T is a stable random variable.
This completes the proof of the theorem.
O

We now state and prove the lemma that we used above.

d
Lemma. Let &, — & and let there be constants a, > 0 and b, such that

@ + by 5 €,

where the random variables & and é are not degenerate. Then there are constants
a > 0 and b such that lima, = a, limb,, = b, and

£ o al +b.
PROOEF. Let ¢,, ¢ and ¢ be the characteristic functions of &,, £ and é respectively.
Then ¢,,¢,+5, (f), the characteristic function of a,&, + by, is equal to ™, (ayt)
and, by Corollary of Theorem 1 and Problem 3 of Sect. 3,
eitbn<;0n(a11t) — ¢(1), (N
en(t) = (1) @)

uniformly in 7 on every finite interval.
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Let {n;} be a subsequence of {n} such that a,, — a. Let us first show that a < oo.
Suppose that a = o0. By (7),

sup len(ant)| = [2(0)]| = 0, n— o0,
t1<c

for every ¢ > 0. We replace ¢ by fy/a,,. Then, since a,, — o0, we have

1 1
oo (o )| )| 0
Ay, Ay,

lon (10)] = |4(0)] = 1.

But |, (t0)| — |¢(to)|. Therefore |p(t9)| = 1 for every 7y € R, and consequently,
by Theorem 5 of Sect. 12, Chap. 2, the random variable £ must be degenerate, which
contradicts the hypotheses of the lemma.

Thus @ < co. Now suppose that there are two subsequences {n;} and {n;} such
that a,, — a, a,y — a', where a # a'; suppose for definiteness that 0 < &’ < a.
Then by (7) and (8),

and therefore

[om(ant)| = [o(an)]; [ on(ant)] — [2(1)]

and
lon (aw )| = l(d't)],  |ow (awt)| — |@(1)].

Consequently
/

|plan)] = |p(ar)],

and therefore, for all r € R,

- () - p () we

Therefore |p(¢)| = 1 and, by Theorem 5 of Sect. 12, Chap. 2, it follows that £ is a
degenerate random variable. This contradiction shows that a = a’ and therefore that
there is a finite limit lim a,, = a, with a > 0.

Let us now show that there is a limit lim b, = b, and that @ > 0. Since (8) is
satisfied uniformly on each finite interval, we have

onlant) — (at),

and therefore, by (7), the limit lim,,_,, e exists for all ¢ such that (at) # 0. Let
§ > 0 be such that p(at) # 0 for all |¢| < §. For such ¢, lim ¢ exists. Hence we
can deduce (Problem 9) that lim sup |b,,| < c0.
Let there be two sequences {n;} and {n;} such that lim b,, = b and lim b, = b'.
Then
et — it

)
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for |¢t| < 4, and consequently b = b’. Thus there is a finite limit » = lim b, and,
by (7), _
(1) = " p(ar),

which means that 5 £ a& + b. Since f is not degenerate, we have a > 0.

This completes the proof of the lemma.

m]
4. We quote without proof a theorem on the general form of the characteristic func-
tions of stable distributions.

Theorem 4 (Lévy—Khinchin Representation). A random variable T is stable if and
only if its characteristic function p(t) has the form ¢(t) = exp ¥ (1),

r
7

P(t) = it — d|t] (1 +i0—G(t, a)) , 9)

where 0 < a <2, B€R,d>0, 10| <1, t/|t| =0fort=0,and

tan %’7‘(& if a #1,
G(t, a) = (10)

(2/m)loglt| if a=1.

Observe that it is easy to exhibit characteristic functions of symmetric stable
distributions:
—d @
p(t) = e, (11)

where 0 < o < 2, d > 0.

5. PROBLEMS

1. Show thatif &, KN &and &, KN 7 then & L n.

2. Show that if 1 and 9 are infinitely divisible characteristic functions, then so
is @1 - pa.

3. Let ¢, be infinitely divisible characteristic functions and let ¢, () — ©(¢) for
every ¢ € R, where () is a characteristic function. Show that ¢(7) is infinitely
divisible.

4. Show that the characteristic function of an infinitely divisible distribution can-
not take the value 0.

5. Give an example of a random variable that is infinitely divisible but not stable.

6. Show that a stable random variable ¢ satisfies the inequality E |£|" < oo for all
re (0, a),0 <a<2.

7. Show that if £ is a stable random variable with parameter 0 < a < 1, then
(1) is not differentiable at ¢ = 0.

8. Prove that e=4"" is a characteristic function provided thatd > 0,0 < « < 2.

9. Let (b,),>1 be a sequence of numbers such that lim,, " exists for all |¢| < d,
d > 0. Show that lim sup |b,| < 0.

10. Show that the binomial and uniform distributions are not infinitely divisible.
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11. Let F and ¢ be a distribution function and its characteristic function that
are representable as F = F) ...« F(" (n times) and ¢ = [p™]" with
some distribution functions F and their characteristic functions <p(”), n>1.
Show that there are (“rich” enough) probability space (€2, .%#, P) and random
variables T and (1)!)x<, defined on it (such that T ~ F and 0", ... n{"
are independent and identically distributed with distribution () such that
Tir]yl) +--~+77£"),n2 1.

12. Give an example of a random variable which is not infinitely divisible, but
whose characteristic function nevertheless does not vanish.

7 Metrizability of Weak Convergence

1. Let (E,&,p) be a metric space and Z(E) = {P}, a family of probability
measures on (E,&). It is natural to raise the question of whether it is possible
to “metrize” the weak convergence P, 2 P that was introduced in Sect. 1, that is,
whether it is possible to introduce a distance (P, P) between any two measures P
and P in Z(E) in such a way that the limit (P, P) — 0 is equivalent to the limit
P, > P.

In connection with this formulation of the problem, it is useful to recall that
convergence of random variables in probability, &, 5 &, can be metrized by using,
for example, the distance dp(&, 1) = inf{e > 0: P(|¢ —n| > €) < e} or the
distances d(&, 1) — E(I€ — nl/(1+[¢ = 1)), d(¢, n) = Emin(1, € — n|). (More
generally, we can set d(&, n) = Eg(]¢ — n|), where the function g = g(x), x > 0,
can be chosen as any nonnegative increasing Borel function that is continuous at
zero and has the properties g(x + y) < g(x) + g(y) forx > 0, y > 0, g(0) = 0,
and g(x) > 0 for x > 0.) However, at the same time there is, in the space of random
variables over (Q,.#,P), no distance d(&,n) such that d(&,,&) — 0 if and only
if &, converges to & with probability one. (In this connection, it is easy to find a
sequence of random variables &,, n > 1, that converges to £ in probability but does
not converge with probability one.) In other words, convergence with probability
one is not metrizable. (See Problems 11 and 12 in Sect. 10, Chap. 2.)

The aim of this section is to obtain concrete instances of two metrics, L(P, P)
and ||P — P|%, in the space #(E) of measures, that metrize weak convergence:

P,>P< L(P,, P) = 0< |P,—P|} — 0. (1)
2. The Lévy-Prokhorov metric L(P, P). Let

p(x,A) = inf{p(x,y): y € A},
A® ={xeE: p(x,A) <e}, Aecé.
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For any two measures P and P € 2 (E), we set
o(P,P) = inf{e > 0: P(F) < P(F°) + ¢ for all closed sets F € &} (2)

and . B .
L(P,P) = max[o(P, P), o(P,P)]. 3)

The following lemma shows that the function L(P,P), P,P € Z2(&), which
is defined in this way, and is called the Lévy-Prokhorov metric, actually defines a
metric.

Lemma 1. The function L(P, P) has the following properties:

(a) L(P,P) = L(Pvp)(: U(Pvp) = 0(P7P))’
(b) L(P,P) < L(P,P) + L(P,P),
(c) L(P,P) = 0 if and only if P = P.

PROOF. (a) It is sufficient to show that (with & > 0 and 8 > 0)

“P(F) < P(F*) + (3 forall closed sets F € &” 4)
if and only if

“P(F) < P(F*)+ (3 forallclosedsets F € &.” )

Let T be a closed set in &. Then the set T is open and it is easy to verify that
T < E\(E\T®)>. If (4) is satisfied, then, in particular,

P(E\T®) < P((E\T*)*) + 3

and therefore,
P(T) < P(E\(E\T®)*) < P(T*) + 8,

which establishes the equivalence of (4) and (5). Hence, it follows that
O’(P,]N))ZO'(IN),P) (6)

and therefore, ~ . . -
L(P,P) = o(P,P) = o(P,P) = L(P,P). )

(b) Let L(P, P) < &1 and L(P, P) < &5. Then for each closed set F € &
P(F) < P(F°2) + 8y < P((F®2)°') + 61 + 0y < P(F'%2) 4+ 6; + 6,
and therefore, L(P, P) < &7 + . Hence, it follows that
L(P,P) < L(P,P) + L(P,P).
(¢) If L(P, P) = 0, then for every closed set F € & and every a > 0

P(F) < P(F*) + a. 8)
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Since F* | F, « | 0, we find, by taking the limit in (8) as « | 0, that P(F) <
P(F) and by symmetry P(F) < P(F). Hence, P(F) = P(F) for all closed sets
F € &. For each Borel set A € & and every € > 0, there is an open set G. 2 A and a
closed set F. < A such that P(G.\F.) < . Hence, it follows that every probability
measure P on a metric space (E, &, p) is completely determined by its values on
closed sets. Consequently, it follows from the condition P(F) = P(F) for all closed
sets F € & that P(A) = P(A) for all Borel sets A € &.

O

Theorem 1. The Lévy-Prokhorov metric L(P, P) metrizes weak convergence:
L(P,, P) > 0 < P, P. ©)

PROOF. (=) Let L(P,, P) — 0, n — oo. Then for every specified closed set F € &
and every € > 0, we have, by (2) and equation (a) of Lemma 1,

limsup P,(F) < P(F®) + ¢. (10)

n

If we then let € | 0, we find that

lim sup P,(F) < P(F).

According to Theorem 1 of Sect. 1, it follows that
pP,—P. (11)

The proof of the implication (<) will be based on a series of deep and powerful
facts that illuminate the content of the concept of weak convergence and the method
of establishing it, as well as methods of studying rates of convergence.

Thus, let P, ~> P. This means that for every bounded continuous function f =
f(x)
| reoputan) ~ | oo pran. (12
E E

Now suppose that ¢ is a class of equicontinuous functions g = g(x) (for every
e > 0 there is a 0 > 0 such that |g(y) — g(x)| < e if p(x,y) < 0 forall g € 4) and
|g(x)| < C for the same constant C > 0 (for all x € E and g € ¢). By Theorem 3 of
Sect. 8, the following condition, stronger than (12), is valid for ¢:

w
P, — P = sup
geY

— 0. (13)

| s Pt = | s Piay

E

For each A € & and € > 0, we set (as in Theorem 1, Sect. 1)

ﬁw—b—““”r. (14)

3
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It is clear that
Iy(x) < fi(x) < Iy (x) (15)

and
15 () =L < €7 plx, A) = p(y, A)l < e™p(x, ).
Therefore, we have (13) for the class ¥° = {f{(x), A € &}, i.e.,

A, = sup
Aeé&

ij(x) P,(dx) — ij(x) P(dx)’ —0, n— ow. (16)
E E
From this and (15) we conclude that, for every closed set A € & and € > 0,
P = | fiar = [ fwar, - Az p@) - (D)
E E

We choose n(¢) so that A, < e for n > n(e). Then, by (17), for n > n(e)
P(A®) > P,(A) —e. (18)

Hence, it follows from definitions (2) and (3) that L(P,, P) < € as soon as n > n(e).
Consequently,
P,>P= A, — 0= L(P,,P) > 0.

The theorem is now proved (up to (13)).

=
3. The metric |P — P|%,. We denote by BL the set of bounded continuous functions
f = f(x), x € E (with ||[f|xc = sup, |[f(x)| < o0) that also satisfy the Lipschitz

condition F0) — 1)
_ X) TV
Pl =2 =y ~®

We set |f|sr = |[fllc + [f]z- The space BL with the norm || - |5, is a Banach
space. )
We define the metric |P — P||}; by setting

e~ i, = sup {| [ rae— P i <1} 19
feBL

(We can verify that |P — P|#, actually satisfies the conditions for a metric; Prob-
lem 2.)

Theorem 2. The metric |P — P||%; metrizes weak convergence:

|P, — P|}, = 0< P,>P.
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PROOF. The implication (<) follows directly from (13). To prove (=), it is enough
to show that in the definition of weak convergence P, — P as given by (12) for every
continuous bounded function f = f(x), it is enough to restrict consideration to the
class of bounded functions that satisfy a Lipschitz condition. In other words, the
implication (=) will be proved if we establish the following result.

Lemma 2. Weak convergence P, 5 P occurs if and only if property (12) is satisfied
for every function f = f(x) of class BL.

PROOF. The proof is obvious in one direction. Let us now consider the functions
f5 =f7(x) defined in (14). As was established above in the proof of Theorem 1, for
eache > 0 the class ¥° = {f5(x), A € ¥} < BL. If we now analyze the proof of the
implication (I) = (II) in Theorem 1 of Sect. I, we can observe that it actually uses
property (12) not for all bounded continuous functions but only for functions of class
@<, ¢ > 0. Since ¥° < BL, € > 0, it is evidently true that the satisfaction of (12)
for functions of class BL implies proposition (II) of Theorem 1, Sect. 1, which is
equivalent (by the same Theorem 1, Sect. 1) to the weak convergence P, 5P
[}

Remark. The conclusion of Theorem 2 can be derived from Theorem 1 (and
conversely) if we use the following inequalities between the metrics L(P,P) and
|P — P| %, which are valid for the separable metric spaces (E, &, p):

@(L(P,P)) < |P — P, 1)

where (x) = 2x%/(2 + x).

Taking into account that, for x > 0, we have 0 < ¢ < 2/3 if and only if x < 1,
and (2/3)x? < ¢(x) for 0 < x < 1, we deduce from (20) and (21) that if L(P, P) <
or [P — P||%, < 2/3, then

3L2(P,P) < |P—P|§, <2L(P,P). (22)

4. PROBLEMS

1. Show that in case E = R the Lévy—Prokhorov distance between the probability
distributions P and P is no less than the Lévy distance L(F,F) between the
distribution functions F and F that correspond to P and P (see Problem 4 in
Sect. 1). Give an example of a strict inequality between these distances.

2. Show that formula (19) defines a metric on the space BL.

Establish the inequalities (20), (21), and (22).

4. Let F = F(x) and G = G(x) be two distribution functions and P, and Q.
be the points of their intersection of the line x + y = c¢. Show that the Lévy
distance between F and G (see Problem 4 in Sect. 1) equals

»
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PO,
L(F,G) = sup )
c V2

where P.Q. is the length of the interval between the points P, and Q..
5. Show that the set of all distribution functions endowed with Lévy distance is a
complete space.

8 On the Connection of Weak Convergence of Measures
with Almost Sure Convergence of Random Elements
(“Method of a Single Probability Space”)

1. Let us suppose that on the probability space (2, .#, P) there are given random el-
ements X = X(w), X, = X,(w), n > 1, taking values in the metric space (E, &, p);
see Sect. 5, Chap. 2. We denote by P and P, the probability distributions of X and
X,, 1.e., let

P(A) = P{w: X(w) € A}, P,(A) =P{w: X,(w) €A}, A€eé.

Generalizing the concept of convergence in distribution of random variables (see
Sect. 10, Chap. 2), we introduce the following definition.

Definition 1. A sequence of random elements X,,, n > 1, is said to converge in
distribution, or in law (notation: X,, = X, or X,, = X), if P, 5 p.

By analogy with the definitions of convergence of random variables in probabil-
ity or with probability one (Sect. 10, Chap. 2), it is natural to introduce the following
definitions.

Definition 2. A sequence of random elements X,,, n > 1, is said to converge in
probability to X if

P{w: p(Xu(w), X(w)) 2 €} =0, n— 0. €9

Definition 3. A sequence of random elements X,,, n > 1, is said to converge to X

with probability one (almost surely, almost everywhere) if p(X,(w), X(w)) = 0 as
n— .

Remark 1. Both of the preceding definitions make sense, of course, provided that
p(X,(w), X(w)) are, as functions of w € 2, random variables, i.e., . -measurable
functions. This will certainly be the case if the space (E, &, p) is separable
(Problem 1).

Remark 2. In connection with Definition 2 note that convergence in probability
introduced therein is metrized by the following Ky Fan distance (see [55]) between
random elements X and Y (defined on (2, .%, P) and ranging in E; Problem 2):
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dp(X,Y) = inf{e > 0: P{p(X(w), ¥(w)) > e} < e}. )

Remark 3. Whereas the definitions of convergence in probability and with prob-
ability one presume that all the random elements are defined on the same prob-

ability space, the definition X, 2 X of convergence in distribution is connected
only with the convergence of distributions, and consequently, we may suppose that
X(w), X1(w), X2(w), ... have values in the same space E, but may be defined
on “their own” probability spaces (2, #, P), (1, %1, P1), (2, F2, Pa),....
However, without loss of generality we may always suppose that they are defined on
the same probability space, taken as the direct product of the underlying spaces and
with the definitions X(w, wy,ws,...) = X(w), X1 (w, w1, wa,...) = X1 (w1), ... .

2. By Definition 1 and the theorem on change of variables under the Lebesgue inte-
gral sign (Theorem 7 of Sect. 6, Chap. 2)

X, %X < Ef(X,) — Ef(X) 3)

for every bounded continuous function f = f(x), x € E.
From (3) it is clear that, by Lebesgue’s theorem on dominated convergence (The-

orem 3 of Sect. 6, Chap. 2), the limit X,, X immediately implies the limit X, =A X,
which is hardly surprising if we think of the situation when X and X, are ran-
dom variables (Theorem 2 of Sect. 10, Chap. 2). More unexpectedly, in a certain
sense there is a converse result, the precise formulation and application we now
turn to.

Preliminarily, we introduce a definition.

Definition 4. Random elements X = X(w’) and Y = Y(w”), defined on probabil-
ity spaces (€, .Z', P') and (2", " P") and with values in the same space E,
are said to be equivalent in distribution (notation: X Z Y), if they have the same
probability distribution.

Theorem 1. Let (E, &, p) be a separable metric space.
1. Let random elements X, X,,, n > 1, defined on a probability space (2, %, P),

and with values in E, have the property that X,, A X. Then we can find a probability
space (%, .7 * P*) and random elements X*, X*, n > 1, defined on it, with values
in E, such that
XS x*
and
x*2x, x*2X,, n>1.

2. Let P, P,, n > 1, be probability measures on (E, &, p) such that P, 5P
Then there is a probability space (Q0*, F* P*) and random elements X*, X, n >
1, defined on it, with values in E, such that
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X5 X

and
P*=P, P'=P, n>1,

where P* and P} are the probability distributions of X* and X*.

Before turning to the proof, we first notice that it is enough to prove only the
second conclusion, since the first follows from it if we take P and P, to be the
distributions of X and X,. Similarly, the second conclusion follows from the first.
Second, we notice that the proof of the theorem in full generality is technically
rather complicated. For this reason, here we give a proof only of the case E = R.
This proof is rather transparent and moreover, provides a simple, clear construction
of the required objectives. (Unfortunately, this construction does not work in the
general case, even for E = R2.)

PROOF OF THE THEOREM IN THE CASE E = R. Let F = F(x) and F,, = F,,(x) be
the distribution functions corresponding to the measures P and P, on (R, #(R)). We
associate with a function F = F(x) its corresponding quantile function Q = Q(u),
uniquely defined by the formula

O(u) = inf{x: F(x) >u}, O<u<l. 4)

It is easily verified that
Fx) >u< Q(u) <=x %)

We now take Q* = (0,1), F* = %(0,1), P* to be Lebesgue measure,
P*(dw*) = dw*. We also take X*(w*) = Q(w*) for w* € Q*. Then

P*{w*: X*(w*) < x} = P*{w*: Q(w*) < x} = P*{w*: w* < F(x)} = F(x),

i.e., the distribution of the random variable X* (w*) = Q(w™*) coincides exactly with
P. Similarly, the distribution of X*(w*) = Q,(w*) coincides with P,,.

In addition, it is not difficult to show that the convergence of F,(x) to F(x) at
each point of continuity of the limit function F = F(x) (equivalent, if E = R, to
the convergence P, LP; see Theorem 1 in Sect. 1) implies that the sequence of
quantiles Q,(u), n > 1, also converges to Q(u) at every point of continuity of the
limit O = Q(u). Since the set of points of discontinuity of 0 = Q(u), u € (0,1), is
at most countable, its Lebesgue measure P* is zero and therefore,

X3 (w*) = Qu(w®) =5 X*(w*) = Q(w").

The theorem is established in the case of E = R.
m]

This construction in Theorem 1 of a passage from given random elements X and
X, to new elements X* and X*, defined on the same probability space, explains the
announcement in the heading of this section of the method of a single probability
space.
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We now turn to a number of propositions that are established very simply by
using this method.

3. Let us assume that the random elements X and X,,, n > 1, are defined, for ex-
ample, on a probability space (2, .%#,P) with values in a separable metric space

(E, &, p), so that X, ZX. Also let h = h(x), x € E, be a measurable mapping of
(E, &, p) into another separable metric space (E’, &”, p'). In probability and math-
ematical statistics it is often necessary to deal with the search for conditions under
which we can say of & = h(x) that the limit X, £ implies the limit 4(X,,) =4 h(X).

For example, let &1, &5, ... be independent identically distributed random vari-
ables with E&; = m, Varé; = 0% > 0. Let X, = (§1 + -+ + &,)/n. The central
limit theorem shows that

X, —
ViXn —m) 4 N (0,1).
o
Let us ask, for what functions & = h(x) can we guarantee that

X, —
i <\/M> 4 (o (0,1))?
o
(The well-known Mann—Wald theorem states with respect to this question that this
is certainly true for continuous functions & = h(x), hence it immediately follows,
e.g., that n(X — m)?/o? 4 X3, where x? is a random variable with a chi-squared
distribution with one degree of freedom; see Table 2.3 in Sect. 3, Chap. 2.)

A second example. If X = X(r, w), X, = X,,(t, w), t € T, are random processes
(see Sect. 5, Chap. 2) and h(X) = sup,.y |X (2, w)|, h(X,) = sup,er | X, (2, w)|, our
problem amounts to asking under what conditions the convergence in distribution

of the processes X, 2 X will imply the convergence in distribution of their suprema,
2
h(X,) = h(X).
A simple condition that guarantees the validity of the implication

X, 25X = h(X,) > h(X),

is that the mapping & = h(x) is continuous. In fact, if f = f(x') is a bounded
continuous function on E’; the function f(h(x)) will also be a bounded continuous
function on E. Consequently,

X, 5 X = Ef(h(X,)) — Ef(h(X)).

The theorem given below shows that in fact the requirement of continuity of the
function & = h(x) can be somewhat weakened by using the properties of the limit
random element X.
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We denote by A, the set {x € E: h(x) is not p-continuous at x}; i.e., let A;, be
the set of points of discontinuity of the function & = h(x). We note that A, € &
(Problem 4).

Theorem 2. 1. Ler (E, &, p) and (E', &, p') be separable metric spaces, and let
X, 2 X. Let the mapping h = h(x), x € E, have the property that

P{w: X(w) € Ay} = 0. (6)

Then h(X,) 2 h(X).

2. Let P, P,,, n > 1, be probability distributions on the separable metric space
(E,&,p) and h = h(x) a measurable mapping of (E, &, p) on a separable metric
space (E', 8", p"). Let

P{x: xe Ay} =0.

Then P! > P" where P'(A) = P,{h(x) € A}, P"(A) = P{h(x) € A}, Ae &

PROOF. Asin Theorem 1, it is enough to prove the validity of, for example, the first
proposition.

Let X* and X*, n > 1, be random elements constructed by the “method of a
single probability space,” so that X* ZX, X* Z X,, n>1,and X*“5X* Let A* =
{w*: p(X¥, X*) » 0}, B¥ = {w*: X*(w*) € A,}. Then P*(A* U B*) = 0, and
for w* ¢ A* U B*

h(X5 (W) = h(X* (™)),

which implies that 2(X*) %3 h(X*). As we noticed in Subsection 1, it follows that
h(X¥) 2 h(X*). But h(X;*) Z h(X,) and h(X*) Z h(X). Therefore, h(X;*) % h(X).
This completes the proof of the theorem.
O

4. In Sect. 7, in the proof of the implication (<) in Theorem 1, we used (13). We
now give a proof that again relies on the “method of a single probability space.”

Let (E, &, p) be a separable metric space, and ¢ a class of equicontinuous func-
tions g = g(x) for which also |g(x)] < C,C > Oforallxe Eand g € ¥.

Theorem 3. Let P and P,, n > 1, be probability measures on (E, &, p) for which
P, > P. Then

sup — 0, n— oo )

geY

L 80 Pala) = | g0 Pla)

E

PROOEF. Let (7) not occur. Then there are an @ > 0 and functions g1, g2, ... from ¢
such that

>a>0 (8)

L @) Pala) = | .0 Pla)

E
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for infinitely many values of n. Turning by the “method of a single probability space”
to random elements X* and X* (see Theorem 1), we transform (8) to the form

|E* u(X) — E* gu(X*)[ >a>0 )

for infinitely many values of n. But, by the properties of ¢, for every £ > 0 there
isad > 0 for which |g(y) — g(x)| < e forall g € ¢, if p(x,y) < §. In addition,
|g(x)| < Cforallx € E and g € 4. Therefore,

|E* gn(X:Lk) —E* gn(X*)| < E*{lgn(X;zk) —gn(X*>|;p(X:, X*) > 6}
+E*{|g.(Xy) — ga(X)|: p(Xy, X¥) < 6}
< 2CP*{p(X¥, X*) > §} + e

Since X**3X*, we have P*{p(X*, X*) > §} — 0 as n — 0. Consequently, since
€ > 0 1is arbitrary,

limsup | E* g,(X}) — E* g,(X*)| = 0,

which contradicts (9).
This completes the proof of the theorem. m|

5. In this subsection the idea of the “method of a single probability space” used
in Theorem 1 will be applied to estimating upper bounds of the Lévy-Prokhorov
metric L(P, P) between two probability distributions on a separable space (E, &, p).

Theorem 4. For each pair P, P of measures we can find a probability space
(Q*, F* P*) and random elements X and X on it with values in E such that their
distributions coincide respectively with P and P and

L(P,P) < dpx (X, X) = inf{e > 0: P*(p(X,X) >¢) < ¢e}. (10)

*,.7*,P*) and random
A) = P(A), Ae &.

PROOF. By Theorem 1, we can find a probability space
elements X and X such that P*(X € A) = P(A) and P*(
Let € > 0 have the property that

~(Q
X €

P*(p(X,X) >¢) <e. (11)

Then for every A € & we have, denoting A° = {x € E : p(x,A) < &},

P(A) =P*(XecA)=P*(XeA, XcA®) +P* (XA, X¢A%)
< P*(X € A%) + P*(p(X,X) > ¢) < P(A®) + <.

Hence, by the definition of the Lévy—Prokhorov metric (Subsection 2, Sect. 7)
L(P,P) <. (12)

From (11) and (12), if we take the infimum for € > 0 we obtain the required asser-
tion (10). o
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Corollary. Let X and X be random elements defined on a probability space
(Q, Z#, P) with values in E. Let Px and Py be their probability distributions. Then

L(Px, Pg) < dp(X,X).

Remark 4. The preceding proof shows that in fact (10) is valid whenever we can
exhibit on any probability space (*,.Z*, P*) random elements X and X with
values in E whose distributions coincide with P and P and for which the set
{w*: p(X(w*),X(w*)) > e} € F* & > 0. Hence, the property of (10) de-
pends in an essential way on how well, with respect to the measures P and P, the
objects (Q*,.#* P*) and X, X are constructed. (The procedure for constructing
O*, . Z* P* and X, X for given P, P, is called coupling.) We could, for example,
choose P* equal to the direct product of the measures P and P, but this choice
would, as a rule, not lead to a good estimate (10).

Remark 5. It is natural to raise the question of when there is equality in (10). In this
connection we state the following result without proof: Let P and P be two proba-
bility measures on a separable metric space (E, &, p); then there are (%, F* P¥)
and X, X such that

L(P,P) = dpx (X, X) = inf{e > 0: P*(p(X,X) >¢) < ¢}

5. PROBLEMS

1. Prove that in the case of separable metric spaces the real-valued function
p(X(w),Y(w)) is a random variable for all random elements X(w) and Y (w)
defined on a probability space (92, %, P).

2. Prove that the function dp(X, Y) defined in (2) is a metric in the space of
random elements with values in E.

3. Establish (5).

4. Prove that the set A, ={x € E: h(x) is not p-continuous at x} € &

9 The Distance in Variation Between Probability Measures:
Kakutani—Hellinger Distance and Hellinger
Integrals—Application to Absolute Continuity and Singularity
of Measures

1. Let (92, .%) be a measurable space and & = {P} a family of probability measures
on it.

Definition 1. The distance in variation between measures P and P in &2 (notation:
|P — P|) is the total variation of P — P, i.e.,

|P — P|| = var (P — P) = sup

jﬂ pw)d(P—P), (1)
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where the sup is over the class of all .%-measurable functions that satisfy the con-
dition that |p(w)| < 1.

Lemma 1. The distance in variation is given by

|P— P|| = 2sup |P(A) — P(A)]. 2
AeF

PROOF. Since, forall A € .,

we have
2|P(A) — P(A)| = |P(A) — P(A)| + |P(A) — P(A)| < |P—P],

where the last inequality follows from (1).

For the proof of the converse inequality we turn to the Hahn decomposition (see,
for example, [52], § 5, Chapter VI, or [39], p. 121) of the signed measure y = P — P.
In this decomposition the measure y is represented in the form 4 = py — pu—, where
the nonnegative measures . and p_ (the upper and lower variations of p) are of
the form

f+(A) :f dp, p—(A) = —J dp, AeZ,
AnM AnM
where M is a set in % . Here
var = var gy +var g = i (Q) + p—(Q).

Since

we have

|P— P| = (P(M) — P(M)) + (P(M) — P(M)) < 2sup |P(4) - P(A)].

This completes the proof of the lemma.
O

Definition 2. A sequence of probability measures P,, n > 1, is said to be conver-
gent in variation to the measure P (denoted P, — P), if

|P,—P| — 0, n— 0. 3)

From this definition and Theorem 1 of Sect. 1 it is easily seen that convergence in
variation of probability measures defined on a metric space (£2,.%, p) implies their
weak convergence.
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The proximity in variation of distributions is, perhaps, the strongest form of
closeness of probability distributions, since if two distributions are close in vari-
ation, then in practice, in specific situations, they can be considered indistinguish-
able. In this connection, the impression may be created that the study of distance in
variation is not of much probabilistic interest. However, for example, in Poisson’s
theorem (Sect. 6, Chap. 1) the convergence of the binomial to the Poisson distri-
bution takes place in the sense of convergence to zero of the distance in variation
between these distributions. (Later, in Sect. 12, we shall obtain an upper bound for
this distance.)

We also provide an example from the field of mathematical statistics, where the
necessity of determining the distance in variation between measures P and P arises
in a natural way in connection with the problem of discrimination (based on ob-
served data) between two statistical hypotheses H (the true distribution is P) and H
(the true distribution is IND) in order to decide which probabilistic model (2, %, P) or
(€, .7, P) better fits the statistical data. If w € 2 is treated as the result of an obser-
vation, by a test (for discrimination between the hypotheses H and H) we understand
any .%-measurable function ¢ = ¢(w) with values in [0, 1], the statistical meaning
of which is that (w) is “the probability with which hypothesis H is accepted if the
result of the observation is w.”

We shall characterize the performance of this rule for discrimination between H
and H by the probabilities of errors of the first and second kind:

a(p) = Ep(w) (= Prob (accepting H | H is true)),
B(p) = E(l —p(w)) (= Prob (accepting H|H is true)).

In the case when hypotheses H and H are equally significant to us, it is natural
to consider the test p* = ¢*(w) (if there is such a test) that minimizes the sum
a(p) + B(yp) of the errors as the optimal one.

We set

&r(P,P) = infla(p) + B(¢)]- )
Let Q = (P + P)/2 and z = dP/dQ, 7 = dP/dQ. Then
&r(P,P) = ir;f[E@ +E(1-9)]
= inf Eglzp +2(1 — ¢)] = 1 + inf Eg[p(z — 2)],

where E is the expectation with respect to the measure Q.
It is easy to see that the inf is attained by the function

p*(w) =z <7}
and, since Eg(z — z) = 0, that

g}’(P,P):l—%EQk—a:1—%“P—PH, (5)
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where the last equation Will~f0110w from Lemma 2, below. Thus it is seen from (5)
that the performance &7(P, P) of the optimal test for discrimination between the two
hypotheses depends on the fotal variation distance between P and P.

Lemma 2. Let Q be a o-finite measure such that P < Q, E & Qandlet z = dP/dQ,
Z = dP/dQ be the Radon—Nikodym derivatives of P and P with respect to Q. Then

|P— P|| = Eqlz 2 (6)
and if Q = (P + P)/2, we have
|P— P| = Eg|z — z| = 2Ep|1 — z| = 2Ep|1 —Z|. (7

PROOF. For all .#-measurable functions ¢ = ¢ (w) with |)(w)| < 1, we see from
the definitions of z and Z that

|Ey — E| = |Egi(z — 2)| < Eolvllz — 2| < Eglz - Z]. (®)

Therefore, ~
|P—P| < Eplz—1z|. 9

Howeyver, for the function

. L z2g
we have .
|EY — E| = Eglz - Z]. (10)

We obtain the required equation (6) from (9) and (10). Then (7) follows from (6)
because z + 7 = 2 (Q-a.s.).
O

Corollary 1. Let P and P be two probability distributions on (R, %(R)) with prob-
ability densities (with respect to Lebesgue measure dx) p(x) and p(x), x € R.
Then

P P| = f Ip(x) — p(x)| dix. (an

—0o0

(As the measure Q, we are to take Lebesgue measure on (R, #(R)).)

Corollary 2. Let P and P be two discrete measures, P = (p1, pa, ...), P =

(P1, P2, - - .), concentrated on a countable set of points x1, xa, . ... Then
N (e0]
[P~ Pl = Ipi —pil (12)
i=1

(As the measure Q, we are to take the counting measure, i.e., that with Q({x;}) =
Li=1,2....)
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2. We now turn to still another measure of the proximity of two probability mea-

sures, closely related (as will follow later) to the proximity measure in variation.
Let P and P be probability measures on (2, %) and Q, the third probability

measure, dominating P and P, i.e., such that P « Q and P « Q. We again use the

notation -
dP dP

Z

o’ T do’

Definition 3. The Kakutani—Hellinger distance between the measures P and Pis the
nonnegative number p(P, P) such that

p*(P,P) = 3Eolvz— V", (13)

dP
Eolvz—VZ]? \/; \/; do, (14)

it is natural to write p?(P, P) symbolically in the form

Z:

Since

p*(P,P) = %f [VdP —\/dP}?. (1)
Q
If we set ~
H(P,P) = EgV/zz, (16)

then, by analogy with (15), we may write symbolically
H(P,P) = f \dP dP. (17)
Q

From (13) and (16), as well as from (15) and (17), it is clear that
p*(P,P)=1—H(P,P). (18)

The number H(P, P) is called the Hellinger integral of the measures P and P. It
turns out to be convenient, for many purposes, to consider the Hellinger integrals
H(a; P, P) of order o € (0, 1), defined by the formula

H(a; P,P) = Egz®3®, (19)

or, symbolically,

H(o; P, P) = L(dP)a(df’)l‘“. (20)

It is clear that H(1/2; P, P) = H(P, P).
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For Definition 3 to be reasonable, we need to show that the number p?(P, P)
is independent of the choice of the dominating measure and that in fact p(P, P)
satisfies the requirements of the concept of “distance.”

Lemma 3. 1. The Hellinger integral of order o € (0,1) (and consequently also
p(P, P)) is independent of the choice of the dominating measure Q.
2. The function p defined in (13) is a metric on the set of probability measures.

PROOF. 1. If the measure Q' dominates P and P, Q' also dominates Q = (P + P)/2.
Hence, it is enough to show that if Q « Q’, we have

Eo(z*7'7%) = Eg()*()'°,

where 7/ = dP/dQ’ and 7’ = dP/dQ'.
Letus setv = dQ/dQ'. Then 7/ = zv,7 = Zv, and

EQ( azl— a) — EQ/(VZazlia) — EQ’(Z’>OL(ZI)17Q7
which establishes the first assertion.

2. If p(P,P) = 0 we have z = Z (Q-a.e.) and hence, P = P. By symmetry,
we evidently have p(P, P) = p(P, P). Finally, let P, P’, and P” be three measures,
P« Q, P «Q,and P’ « Q,withz = dP/dQ, 7 = dP'/dQ, and 7" = dP" /dQ. By
using the validity of the triangle inequality for the norm in L?(Q2,.%, Q), we obtain

[Eo(vz = Va1 < [Eo(Vz = V)]V + [Eo(V2 = V2')*]2,

ie.,

p(P, P") < p(P, P') + p(P', P").

This completes the proof of the lemma.
[}

By Definition (19) and Fubini’s theorem (Sect. 6, Chap. 2), it follows immedi-
ately that in the case when the measures P and P are direct products of measures,
P=P  x---xP,,P =P x---x P, (see Subsection 10 in Sect. 6, Chap. 2),
the Hellinger integral between the measures P and P is equal to the product of the
corresponding Hellinger integrals:

H(a; P, P) HHaP,,P

The following theorem shows the connection between distance in variation and
Kakutani—Hellinger distance (or, equivalently, the Hellinger integral). In particular,
it shows that these distances define the same topology in the space of probability
measures on (€2, .%).
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Theorem 1. We have the following inequalities:

2[1—H(P,P)] < |P—P| < +/8[1 — H(P,P)], @1
|P—P| < 24/1— H2(P,P). (22)

In particular,
2p°(P,P) < |P— P| < V/8p(P, P). (23)

PROOF. Since H(P, P) <land1—x% < 2(1—x)for0 < x < 1, the right-hand
inequality in (21) follows from (22), the proof of which is provided by the following
chain of inequalities (where Q = (1/2)(P + P)):

Y|P~ P| = Eqll — 2| < 4/Eglt — 22 = 4/1 — Egz(2 — 2)

— VT~ B = \J1 — Eg(v22)? < /1 - (Egv/22)?

1— H2(P,P).

Finally, the first inequality in (21) follows from the fact that by the inequality
slve-V2—2* <z -1, z€[0,2],
we have (again, Q = (1/2)(P + f’))

1—H(P,P) = p*(P,P) = }Eg[vz— V2 —2]> <Eglz— 1| = §|P - P|.

[}

Remark. It can be shown in a similar way that, for every « € (0, 1),

2[1 — H(a; P,P)] < |P = P|| < 4/ca(l — H(a; P, P)), (24)
where c,, is a constant.

Corollary 3. Let P and P", n > 1, be probability measures on (), .%). Then (as
n — )

[P~ P| 0 H(P',P) > 1< p(P",P) 0,
IP' =Pl — 2= H(P', P) 0= p(P",P) > 1.

Corollary 4. Since by (5)
Er(P,P) =1~ 3P~ P,

we have, by (21) and (22),

i1H*(P,P) <1—4/1—H2(P,P) < &r(P,P) < H(P,P). (25)
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In particular, let

PP=Px---xP, PP=Px-..-xP

b

— —
n n
be direct products of measures. Then, since H(P", P") = [H(P,P)]" = e~ with

A\ = —log H(P,P) > p*(P, P), we obtain from (25) the inequalities
%e—2>\n < éZ‘r(Pn7 Pn) < e—/\n < e—an(P,i’). (26)

In connection with the problem, considered above, of discrimination between
two statistical hypotheses, from these inequalities we have the following result.

Let &1, &2, . .. be independent identically distributed random elements, that have
either the probability distribution P (Hypothesis H) or P (Hypothesis H ), with P+
P, and therefore, p?(P, 15) > (. Then, when n — 0, the function &r(P", i’"), which
describes the quality of optimal discrimination between the hypotheses H and H
from observations of &1, &5, . . ., decreases exponentially to zero.

3. The Hellinger integrals of order « are well suited for stating conditions of abso-
lute continuity and singularity of probability measures.

Let P and P be two probability measures defined on a measurable space (Q F).
We say that P is absolutely continuous with respect to P (notation: P < P)if P(A) =
0 whenever P(A) = 0 for A € 7. If P« Pand P « P, we say that P and P
are equivalent (P ~ P). The measures P and P are called singular or orthogonal
(P L P), if there is an A € .7 for which P(A) = 1 and P(A) = 1 (i.e., P and P “sit”
on different sets).

Let Q be a probability measure, with P « Q,P « Q, z = dP/dQ,7 = df’/dQ.

Theorem 2. The following conditions are equivalent:

(a) P« P,
(b) P(z>0) =1,
(¢c) H(oa;P,P) > 1,a | 0.

Theorem 3. The following conditions are equivalent:

(a) PLP,

(b) P(z>0) =

(©) H(aPP)—>0,ozl0,

(d) H(a;P,P) =0 forall ae (0,1),
(e) H(o; P,P) = 0 for some o € (0,1).

PROOF. The proofs of these theorems will be given simultaneously. By the defini-
tions of z and Z,
P(z=0)=Ep[zd(z=0)] =0, 27)
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P(An{z>0}) =Ep[zI(An{z>0})]

- Ep [zil(A N {z> 0})] = Ep EI(A N {z> 0})]

=Ep [ZI(A)] . (28)

<

Consequently, we have the Lebesgue decomposition

P(A) = Ep [EI(A)] +PAN{z=0}), AeZ, (29)

in which Z = z/zis called the Lebesgue derivative of P with respect to P and denoted
by dP/dP (compare the remark on the Radon-Nikodym theorem, Sect. 6, Chap. 2).
Hence, we immediately obtain the equivalence of (a) and (b) in both theorems.
Moreover, since
977 57 (z>0), a0,

and for « € (0, 1)
0<z7"“<az+(1-a)i<z+7%
with Eg(z + Z) = 2, we have, by Lebesgue’s dominated convergence theorem,

11%11(0[; P,P) = Epzl(z > 0) = P(z > 0)

and therefore, (b) < (c) in both theorems.

Finally, let us show that in the second theorem (c¢) < (d) < (e). For this, we
need only note that H(a; P, P) = E(z/Z)®I(z > 0) and P(z > 0) = 1. Hence, for
each o € (0,1) we have P(z > 0) = 0 < H(o; P, P) = 0, from which there follows
the implication (c) < (d) < (e).

=

Example 1. Let P = Py X Py X ..., P = P, x P, ... where P; and P; are Gaussian
measures on (R, %(R)) with densities

1 1 .
pe(x) = —— W2 B (x) = e (@2,

Veor Vor

Since

o0
H(oz;P,i’) = HH(O[;PI(,ID;(),

where a simple calculation shows that

o]
H(o; P, Py) = f PE()PE (x) dx = e (@(1=0)/D(@=a0”,

—00
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we have
H(o; P,P) = ¢~ (@(1=2)/2) X (@—an)?

From Theorems 2 and 3, we find that

0
P«Pes P<PeP~Pe ) (g —&) <o,
k=1

0
@ Ll —a) =

Example 2. Againlet P = Py x Py x ..., P =P, x Py x ..., where Py and Py
are Poisson distributions with respective parameters \; > 0 and \; > 0. Then it is
easily shown that

P«P< P<<f’<:>i’~P<:>i(\/)\7k—\/;k)2
> S Wh -

(30)

8

5. PROBLEMS

1. In the notation of Lemma 2, set
PAP=EyzA3),
where z A Z = min(z,Z). Show that

|P—P|=21—-PAP)

(and consequently, &r(P,P) = P A P).

2. Let P, P,, n > 1, be probability measures on (R, Z(R)) with densities (with
respect to Lebesgue measure) p(x), p,(x), n > 1. Let p,(x) — p(x) for almost
all x (with respect to Lebesgue measure). Show that then

o0
1P| =f () — pu()|dx >0, n— o0

—0

(compare P{oblem 17 in Sect. 6, Chap. 2).
3. Let P and P be two probability measures. We define Kullback information
K(P, P) (in favor of P against P) by the equation

K(P.P) = Elog(dP/dP) ifP « P,
LA ) otherwise.

Show that

K(P,P) > —2log(1 — p*(P,P)) > 2p*(P,P).
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4. Establish formulas (11) and (12).

Prove inequalities (24).

6. Let P, P, and Q be probability measures on (R, Z(R)); P+ Q and P * Q, their
convolutlons (see Subsection 4 in Sect. 8, Chap. 2). Then

e

|P+Q—P=Q| <|P-P|.

7. Prove (30).
8. Let £ and n be random elements on (£2,.%#, P) with values in a measurable
space (E, &). Show that

|P{¢eA} —P{neA}| <PE#n), Acé.

10 Contiguity and Entire Asymptotic Separation of Probability
Measures

1. These concepts play a fundamental role in the asymptotic theory of mathemat-
ical statistics, being natural extensions of the concepts of absolute continuity and
singularity of two measures in the case of sequences of pairs of measures.

Let us begin with definitions.

Let (2", #"),>1 be a sequence of measurable spaces; let (P"),>1 and (P")>1
be sequences of probability measures with P" and P" defined on Q1 7", n>1.
Definition 1. We say that a sequence (P") of measures is contiguous to the sequence
(P") (notation: (P") <1 (P")) if, for all A" € .Z" such that P"(A") — 0 as n — oo,
we have P"(A") — 0, n — o0,

Definition 2. We say that sequences (P") and (P") of measures are entirely (asymp-
totically) separated (or for short: (P") A (P")), if there is a subsequence n; 1 00,
k — o0, and sets A™ € " such that

P"(A"™) -1 and P"(A™) -0, k— 0.

We notice immediately that entire separation is a symmetric concept in the sense
that (P") A (P") < (P") A (P"). Contiguity does not possess this property. If
(P")<1(P") and (P") <1 (P"), we write (P") <it>(P") and say that the sequences (P")
and (P") of measures are mutually contiguous.

We notice that in the case when (Q",.%") = (Q,.%), P" = P, P" = P for all
n > 1, we have

(P") <1 (P") < P < P, (1)
(P") <>(P") < P~ P, )
(P")yA (P < P LP. 3)
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These properties and the definitions given above explain why contiguity and entire
asymptotic separation are often thought of as “asymptotic absolute continuity” and
“asymptotic singularity” for sequences (P") and (P").
2. Theorems 1 and 2 presented below are natural extensions of Theorems 2 and 3 of
Sect. 9 to sequences of measures.

Let (", #"),>1 be a sequence of measurable spaces; 0", a probability measure
on (9", .Z"); and £" a random variable (generally speaking, extended; see Sect. 4,
Chap. 2) on (", "), n > 1.

Definition 3. A sequence (£") of random variables is fight with respect to a se-
quence of measures (Q") (notation: (£" | Q") is tight) if

lim lim sup 0"(|¢"| > N) = 0. 4)
Nto

(Compare the corresponding definition of tightness of a family of probability mea-
sures in Sect. 2.)
We shall always set

pr+pPt o dP" P
= 2 s Z

¢ Tagv T agr

We shall also use the notation
Zn — ~n/Zn (5)

for the Lebesgue derivative of P* with respect to P" (see (29) in Sect.9), taking
2/0 = 0. We note that if P" « P", Z" is precisely one of the versions of the density
dp" /dP" of the measure P" with respect to P (see Sect. 6, Chap. 2).

For later use it is convenient to note that since

P ”<1 =F, "] ”<1 <1 6
dsy) =k (=) ) sy (6)

and Z" < 2/7", we have
((1/2")|P") 1istight, (Z"|P") is tight. 7

Theorem 1. The following statements are equivalent:
@ (P) < (P,

(b) (1/7" LP”) is tight,

(b") (Z"| P") is tight, }

(c) limgy o liminf, H(a; P*, P") = 1.

Theorem 2. The following statements are equivalent:

@ (P") & (P"),
(b) liminf, P*(z" > €) =0 forevery € >0,



10 Contiguity of Probability Measures 443

(b") limsup, P"(Z" < N) =0 forevery N >0,
(¢) limgyo liminf, H(a; P", P") = 0,

(d) liminf, H(a; P",P") =0 forall o€ (0,1),
(e) liminf, H(a; P",P") =0 forsome a € (0,1).

PROOF OF THEOREM 1.

(a) = (b). If (b) is not satisfied, there are an ¢ > 0 and a sequence n; 1 ©
such that P (7 < 1/m;) > €. But by (6), P* (2 < 1/m;) < 1/mi, k — oo, which
contradicts the assumption that (P") <I (P").

(b) < (b’). We have only to note that Z" = (2/7") — 1.

(b) = (a). Let A" € #" and P"(A") — 0, n — c0. We have

P(A")

IN

P& < &) + Ep(Z'1(A" A {2 > €})

IN

P < )+ 2B (IA) = (2 < o) + ZP(AY).

Therefore, ~ 3
lim sup P"(A") < limsup P"(Z" <¢), &>0.

n

Proposition (b) is equivalent to saying that lim, o lim sup, P'(z" < ¢) = 0. There-
fore, P"(A") — 0, i.e., (b) = (a).

(b) = (c). Lete > 0. Then

H(o: P PY) = Eo[()(2)' ) 2 Eor| (5 ) 16" 2 )@ > 07|

T\ n € aNn n
~5|(5) 1@ 29]2 (5) P za ®
since 7" + 7" = 2. Therefore, for ¢ > 0,
limlionf lim inf H(o; P", P")

e\« ~ ~
> tminf (S Gt P17 > ) — liminf B'(" > &),
> hIgfonf(2) liminf P"(Z" > ¢) = liminf P"(" > ¢). (9)

n n

By (b), liminf, o liminf, IND”(z” > ¢) = 1. Hence, (c) follows from (9) and the fact
that H(a; P", P") < 1.
(¢c) = (b).Letd € (0,1). Then

H(o; P P") = Eg()* () 1" < )]
+E@ () (@) (" > 6,7 < 0)]
+E@ () (@) I > €,2" > 0)]

n\ o«
<26 4+ 257% + Eg [z” (fn) ("> e, 7" > 6)]
Z

< 2% 42617 4+ () P'(" > ¢). (10)
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Consequently,

- S\ ¢ - 2
liminf liminf P"(Z" > ¢) > ( = | liminf H(a; P", P") — —0
€l0 n 2 n 2«
for all « € (0,1), § € (0,1). If we first let « | 0, use (c), and then let 6 | 0, we

obtain }
liminf lim inf P"(Z" > €) > 1,

el0 n

from which (b) follows.
O

PROOF OF THEOREM 2. (a) = (b). Let (P") A (P"), nx 1 0, and let A™ € .F™
have the property that P"(A") — 1 and P (A™) — 0. Then, since z" + 7" = 2, we
have

Pt 2 2) < PUAM) 1 Egu{2 - I 2 9))

H
N s ~ 2
= P"(A™) + Epn {Z* IA™)I(" > 5)} < P(A™) + - P(A™).
" €

Consequently, pre (2" > &) — 0 and therefore, (b) is satisfied.
(b) = (a). If (b) is satisfied, there is a sequence n; 1 oo such that

~ 1 1
Pnk<2nk2k)§kﬂo, k — o0.

Hence, having observed (see (6)) that P™(z™ > 1/k) > 1 — (1/k), we obtain (a).
(b) = (b’). We have only to observe that Z" = (2/7") — 1.
(b) = (d). By (10) and (b),

liminf H(e; P", P") < 2e* 4 26172

for arbitrary € and § on the interval (0, 1). Therefore, (d) is satisfied.
(d) = (c) and (d) = (e) are evident.
Finally, from (8) we have

n

- 2\ -
liminf P"(z" > ¢) < <€) liminf H(a; P*, P").

Therefore, (¢) = (b) and (e) = (b), since (2/e)* — 1, a | 0.
O

3. We now consider a particular case of independent observations, where the
calculation of the integrals H(«; P",P") and application of Theorems 1 and 2 do
not present much difficulty.
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Let us suppose that the measures P" and P" are direct products of measures:

P'=P; x--xP, P'=P;x--xP,, n>1l,

where Py and Py, are given on (e, F), k> 1.
Since in this case

n
H(a; P, P") = HH(Q; Py, Py) = -1 10g[1—(1—H(a;PA,i’k))]7
k=1

we obtain the following result from Theorems 1 and 2:

(P < (P) < g?gnmnsup;u — H(o; Py, )] = 0, (11)
(P") & (P") < limsup »_[1 — H(a; Py, Py)] = . (12)
k=1

Example. Let (Q, %) = (R, B(R)), ar € [0,1),

~ 1
P(dx) = Ijo,11(x) dx,  Pr(dx) = ql[am](x) dx.
Since here H(o; Py, Py) = (1 —a)® a € (0,1), from (11) and the fact that
H(a; Py, Py) = H(1 — «; Py, Py), we obtain

- 1
(P") < (P") < limsupna, < w0, ie.,a,=0 <> ,
n n

- 1
(P") < (P") & limsupna, =0, ie.,a,=o0 (> ,
n n

(P") A (P") < limsupna, = ©.

n
4. PROBLEMS

l.LetP" = P} x --- x P!, P" = P} x --- x P! n > 1, where P} and P}
are Gaussian measures with parameters (af, 1) and (a, 1). Find conditions on
(a!) and (a}) under which (P") < (P") and (P") A (P").

2. Let P" = P! x --- x P and P" = P} x --- x P! where P{ and P}

are probability measures on (R, Z(R)) for which P} (dx) = Ifg17(x) dx and
P} (dx) = Ijy, 144, (x) dx, 0 < a, < 1. Show that H(c; P}, P}) = 1 — a, and

(P") < (P") = (P") < (P") < limsupna, = 0,

(P") A (P") < limsupna, = 0.

n

3. Let (2,.%, (Zn)n>0) be a filtered measurable space, i.e., a measurable space
(Q,.7) with a flow of o-algebras (.%,),>o such that %, € F; < --- C .Z.
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Assume that % (U, Fn)- Let P and P be two probability measures on
(Q,#)and P, =P | T, P, = P| .2, be their restrictions to .%,. Show that

(P,) < (P,) < P« P,
(P,) <>(P,) < P ~ P,
(P,) A (P,) < P LP.

11 Rate of Convergence in the Central Limit Theorem

1.Let&,1,. .., &, be independent random variables, S, = &1 + + -+ + &, Fu(x) =

P(S, < x).IfS, KN A(0,1), then F,(x) — ®(x) for every x € R. Since ®(x) is
continuous, the convergence here is actually uniform (Problem 5 in Sect. 1):

sup |Fy(x) — ®(x)]| = 0, n— 0. €9

It is natural to ask how rapid the convergence in (1) is. We shall establish a result

for the case when
G4t

ovn
where &1, &9, ... is a sequence of independent identically distributed random vari-
ables with E&, = 0, Var& = o and E |2 < 0.

S, = n>1

)

Theorem (Berry—Esseen). We have the bound

CEI&P

o )

sup [Fulx) = @(x)] <

where C is an absolute constant.

PROOF. For simplicity, let 0 = 1 and 33 = E [£;]3. By Esseen’s inequality (Sub-
section 10 of Sect. 12, Chap. 2)

24 1
dt + ——— 3)

fo(t) = o(1)
t 7T /21’

wlia) - o)< 2 [

where o(f) = ¢=""/2 and

f0) = [f(t/v/m)]"
with f(1) = E i1,
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In (3) we may take T arbitrarily. Let us choose

T = /n/(583).

We are going to show that for this 7,

) — ot)] < ﬁ‘irf’ A <. @

The required estimate (2), with C an absolute constant, will follow immediately
from (3) by means of (4). (A more sophisticated analysis gives 0.4097 < C <
0.469, see Remark 2 in Sect. 4.)

We now turn to the proof of (4). By formula (18) in Sect.2, Chap. 2 (n =
3,E& =0, EE2 =1, E|&]3 < o) we obtain

f(t)—Ee”61 —1fﬁ+ (it)S[Eﬁs(cosﬁt j sin 6 5
— = 5 5 ; 1€ + isin 052£1)], (@)

where |61] < 1, |02 < 1. Consequently,

f L *1—t2+(.) E& cos@if —|—isin6i§
N 6n3/2 [T\ ! vt

If [{| < T = \/n/503, we find, by using the inequality 83 > 0% = 1 (see (28),
Sect. 6, Chap. 2), that

t t 2 |3 1
]‘V(ﬁﬂfb‘fﬁmﬂﬁ%+3wzf%'

Consequently, for |¢f| < T it is possible to have the representation

[f (\;ﬁ)]n — logf(f/x/ﬁ)’ (6)

where log z means the principal value of the logarithm of the complex number z
(logz = log|z| +iargz, —m < argz < 7).

Since B3 < o0, we obtain from Taylor’s theorem with the Lagrange remainder
(compare (35) in Sect. 12, Chap. 2)

CN iy @02 e (0P
ocf () =yt + gt + mtonn” (07)
2 )3
- _;Tq n 6(11)/2 (logf)" (9\%) ,oler<, (7)

since the semi-invariants are sé =E& =0, 5(2) =02 =1
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In addition,

f"(5) - f2(s) = 3" (s)f (s)f (s) + 2(f'(5))°

(log /(s))" = e
_ ELl€)* 1) — BELGi€) ¢ ELi€)e 1 (5) + 2E(i€1) e
730) |

From this, taking into account that |f(z/4/n)| > 24/25 for |¢| < T and |f(s)| < 1,
we obtain

(o) (072

(B =E &l k=1,2,3; 81 < B < B35/ see (28), Sect. 6, Chap. 2).
From (6)—(8), using the inequality |¢*—1| < |z|e?!, we find for |¢| < T = \/n/555

that
t " 2 . 2
f < _ et /2| _ ‘enlog,f(t/\/ri) et /2|
v
< T Bsltl” ex —ﬁ-l- I |l|3& <zﬁ3|t|3e_’2/4
=\6) va P12 \6)" Vaf=6 vn '

This completes the proof of the theorem.
m]

)‘ Bt 35(12;1)% 250 _ 15, ®)

25

Remark. We observe that unless we make some supplementary hypothesis about
the behavior of the random variables that are added, (2) cannot be improved. In fact,
let &y, &9, . . . be independent identically distributed Bernoulli random variables with

It is evident by symmetry that

2n 2n
2P<Z§k<0> +P<];§k—0> =1,

k=1

and hence, by Stirling’s formula ((6), Sect. 2, Chap. 1)

2n 1 1 2n
P<Z§k<0>*2 =2P<ka=o>
k=1 k=1

_ 1, o—2n 1 _ 1
2 2./7n (2m)(2n)
It follows, in particular, that the constant C in (2) cannot be less than (277)*1/ 2 and

that P(37" | & = 0) ~ (wn)~1/2.
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2. PROBLEMS

1. Prove (8).

2. Let &, &, ... be independent identically distributed random variables with
E& = 0, Varé = o2 and E[&]3 < oo. It is known that the following
nonuniform inequality holds: for all x € R,

CE|§1\3' 1
odyn (1+[x])%

Prove this, at least for Bernoulli random variables.

3. Let (&)r>1 be a sequence of independent identically distributed random vari-
ables, taking values +1 with probabilities 1/2, and let Sy = & + - - - + &. Let
@a(t) = Ee = L(e + ¢'"). Show (in accordance with Laplace), that

1 (", 1
P{S2n=0}=;J;) Wz(f)dINE, n— .

4. Let (& )k>0 be a sequence of independent identically distributed random vari-
ables, taking 2a + 1 integer values 0, =1, . .., =a with equal probabilities. Let

oat1(t) = Eer = ﬁ(l + 237, costk).

Show (again in accordance with Laplace) that

N B
\/2m(a+ )n’

In particular, for a = 1, i.e., for the case, where ;’s take three values —1, 0, 1,

V3
2/’

n — 0.

1™,
P{Sn = 0} = ;J(‘) 902(1-4—1(0 dt ~

P{S, = 0} ~

12 Rate of Convergence in Poisson’s Theorem

1. Let &1, &9, ..., &, be independent Bernoulli random variables that take the val-
ues 1 and 0 with probabilities

P=1)=pi, P&=0)=aq(=1-p), 1<k<n

WesetS =& +---+&,;let B= (By, By, ..., B,) be the probability distribution
of the sum S, where By = P(S = k). Also let IT = (7, 71, ...) be the Poisson
distribution with parameter )\, where

e M \K
k!

. k>0

T =
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We noticed in Subsection 4 of Sect. 6, Chap. 1 that if

pP1r="'""=Pn )‘:np7 (1)
there is the following estimate (Prokhorov [75]) for the distance in variation be-
tween the measures B and IT (B, 41 = B,12 = --- = 0):

- A
|B—T0| = > B —m| < Ci(\p = C1(N) - =, 2)
n

k=0

where
C1(A) = 2min(2, \). 3)
For the case when p; are not necessarily equal, but satisfy Y, px = A,

Le Cam [57] showed that

[oe]
|B 11| = l;) |Br — mi| < Ca(N) 128X Py 4
where
Ca(A\) = 2min(9, A). Q)

A theorem to be presented below will imply the estimate
I <
1B~ 11| < C5(A) max p, ©)
in which
Cs(A) = 2. @)

Although Ca(N\) < C5(A) for A > 9, i.e., (6) is worse than (4), we neverthe-
less have preferred to give a proof of (6), since this proof is essentially elementary,
whereas an emphasis on obtaining a “good” constant Cy(\) in (4) greatly compli-
cates the proof.

2. Theorem. Let A = Y, _, pi. Then

[ee} n
|B—11] = Y B —m| <2 pi. ®)
k=0 k=1

PROOF. We use the fact that each of the distributions B and 11 is a convolution of
distributions:

B = B(p1) #B(p2) * -+ * B(pn),
I =T(py) * I(py) * - - - * I(py), €)
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understood as a convolution of the corresponding distribution functions (see Subsec-
tion 4, Sect. 8, Chap. 2), where B(py) = (1 — px, px) is the Bernoulli distribution on
the points 0 and 1, and TI(py) is the Poisson distribution with parameter p; supported
on the points 0, 1, . ..

It is easy to show that the difference B — II can be represented in the form

B—II=R{+---+R,, (10)
where
Ry = (B(pr) — (px)) * Fi (11)
with
Fi =1(py) = --- = [I(p,),
Fiy = B(p1) # - # B(pr—1) * (prgr) * -+ (py), 2<k<n—1,
F,=B(p1) = *B({p,_1).

By problem 6 in Sect. 9, we have ||R| < |B(px) — II(pk)|. Consequently, we see
immediately from (10) that

n
|B =TI < > [B(pe) — T(pa) . (12)
k=1
By formula (12) in Sect. 9, we see that there is no difficulty in calculating the varia-
tion | B(px) — II(pi) -
|B(px) — 1L(px)|
_ _ pje—Pk
= (1= pi) — | + |px — pre ™| + D, =
‘ J!
j=2

=[(1—pc) —e P+ |pr —pre |+ 1 — e P — pre ™
=2p(1 —e 7)) < Qp%.

From this, together with (12), we obtain the required inequality (8).
This completes the proof of the theorem.
m]

Corollary. Since >;_, pf < Amaxi<k<n Pk, we obtain (6).

3. PROBLEMS

1. Show that, if \;, = —log(1 — py),
IB(pe) — (M) = 2(1 — e — Me™™) < X7

and consequently, [B — II|| < >17_ A2
2. Establish the representations (9) and (10).
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13 Fundamental Theorems of Mathematical Statistics

1. In Sect. 7, Chap. 1, we considered some problems of estimation and constructing
confidence intervals for the probability of “success” from observations of random
variables in Bernoulli trials. These are typical problems of mathematical statistics,
which deals with in a certain sense inverse problems of probability theory. Indeed,
whereas probability theory is mainly interested in computation, for a given prob-
ability model, of some probabilistic quantities (probabilities of events, probability
distributions of random elements and their characteristics, and so on), in mathemat-
ical statistics we are interested to reveal (with certain degree of reliability), based on
available statistical data, the probabilistic model for which the statistical properties
of the empirical data agree best of all with probabilistic properties of the random
mechanism generating these data.

The results given below (due to Glivenko, Cantelli, Kolmogorov, and Smirnov)

may be rightly named fundamental theorems of mathematical statistics because they
not only establish the principal possibility of extracting probabilistic information
(about the distribution function of the observed random variables) from statistical
raw material, but also make it possible to estimate the goodness of fit between sta-
tistical data and one or another probability model.
2. Let &1,&,, ... be a sequence of independent identically distributed random vari-
ables defined on a probability space (€2,.#,P) and let F = F(x), x € R, be their
distribution function, F(x) = P{& < x}. Define for any N > 1 the empirical distri-
bution function

1y
Fy(xw) = N};I(fk(w) <x), x€eR (1)
By the law of large numbers (Sect. 3, Theorem 2) for any x € R
Fy(xw) & F(x), N— o, @)
i.e., Fy(x) converges to F(x) in P-probability.
Moreover, it follows from Theorems 1 and 2 of Sect. 3, Chap. 4, Vol. 2 that for
any x € R this convergence holds with probability one: as N — o0,
Fy(x;w) — F(x) (P-a.s.). 3)
Remarkably, a stronger result on uniform convergence in (3) also holds.

Theorem 1 (Glivenko—Cantelli). Under the above conditions the random variables

Dy(w) = sup |Fy(x;w) — F(x)| 4

XER

converge to zero with probability one:

P(lim Dy(w) = 0) = 1. (5)
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PROOF. Let Q be the set of rational numbers in R. Clearly,

sup [Fy(r;w) — F(r)]
reQ

is a random variable. And since

Dy(w) = sullé) |Fy(x;w) — F(x)| = sug |Fn(r;w) — F(r)],
XE. re

the statistic Dy (w) is also a random variable, so that we can speak of its distribution.
LetM > 2beanintegerand k = 1,2, ..., M —1. Define the sequence of numbers

xmx = min{x € R: k/M < F(x)},

setting also xy;,0 = —00, Xy = +00.
Take an interval [Xu x, Xm x+1) # @ and let x belong to this interval. Then obvi-
ously

Fy(x;w) — F(x) < Fy(xyge1 — 0) — F(xar )
= [Fn(xmpr1 — 0) = Flxmper — 0)] + [F(oares1 — 0) — Flan i)
< Fy(mpe1 —0) = Flxmps1 — 0) + 1/M.

In a similar way, assuming again that x € [Xa g, Xar x+1), We find that
Fy(xw) — F(x) > Fy(xme;w) — Flae) — 1/M.
Therefore, for any x € R

[Fy(x;w) — F(x)|
< max {|Fy(ap;w) — F(xmx)|, [Fy(ary — 0;w) — F(xar — 0)|} + 1/M,

T 1<k<M-—1
1<1<M—1

hence
lirro1C sup |Fy(x;w) — F(x)| <1/M  (P-a.s.).
n— X
Since M is arbitrary, this implies (5).
O
The Glivenko—Cantelli theorem, which is one of the fundamental theorems of
mathematical statistics, states, as we pointed out, the principal possibility to ver-
ify, based on observations of (independent identically distributed) random variables
1,8, ... that the distribution function of these variables is precisely F = F(x).
In other words, this theorem guarantees the possibility to establish an agreement
between the “theory and experiment.”
3. As is seen from (1), Fy(x) for each x € R is the relative frequency of events
{& < x},i = 1,...,N, in N Bernoulli trials. This implies (2) and (3) by the
Law of Large Numbers (LLN) and the Strong Law of Large Numbers (SLLN)
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respectively. But a much deeper information about the distribution of the frequency
in the Bernoulli scheme is given by the de Moivre—Laplace theorem, which in this
case states that for any fixed x € R

VN(Fy(x) = F(x)) <5 (0, F(x)[1 = F(x)]), (©)

i.e., that the distribution of /N (Fy(x) — F(x)) converges to the normal one with
zero mean and variance o2 (x) = F(x) (1 — F(x)). (See Sect. 6, Chap. 1.) From this,
one can easily derive the limit distribution of v/N|Fy(x) — F(x)| using the fact that
P(l¢] > x) = 2P(¢ > x) for any &€ ~ A47(0,0?%) due to symmetry of the normal
distribution. Namely, restating (6) as

>x) —1—-®(x), xeR,

we can write our statement about v/N|Fy (x) — F(x)| as

VN|Fy(x) — F(x)]
P ( o(x)

where ®(-) is the standard normal distribution function.

However, like in the case of the Glivenko—Cantelli theorem, we will be interested
in the maximal deviation of Fy(x) from F(x), more precisely, in the distribution of
Dy defined by (4) and

> x) 21— d(x), x>0,

Dy, = sup(Fy(x) — F(x)) 7

describing the maximum of the one-sided deviation of Fy(x) from F(x).

Now we will formulate a theorem on the limit distributions of Dy and Dy . This
theorem shows, in particular, that these limit distributions hold with the same nor-
malization as in (6), i.e., with multiplying these quantities by v/N (which is by
no means obvious a priori), and that these limit distributions are essentially dif-
ferent, in contrast to the simple relation between those of /N (Fy(x) — F(x)) and
V/N|Fy(x) — F(x)| for a fixed x € R. The result (8) is due to Smirnov [94] and the
result (9), (10) to Kolmogorov [48].

Theorem 2. Assume that F(x) is continuous. With the above notation, we have

P(WNDy <y) »1-¢2", y>0, ®)

P(VNDy <y) — K(y), ©)
where »

KO)= Y (1?2 y>o0. (10)
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The rigorous proof of this theorem goes beyond the scope of this book. It can
be found in Billingsley [9], Sect. 13. Here we give an outline of the proof and a
heuristic derivation of the formulas in (8) and (10).

The following observation (A. N. Kolmogorov) is of key importance for obtain-
ing the limit distributions of these statistics.

Lemma 1. Ler T be the class of continuous distribution functions F = F(x). For
any N > 1 the probability distribution of Dy(w) is the same for all F € F. The same
is true also for D (w).

PROOF. Let 11,72,... be a sequence of independent identically distributed ran-
dom variables with uniform distribution on [0, 1], i.e., having distribution function
Ux) =P{m <x}=x0<x<1.

To prove the lemma we will show that for any continuous function F = F(x) the
distribution of the statistic sup, |Fy(x;w) — F(x)| coincides with the distribution of
sup, |Un(x; w) — U(x)|, where

N
Uy(x;w) =Nt Z I(m(w) < x)
k=1

is the empirical distribution function of the variables 71, ..., ny.

Denote by A the union of intervals I = [a,b], —0 < a < b < oo, on which the
distribution function F = F(x) is constant, so that P{&; € I} = 0.

Then

Dy(w) = sup |[Fy(x;w) — F(x)| = sup |Fy(x;w) — F(x)].

XER XEA
Introduce the variables 7, = F(&) and empirical distribution functions
1<
Un(x;w) = N ;1(7],((0.)) <x).

Then we find that for x € A
Un(F()i) = 3 3 IF(EW)) < F) = 5 D 1(6) <3) = Fy(x),
k=1 k=1

since for such x we have {w: & (w) < x} = {w: F(&(w)) < F(x)}. Thus
Dy(w) = sup |Fy(xw) — Fx)| = sup |Un(F(x);w) — F(x)]

= sup |Uy(F(x);w) — F(x)| = sup |[Un(y;w)—y sup |Un(y;w) — vl
XER ye(0,1) ¥€[0,1]

| P—is.
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where the last equality (P'is') is a consequence of
P{m =0} =P{mj =1} =0. (11)

Now we will show that the random variables 7j; are uniformly distributed on [0, 1].
To this end denote (for y € (0,1))

x(y) = inf{x e R: F(x) > y}.
Then F(x(y)) = y,y € (0,1), and
P{in <y} = P{F(&) <}
= P{F(&) < FO))} = P& <x()} = F(x(y)) = y.

Combined with (11) this proves that the random variable 7; (and hence each of
7j2, T3, - - - ) is uniformly distributed on [0, 1].

]
4* . This lemma shows that for obtaining limit distributions of Dy and Df, (based
on independent observations &1, &2, . .. with a continuous distribution function F =
F(x) € F) we may assume from the outset that £, s, ... are independent random
variables uniformly distributed on [0, 1].
Setting
1 X
Un(t) = 5 2 1E <) (12)
and
w (1) = VN(Uy(1) — 1), (13)
we have
Dy = sup wy(1), Dy= sup |wn(1)|. 14
t(0,1) t(0,1)

The proof of Theorem 2 consists of two steps:
(i) The proof of weak convergence

wi(-) > w(), (15)

where wi(+) is a continuous random function approximating wy(-) (e.g., by linear
interpolation) so that supe g 1) [wn (1) — wi(r)] — 0 as N — oo, and w? is the
conditional Wiener process (see Subsection 7 of Sect. 13). For ease of notation, we
henceforth often write sup without indicating that 7 € (0, 1). The convergence (15)
is understood as weak convergence of the corresponding distributions in the space
C of continuous functions on [0, 1]. (See Subsection 6 of Sect.2, Chap. 2. See also
Sect. 1, Chap. 3 for the concept of weak convergence. Recall that C is endowed with
distance p(x1(+), x2(+)) = sup |x1(#) — x2(¢)[, x1(-), x2(-) € C.)

* Subsections 4 and 5 are written by D.M. Chibisov.
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Then (15) implies that the distributions of p-continuous functionals of w}; (and
hence of the same functionals of wy) converge to the distributions of these func-
tionals of wY. It is easily seen that if we change a function x(¢) € C less than by &
uniformly in ¢ € [0, 1] then sup x(¢) and sup |x(7)| will change less than by . This
means that these are p-continuous functionals of x(-) € C and therefore by (15)

sup wy (1) > sup wO(r), sup Jwy(r) > sup WO(1).  (16)
1€(0,1) t(0,1) 1€(0,1) 1€(0,1)

(ii) The proof that the distributions of sup,e g 1 w'(¢) and SUPye(0,1) |w(z)] are
given by the right-hand sides of (8) and (9).

For the proof of (i) we have to establish convergence of the finite-dimensional
distributions of wi(+) to those of w® and tightness of the sequence of distributions
of wi(+) in the space C. For the proof of tightness the reader is referred to [9].

Here we will only show the convergence of finite-dimensional distributions. The
aim of introducing wj; was to replace wy by a random element in the space C of
continuous functions. (Or else wy could be treated as an element of D, see [9].
See also [9] for difficulties which arise when trying to consider wy in the space of
discontinuous functions with metric p.) The fact that the functions w3 (-) and wy(+)
approach each other implies that their finite-dimensional distributions converge to
the same limits, so that in this part of the proof we may deal directly with wy instead
of wj.

Recall that w®(z), ¢ € [0, 1], is the Gaussian process with covariance function

(s, t) = min(s, ) — st, s,t€[0,1], (17)

see Example 2 in Sect. 13, Chapter 2. Therefore to prove the convergence of interest
we have to prove that forany 0 < 11 < -+ < # < 1 the joint distribution of
(wn(1),...,wn(;)) converges to the k-dimensional normal distribution with zero
mean and covariance matrix || min(z;, ;) — ;85—

Notice that for k = 1 this is just the statement of the de Moivre—Laplace theorem.
Indeed, by (12) Uy (z) is the relative frequency of the events (§; < ¢),i=1,...,N,
having the probability ¢ of occurrence, in N Bernoulli trials, and by (13) wy(7) is
this frequency properly centered and normalized to obey the integral de Moivre—
Laplace theorem saying that its distribution converges to .4 (0,#(1 — t)), where
t(1 — t) is the variance of a single Bernoulli variable I(&; < t). Since Varw®(z) =
r9(t,t) = t(1 — t) by (17), this conforms with the above statement on convergence
wy (1) 5 wO(t) for a single ¢ € (0, 1).

To prove a similar result for arbitrary 0 < 11 < --- < f; < 1, we will use the
following multidimensional version of Theorem 3, Sect. 3, Chap. 3 (it is stated as
Problem 5 therein; the proof can be found, e.g., in [15]). Let X; = (X1,...,Xu),
i=1,2,..., be independent identically distributed k-dimensional random vectors.

Theorem. Suppose X;’s have a (common) finite covariance matrix R. Denote by Py
the distribution of Sy = (Sn1, - - - , Snk), where
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—EXy), j=1,... .k (18)

||M2

Then
Py 5 A (0,R) as N — oo, (19)

where A (0,R) is the k-dimensional normal distribution with zero mean and co-
variance matrix R.

To apply this theorem to (wy(t1), ..., wn(t)), let X; = 1(&; <t),i=1,...,N,
j=1,...,k Then by (12), (13) wy(t;) = Sx; as in (18), and to obtain the required
convergence, we only need to check that

Cov(I(& <s),1(§&1 <t)) =min(s,t) —st forany 0<s,t<1. (20)

Using the formulas Cov(¢,n) = E(&n) — EEEnand EI(& < 1) = 1, we see
that (20) follows from the fact that 7(&, < $)I(&; < 1) = I(§; < min(s, 1)).

Thus we have established the “finite-dimensional convergence” part of the proof
of (15) (or of step (i)). As we said above, for the remaining part, the proof of tight-
ness, the reader is referred to [9].

5. Now we turn to the statement (ii). Reversing the inequalities in (8) and (9) this
statement can be written as

P(sup w(1)>y) =™, y>0, @1
t(0,1)
& 2.2
P( sup [wo(n)] >y) =2 (1)1 y>0. (22)
t€(0,1) k=1

For the detailed rigorous proof of (21) and (22) we again refer to [9]. Here we give
a heuristic version of that proof.

First, let us check that the conditional Wiener process w(+) introduced in Ex-
ample 2, Sect. 13, Chapter 2, is indeed the Wiener process w(-) conditioned on
{w(1) = 0}. For that we show that the conditional finite-dimensional distribu-
tions of w() given that w(1) = 0O are the same as the finite-dimensional distri-
butions of w®. We will check this for w(z) at a single point £, 0 < ¢t < 1. A
general statement for 0 < 11 < ... < fz < 1, k > 1, can be proved in a simi-
lar way. Recall that the Wiener process w(-) is the Gaussian process with covari-
ance function r(s,f) = min(s,?), s, > 0. Let £ = w(1) and n = w(r). Then
E¢ = En = 0, Var{ = 1, Varn = 1, and Cov(§,n) = E&n = ¢, hence
Cov(&,n—1€) = 0. (This holds because E(n | £) = 1, see (12) in Sect. 13, Chap. 2,
and in general E({(n—E(n | £))) = 0.) Since (£, n) are jointly normally distributed,
this implies that £ = w(1) and n — £ = w(r) — tw(1) are independent. Now
Cov(w(s) — sw(1),w(t) — tw(1)) = min(s,t) — 2st + st = r°(s,¢) as in (17),
hence we may set w¥(z) = w(t) — tw(1), 0 < ¢ < 1. Then the conditional distribu-
tion of (w(z) |w(1) = 0) equals that of (w(¢) — tw(1)|w(1) = 0), which is equal
to the unconditional distribution of w°(¢) due to independence of w°(¢) and w(1)
shown above.
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Now the left-hand sides of (21) and (22) can be replaced by

P( sup w(r)>y|w(l)=0) and P ( sup |w(r)]>y|[w(l)=0) (23)
t€(0,1) t€(0,1)

respectively. Rewrite the first of these probabilities as

L P (fsuPeo.n W) > 3} 0 {w(1) € Us})

50 P(w(1) € Us) ’ 24

where Us = (=9, +9). (Of course, it is a heuristic step, but the formula (24) for the
above conditional probability is in fact correct, see [9].) Let 7 = min{z: w(r) = y}.
This is a stopping time defined on the first event in the numerator of (24). For a
fixed 7 the event under P in the numerator occurs if the increment of w(¢) on (7, 1)
equals —y up to +4, i.e., lies within (—y — §, —y + §). By symmetry, the probability
of this event equals the probability that this increment lies in (y— 0, y+§). Therefore
the probability in the numerator of (24) equals

P ({ S(%Ii)W(I) >ybn{w(l)e2y+ Ug}).

But for small ¢ the second event implies the first, so that this probability is P(w(1) €
2y + Us). Taking the limit as 6 — 0, we obtain that

P( sup w(t) >y|w(l) =0 =7=e_2y2,
(te(O,l) ) (1) ) ©(0)

where ¢(y) is the density of .47(0, 1), which proves (21).

To prove (22) we represent its left-hand side as the second probability in (23)
and use the arguments in the above derivation of (21). The event in the numerator
of (24) with w(r) replaced by |w(z)| describes two possibilities for the path of w(-)
to leave the stripe between the +y lines, viz. by crossing the upper (+y) or the
lower (—y) boundary. This apparently implies that the probability in (22) is twice
the one in (21). But in this way some paths are counted twice, namely, those which
cross both boundaries, so that the probability of crossing two boundaries has to
be subtracted. This reasoning continuous by the principle of inclusion—exclusion to
give the formula in (22). A detailed derivation of this formula can again be found in
[9].

6. Let us consider how the knowledge, say, of relation (9), where K(y) is given
by (10), enables us to provide a test for agreement between experiment and theory
or a goodness-of-fit test. To this end we first give a short table of the distribution
function K (y):
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y | K@) [y | KO») || v K(y)
1.10]0.822282([2.10[0.999705
0.28/0.000001{1.20/0.887750/|2.20(0.999874
0.30/0.000009|1.30{0.931908]2.30{0.999949
0.40/0.002808(|1.40[0.960318]|2.40{0.999980
0.50/0.036055||1.50/0.977782|2.50(0.9999925
0.60[0.135718||1.60]0.988048|2.60/0.9999974
0.70(0.288765|1.70/0.993828]|2.70/0.9999990
0.80(0.455857||1.80/0.996932/|2.80(0.9999997
0.90/0.607270|/1.90[0.998536/|2.90|0.99999990
1.00{0.730000|2.00/0.9993291|3.00|0.99999997

If N is sufficiently large, we may assume that K(y) provides an accurate enough
approximation for P{+/NDy(w) < y}.

Naturally, if the value /NDy(w) computed on the basis of empirical data
&1(w), ..., &v(w) turns out to be large, then the hypothesis that the (hypothesized)
distribution function of these variables is just the (continuous) function F = F(x)
has to be rejected.

The above table enables us to get an idea about the degree of reliability of our
conclusions. If, say, v/NDy(w) > 1.80, then (since K(1.80) = 0.996932) we know
that this event has probability approximately equal to 0.0031 (= 1.0000 — 0.9969).
If we think of events with such a small probability (= 0.0031) as practically almost
impossible, we conclude that the hypothesis that the distribution function P{¢; <
x} is F(x), where F(x) is the function used in the formula for Dy(w), should be
rejected. On the contrary, if, say, v/NDy(w) < 1.80, then we can say (invoking the
law of large numbers) that agreement between “experiment and theory” will hold in
9969 such cases out of 10 000.

Remark. It is important to stress that when applying goodness-of-fit tests using
Kolmogorov’s or Smirnov’s distributions, the distribution function F' = F(x) to be
tested has to be completely specified. These tests “do not work™ if the hypothesis
assumes only that the distribution function F = F(x) belongs to a parametric family
G = {G = G(x;0); 0 € O} of distribution functions G(x; #) depending on a param-
eter 0 € O. (Although for each 6 the function G(x;6) is supposed to be uniquely
determined.) In this case the following way of testing the agreement between em-
pirical data and the hypothesis F € G comes to mind: first, to estimate 6 based on N
observations by means of some estimator Oy = éN(w) and then to make a decision
using the quantity v/N sup, g |Fy (x;w) — G(x; Oy (w))| as it was done in the above
example. Unfortunately, the distribution function G(x; y(w)) will be random and
the distribution of the statistic v/N sup g |[Fy(x;w) — G(x; Oy(w))| will not be, in
general, given by Kolmogorov’s distribution K = K(y).
Concerning the problem of testing the hypothesis that F' € G see, e.g., [45].
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A useful source for many applications, where statistical tables are needed, is
Tablicy Matematicheskoy Statistiki (Tables of Mathematical Statistics) by Bol’shev
and Smirnov [11]. Nowadays statistical computations are mostly performed using
computer packages.

Chapter 2

Section 1. Concerning the construction of probabilistic models see Kolmogorov [49]
and Gnedenko [32]. For further material on problems of distributing objects among
boxes see, e.g., Kolchin, Sevastyanov, and Chistyakov [47].

Section 2. For other probabilistic models (in particular, the one-dimensional Ising
model) that are used in statistical physics, see Isihara [42].

Section 3. Bayes’s formula and theorem form the basis for the “Bayesian approach”
to mathematical statistics. See, for example, De Groot [20] and Zacks [98].

Section 4. A variety of problems about random variables and their probabilistic
description can be found in Meshalkin [68], Shiryayev [90], Shiryayev, Erlich and
Yaskov [91], Grimmet and Stirzaker [38].

Section 6. For sharper forms of the local and integral theorems, and of Poisson’s
theorem, see Borovkov [12] and Prokhorov [75].

Section 7. The examples of Bernoulli schemes illustrate some of the basic concepts
and methods of mathematical statistics. For more detailed treatment of mathematical
statistics see, for example, Lehmann [59] and Lehmann and Romano [60] among
many others.

Section 8. Conditional probability and conditional expectation with respect to a de-
composition will help the reader understand the concepts of conditional probability
and conditional expectation with respect to o-algebras, which will be introduced
later.

Section 9. The ruin problem was considered in essentially the present form by
Laplace. See Gnedenko and Sheinin in [53]. Feller [30] contains extensive mate-
rial from the same circle of ideas.

Section 10. Our presentation essentially follows Feller [30]. The method of proving
(10) and (11) is taken from Doherty [21].

Section 11. Martingale theory is thoroughly covered in Doob [22]. A different proof
of the ballot theorem is given, for instance, in Feller [30].

Section 12. There is extensive material on Markov chains in the books by Feller [30],
Dynkin [26], Dynkin and Yushkevich [27], Chung [18, 19], Revuz [81], Kemeny
and Snell [44], Sarymsakov [84], and Sirazhdinov [93]. The theory of branching
processes is discussed by Sevastyanov [85].
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Chapter 2

Section 1. Kolmogorov’s axioms are presented in his book [51].

Section 2. Further material on algebras and o-algebras can be found in, for example,
Kolmogorov and Fomin [52], Neveu [69], Breiman [14], and Ash [4].

Section 3. For a proof of Carathéodory’s theorem see Loeve [64] or Halmos [39].
Sections 4-5. More material on measurable functions is available in Halmos [39].
Section 6. See also Kolmogorov and Fomin [51], Halmos [39], and Ash [4]. The
Radon—-Nikodym theorem is proved in these books.

Inequality (23) was first stated without proof by Bienaymé [8] in 1853 and proved
by Chebyshev [16] in 1867. Inequality (21) and the proof given here are due to
Markov [67] (1884). This inequality together with its corollaries (22), (23) is usually
referred to as Chebyshev’s inequality. However sometimes inequality (21) is called
Markov’s inequality, whereas Chebyshev’s name is attributed to inequality (23).
Section 7. The definitions of conditional probability and conditional expectation
with respect to a o-algebra were given by Kolmogorov [51]. For additional material
see Breiman [14] and Ash [4].

Section 8. See also Borovkov [12], Ash [4], Cramér [17], and Gnedenko [32].
Section 9. Kolmogorov’s theorem on the existence of a process with given finite-
dimensional distributions is in his book [51]. For Ionescu-Tulcea’s theorem see also
Neveu [69] and Ash [4]. The proof in the text follows [4].

Sections 10-11. See also Kolmogorov and Fomin [52], Ash [4], Doob [22], and
Loeve [64].

Section 12. The theory of characteristic functions is presented in many books. See,
for example, Gnedenko [32], Gnedenko and Kolmogorov [34], and Ramachan-
dran [79]. Our presentation of the connection between moments and semi-invariants
follows Leonov and Shiryaev [61].

Section 13. See also Ibragimov and Rozanov [41], Breiman [14], Liptser and Shi-
ryaev [62], Grimmet and Stirzaker [37], and Lamperti [56].

Chapter 3

Section 1. Detailed investigations of problems on weak convergence of probability
measures are given in Gnedenko and Kolmogorov [34] and Billingsley [9].

Section 2. Prokhorov’s theorem appears in his paper [76].

Section 3. The monograph [34] by Gnedenko and Kolmogorov studies the limit
theorems of probability theory by the method of characteristic functions. See also
Billingsley [9]. Problem 2 includes both Bernoulli’s law of large numbers and
Poisson’s law of large numbers (which assumes that £1,&5, ... are independent
and take only two values (1 and 0), but in general are differently distributed:

P&=1)=pi, P(&=0)=1—p; i>1).
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Section 4. Here we give the standard proof of the central limit theorem for sums
of independent random variables under the Lindeberg condition. Compare [34]
and [72].

Section 5. Questions of the validity of the central limit theorem without the hypoth-
esis of asymptotic negligibility have already attracted the attention of P. Lévy. A
detailed account of the current state of the theory of limit theorems in the nonclas-
sical setting is contained in Zolotarev [99]. The statement and proof of Theorem 1
were given by Rotar [82].

Section 6. The presentation uses material from Gnedenko and Kolmogorov [34],
Ash [4], and Petrov [71, 72].

Section 7. The Lévy—Prohorov metric was introduced in the well-known paper by
Prohorov [76], to whom the results on metrizability of weak convergence of mea-
sures given on metric spaces are also due. Concerning the metric |P — P|%;, see
Dudley [23] and Pollard [73].

Section 8. Theorem 1 is due to Skorokhod. Useful material on the method of a single
probability space may be found in Borovkov [12] and in Pollard [73].

Sections 9-10. A number of books contain a great deal of material touching on these
questions: Jacod and Shiryaev [43], LeCam [58], Greenwood and Shiryaev [36].
Section 11. Petrov [72] contains a lot of material on estimates of the rate of con-
vergence in the central limit theorem. The proof of the Berry—Esseen theorem given
here is contained in Gnedenko and Kolmogorov [34].

Section 12. The proof follows Presman [74].

Section 13. For additional material on fundamental theorems of mathematical statis-
tics, see Breiman [14], Cramér [17], Rényi [80], Billingsley [10], and Borovkov [13].
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Symbols
A-system, 171

A (condition), 407
m-A-system, 171
m-system, 170

A
absolute continuity with respect to P,
232
Absolute moment, 220, 230
Absolutely continuous
distribution function, 190
distributions, 189
measures, 189
probability measures, 232
random variables, 207
Algebra, 8, 160
generated by a set, 167
induced by a decomposition, 8,
168
of sets (events), 8, 160, 167
smallest, 168
trivial, 8
Allocation of objects among cells, 4
Almost everywhere (a.e.), 221
Almost surely (a.s.), 221
Appropriate set of functions, 175
Arcsine law, 94, 103
Arrangements
with repetitions, 2
without repetitions, 3
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Asymptotic negligibility, 407
Atom, 316

of a decomposition, 8
Axioms, 164

B
Backward equation, 119
matrix form, 119
Ballot Theorem, 108
Banach space, 315
Basis, orthonormal, 323
Bayes
formula, 24
theorem, 24
generalized, 272
Bernoulli, J., 44
distribution, 189
law of large numbers, 46
random variable, 32, 45
scheme, 28, 34, 44, 54, 69
Bernstein, S. N., 52, 369
inequality, 54
polynomials, 52
proof of Weierstrass theorem, 52
Berry—Esseen theorem, 62, 446
Bienaymé—Chebyshev inequality, 228
Binary expansion, 160
Binomial distribution, 14, 15, 189
negative, 189
Bochner-Khinchin theorem, 343
Bonferroni’s inequalities, 14
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Borel, E. inversion formula, 340
o-algebra, 175 Marcinkiewicz’s theorem, 344
function, 175, 206 of a set, 31
inequality, 370 of distribution, 332
sets, 175 of random vector, 332
space, 271 Pdlya’s theorem, 344

Borel-Cantelli lemma, 308 properties, 332, 334

Bose-Einstein, 5 Charlier, C. V. L., 325

Bounded variation, 246 Chebysheyv, P. L., 388

Branching process, 117 inequality, 46, 53,227, 228, 388

Brownian Classical
bridge, 367,370 distributions, 14
motion, 366, 370 method, 11

construction, 367 models, 14
Buffon’s needle, 266 probability, 11
Bunyakovskii, V. Ya., 37 Closed linear manifold, 328
Coin tossing, 1, 14, 31, 83, 159
Combinations
C

with repetitions, 2

Canonical without repetitions, 3
probability space, 299 Combinatorics, 11
Cantelli, F. P, 452 Compact
Cantor, G. relatively, 384
diagonal process, 386 sequentially, 385
function, 191 Complement, 7, 160
Carathéodory theorem, 185 Complete
Carleman’s test, 353 function space, 314, 315
Cauchy probability measure, 188
criterion for probability space, 188
almost sure convergence , 311 Completion of a probability space, 188
convergence in mean-p, 314 Composition, 136
convergence in probability, 313 Concentration function, 356
distribution, 190 Conditional distribution
sequence, 306 density of, 264
Cauchy—Bunyakovskii inequality, 229 existence, 271
Central Limit Theorem, 388, 407 Conditional expectation, 75
Lindeberg condition, 395, 401 in the wide sense, 320, 330
non-classical conditions for, 406 properties, 257
rate of convergence, 446 with respect to
Cesaro summation, 316 o-algebra, 255
Change of variable in integral, 234 decomposition, 78
Chapman, D. G., 118, 300 event, 254,262
Characteristic function, 331 random variable, 256, 262

examples of, 353 set of random variables, 81
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Conditional probability, 22, 75, 254
regular, 268
with respect to
o-algebra, 256
decomposition, 76, 254
random variable, 77, 256
Conditional variance, 256
Confidence interval, 69, 73
Consistency of finite-dimensional
distributions, 197, 298
Consistent estimator, 70
Construction of a process, 297
Contiguity of probability measures, 441
Continuity theorem, 389
Continuous at zero (&), 186, 199
Continuous from above or below, 162
Continuous time, 214
Convergence
of distributions, 373
in general, 375, 376, 381
in variation, 432
weak, 375,376
of random elements
in distribution, 425
in law, 425
in probability, 425
with probability one, 425
of random variables
almost everywhere, 306
almost surely, 306, 420
in distribution, 306, 392
in mean, 306
in mean of order p, 306
in mean square, 306
in probability, 305, 420
with probability 1, 306
Convergence in measure, 306
Convergence-determining class, 380
Convolution, 291
Coordinate method, 299
Correlation
coefficient, 40, 284
maximal, 294
Counting measure, 274
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Covariance, 40, 284, 350
function, 366
matrix, 285

Cumulant, 346

Curve
U-shaped, 103

Cylinder sets, 178

D
De Moivre, A., 47, 60
De Moivre—Laplace integral theorem,
60
Decomposition, 8
of 2, 8
countable, 168
of set, 8,349
trivial, 9
Degenerate random variable, 345
Delta function, 358
Delta, Kronecker, 324
Density, 190, 207
n-dimensional, 195
normal (Gaussian), 65, 190, 195,
284
n-dimensional, 358
two-dimensional, 286
of measure with respect to a
measure, 233
Derivative, Radon—-Nikodym, 233
Determining class, 380
De Morgan’s laws, 13, 151, 160
Difference of sets, 7, 164
Direct product
of o-algebras, 176
of measurable spaces, 176, 183
of probability spaces, 28
Dirichlet’s function, 250
Discrete
measure, 188
random variable, 206
time, 214
uniform distribution, 189
Discrimination between two
hypotheses, 433
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Disjoint, 7, 161
Distance in variation, 431, 436
Distribution
F, 190
Bernoulli, 32, 189
Beta, 190
bilateral exponential, 190
binomial, 14, 15, 189
Cauchy, 190, 415
chi, 293
chi-square, 190, 293
conditional
regular, 269, 281
discrete uniform, 189
double exponential, 296
entropy of, 49
ergodic, 121
exponential, 190
Gamma, 190
geometric, 189
hypergeometric, 19
multivariate, 18
infinitely divisible, 411
initial, 115, 300
invariant, 123
lognormal, 290
multinomial, 18
multivariate, 34
negative binomial, 189, 205
normal (Gaussian), 65, 190
n-dimensional, 358
density of, 65, 195
semi-invariants, 350
Pascal, 189
Poisson, 62, 189
polynomial, 18
Rayleigh, 293
singular, 192
stable, 416
stationary, 123
Student’s, t, 293
Student, ¢, 190
uniform, 190
Weibull, 295

Keyword Index

Distribution function, 32, 185, 206
n-dimensional, 194
absolutely continuous, 190, 204
discrete, 204
empirical, 452
finite-dimensional, 298
generalized, 192
of a random vector, 34
of function of random variables,
34,289
of sum, 34,291
singular continuous, 204
Dominated convergence, 224
Doubling stakes, 89
Dynkin’s d-system, 171

E
Electric circuit, 30
Elementary
events, 1, 164
probability theory, Chapter I, 1
Empty set, 7, 164
Entropy, 49
Ergodic theorem, 121
Ergodicity, 121
Error
function, 65
mean-square, 42
Errors of 1st and 2nd kind, 433
Esseen’s inequality, 353
Essential supremum, 315
Estimation, 69, 287
of success probability, 69
Estimator, 41, 70, 287
best (optimal), 83
in mean-square, 41, 83,287, 363
best linear, 41, 320, 330
consistent, 70
efficient, 70
maximum likelihood, 21
unbiased, 70, 280
Events, 1,5, 160, 164
certain, 7, 164
elementary, 1, 164
impossible, 7, 164
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independent, 26
mutually exclusive, 164
Expectation, 36,217-219
conditional
of function, 83
with respect to o-algebra, 254
with respect to decomposition,
78
inequalities for, 220, 228
properties, 36, 220
Expected (mean) value, 36
Exponential distribution, 190
Exponential family, 279
Exponential random variable, 190, 294
Extended random variable, 208
Extension of a measure, 186, 197, 301

F
Factorization theorem, 277
Family
of probability measures
relatively compact, 384
tight, 384
Fatou’s lemma, 223
for conditional expectations, 283
Fermi—Dirac, 5
Fibonacci numbers, 134, 140
Finer decomposition, 80
Finite second moment, 318
Finite-dimensional distributions, 214,
297
First
arrival, 132
exit, 126
return, 94, 132
Fisher information, 71
Formula
Bayes, 24
for total probability, 23, 76, 79
multiplication of probabilities, 24
Forward equation, 119
matrix form, 119
Fourier transform, 332
Frequency, 45
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Fubini’s Theorem, 235
Fundamental sequence, 306

G
Galton—Watson model, 117, 145
extinction, 145
Gamma
distribution, 190
Gauss—Markov
process, 368
Gaussian
density, 65, 190, 195, 284, 358
multidimensional, 195
distribution, 65, 190, 195, 284
multidimensional, 358
two-dimensional, 286
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