
Chapter 2.6, Page 64

Exercise 1: Prove that∫ ∞
0

sin(x2)dx =
∫ ∞

0

cos(x2)dx =
√

2π
4

.

These are the Fresnel integrals. Here,
∫∞

0
is interpreted as limR→∞

∫ R
0

.

Solution. Let f(z) = eiz
2
. We integrate f(z) around a circular sector of

radiusR running from θ = 0 to π
4 . Along the x axis the integral is

∫ R
0
eix

2
dx.

Along the curved part we have z = Reiθ and the integral is∫ π/4

0

eiR
2e2iθ iReiθdθ = iR

∫ π/4

0

e−R
2 sin(2θ)ei(θ+iR

2 cos(2θ))dθ.

Finally, along the segment at angle π
4 we have z = reiπ/4 and the integral

is
∫ 0

R
e−r

2
eiπ/4dr. The total integral is zero since f is analytic everywhere.

As R→∞, the integral over the third piece approaches

−eiπ/4
∫ ∞

0

e−x
2
dx = −eiπ/4

√
π

2
= −
√

2π
4
−
√

2π
4

i.

To estimate the integral over the curved piece, we used the fact that
sin(2φ) ≥ 4φ

π for 0 ≤ φ ≤ π
4 ; this follows from the concavity of sin(2φ).

Using this,∣∣∣∣∣iR
∫ π/4

0

e−R
2 sin(2θ)ei(θ+iR

2 cos(2θ))dθ

∣∣∣∣∣ ≤ R
∫ π/4

0

∣∣∣e−R2 sin(2θ)ei(θ+iR
2 cos(2θ))

∣∣∣ dθ
= R

∫ π/4

0

e−R
2 sin(2θ)dθ

≤ R
∫ π/4

0

e−4R2θ/πdθ

= − π

4R
e−4R2θ/π

∣∣∣π/4
0

=
π(1− e−R2

)
4R

.

As R→∞, this approaches zero and we are left with∫ ∞
0

eix
2
dx−

√
2π
4
−
√

2π
4

i = 0.

Taking real and imaginary parts, we have∫ ∞
0

cos(x2)dx =
∫ ∞

0

sin(x2)dx =
√

2π
4

.

�

Exercise 2: Show that
∫∞

0
sin x
x dx = π

2 .
1



2

Solution. We integrate f(z) = eiz

z around an indented semicircular contour
bounded by circles of radius ε and R in the upper half plane. The integrals
along the two portions of the real axis add up to∫ ε

−R

cos(x) + i sin(x)
x

dx+
∫ R

ε

cos(x) + i sin(x)
x

dx = 2i
∫ R

ε

sin(x)
x

dx

because cosine is even and sine is odd. The integral around the arc of radius
R tends to zero as R → ∞, by the Jordan lemma; since this lemma isn’t
mentioned in the book, here’s a proof for this specific case: On this arc,
z = Reiθ so the integral is∫ π

0

eiRe
iθ

Reiθ
iReiθdθ = i

∫ π

0

e−R sin(θ)eiR cos(θ)dθ.

The absolute value of this integral is at most∫ π

0

e−R sin(θ)dθ = 2
∫ π/2

0

e−R sin(θ)dθ

by symmetry. Now sin(θ) ≥ 2θ
π for 0 ≤ θ ≤ π

2 by the concavity of the sine
function, so this is at most

2
∫ π/2

0

e−2Rθ/pidθ = −πe
−2Rθ/pi

R

∣∣∣π/2
0

=
π(1− e−R)

R

which tends to 0 as R→∞.
Finally, the integral over the inner semicircle tends to −πi; this is an

immediate consequence of the fractional residue theorem, but since that
doesn’t seem to be mentioned in this book either (gosh!), we can also see
it from the fact that eiz

z = 1
z + O(1) as z → 0, and since the length of the

semicircle is tending to zero, the integral over it approaches the integral of
1
z over it, which is∫ 0

π

1
εeiθ

iεeiθdθ = −
∫ π

0

1dθ = −πi.

Putting the pieces together and letting R→∞ and ε→ 0, we have

2i
∫ ∞

0

sin(x)
x

dx− πi = 0⇒
∫ ∞

0

sin(x)
x

dx =
π

2
.

�

Exercise 3: Evaluate the integrals∫ ∞
0

e−ax cos bx dx and
∫ ∞

0

e−ax sin bx dx, a > 0

by integrating e−Ax, A =
√
A2 +B2, over an appropriate sector with angle

ω, with cosω = a
A .

Solution. As indicated, we integrate f(z) = e−Az around a circular sector
of radius R with 0 ≤ θ ≤ ω, where ω = cos−1( aA ) is strictly between 0 and
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π
2 . (Here we assume b 6= 0 since otherwise the integrals are trivially equal
to 1

a and 0 respectively). The integral along the x axis is

∫ R

0

e−Axdx→
∫ ∞

0

e−Axdx =
1
A

as R → ∞. To estimate the integral over the curved part we use the fact
that cos(θ) ≥ 1− 2θ

π for 0 ≤ θ ≤ π
2 , which follows from the concavity of the

cosine in the first quadrant. Then we have

∣∣∣∣∫ ω

0

e−ARe
iθ

Reiθdθ

∣∣∣∣ ≤ ∫ ω

0

∣∣∣e−AReiθReiθ∣∣∣ dθ
= R

∫ ω

0

e−AR cos(θ)dθ

≤ R
∫ ω

0

e−ARe2ARθ/πdθ

= Re−AR
π

2AR
e2ARθ/π

∣∣∣ω
0

=
π

2A

(
e−AR(1− 2ω

π ) − e−AR
)
.

Since 1− 2ω
π is a positive constant, this tends to 0 as R →∞. Finally, on

the segment with θ = ω, z = reiω = r a+bi
A , so the integral is

∫ 0

R

e−Ar(a+ib)/A a+ ib

A
dr =

a+ ib

A

∫ 0

R

e−are−ibrdr.

Putting the pieces together and letting R→∞, we have

a+ ib

A

∫ 0

∞
e−axe−ibxdx+

1
A

= 0⇒
∫ ∞

0

e−axeibxdx =
1

a+ ib
=

a− ib
a2 + b2

.

Comparing the real and imaginary parts, we have

∫ ∞
0

e−ax cos(bx)dx =
a

a2 + b2
and

∫ ∞
0

e−ax sin(bx)dx =
b

a2 + b2
.

�

Exercise 4: Prove that for all ξ ∈ C we have e−πξ
2

=
∫∞
−∞ e−πx

2
e2πixξdx.
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Solution. Let ξ = a+ bi with a, b ∈ R. Then∫ ∞
−∞

e−πx
2
e−2πixξdx

∫ ∞
−∞

e−πx
2
e−2πix(a+bi)dx

=
∫ ∞
−∞

e−π(x2−2bx)e−2πiaxdx

= eπb
2
∫ ∞
−∞

e−π(x−b)2
e−2πiaxdx

= eπb
2
e−2πiab

∫ ∞
−∞

e−π(x−b)2
e−2πia(x−b)dx

= eπb
2
e−2πiab

∫ ∞
−∞

e−πu
2
e−2πiaudu

= eπb
2
e−2πiabe−πa

2

= e−π(a+bi)2

= e−πξ
2
.

�

Exercise 5: Suppose f is continuously complex differentiable on Ω, and T ⊂
Ω is a triangle whose interior is also contained in Ω. Apply Green’s theorem
to show that ∫

T

f(z)dz = 0.

This provides a proof of Goursat’s theorem under the additional assumption
that f ′ is continuous.

Solution. Write f(z) as f(x, y) = u(x, y)+iv(x, y) where u, v are real-valued
and z = x+ iy. Then dz = x+ idy so∮

T

f(z)dz =
∮
T

(u(x, y) + iv(x, y))(dx+ idy)

=
∮
T

u dx− v dy + i

∮
T

v dx+ u dy

=
∫∫ (

∂v

∂x
+
∂u

∂y

)
dxdy + i

∫∫ (
∂u

∂x
− ∂v

∂y

)
dxdy

= 0

by the Cauchy-Riemann equations. (The double integrals are, of course,
taken over the interior of T .) �

Exercise 6: Let Ω be an open subset of C and let T ⊂ Ω be a triangle whose
interior is also contained in Ω. Suppose that f is a function holomorphic
in Ω except possibly at a point w inside T . Prove that if f is bounded near
w, then ∫

T

f(z)dz = 0.
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Solution. Let γε be a circle of radius ε centered at w, where ε is sufficiently
small that γε lies within the interior of T . Since f is holomorphic in the
region R between T and γε,∫

∂R

f(z)dz =
∫
T

f(z)dz −
∫
γε

f(z)dz = 0.

Thus,
∫
T
f(z)dz =

∫
γε
f(z)dz. But f is bounded near w and the length

of γε goes to 0 as ε → 0, so
∫
γε
f(z)dz → 0 and therefore

∫
T
f(z)dz = 0.

(Note: If we’re not allowed to use Cauchy’s theorem for a region bounded
by two curves, one can use a “keyhole contour” instead; the result is the
same.) �

Exercise 7: Suppose f : D → C is holomorphic. Show that the diameter
d = supx,w∈D |f(z)− f(w)| of the image of f satisfies

2|f ′(0)| ≤ d.
Moreover, it can be shown that equality holds precisely when f is linear,
f(z) = a0 + a1z.

Solution. By the Cauchy derivative formula,

f ′(0) =
1

2πi

∮
Cr

f(ζ)
ζ2

dζ

where Cr is the circle of radius r centered at 0, 0 < r < 1. Substituting −ζ
for ζ and adding the two equations yields

2f ′(0) =
1

2πi

∮
Cr

f(ζ)− f(−ζ)
ζ2

dζ.

Then

|2f ′(0)| ≤ 1
2π

∮
|f(ζ)− f(−ζ)|

r2
dζ ≤ Mr

r
≤ d

r
,

where
Mr = sup

|ζ|=r
|f(ζ)− f(−ζ)|.

Letting r → 1 yields the desired result. �

Exercise 8: If f is a holomorphic function on the strip −1 < y < 1, x ∈ R
with

|f(z)| ≤ A(1 + |z|)η, η a fixed real number
for all z in that strip, show that for each integer n ≥ 0 there exists An ≥ 0
so that

|f (n)(x)| ≤ An(1 + |x|)η, for all x ∈ R.

Solution. For any x, consider a circle C centered at x of radius 1
2 . Applying

the Cauchy estimates to this circle,

|f (n)(x)| ≤ n!‖f‖C
(1/2)n

where ‖f‖C = supz∈C |f(z)|. Now for z ∈ C, 1 + |z| ≤ 1 + |x| + |z − x| =
3
2 + |x| < 2(1 + |x|), so

|f(z)| ≤ A(1 + |z|)η ≤ A2η(1 + |x|)η.
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Hence, ‖f‖C ≤ A2η(1 + |x|)η, so

|f (n)(x)| ≤ n!2nA2η(1 + |x|)η = An(1 + |x|)η

with An = n!2nA2η. �

Exercise 9: Let Ω be a bounded open subset of C, and φ : Ω → Ω a holo-
morphic function. Prove that if there exists a point z0 ∈ Ω such that

φ(z0) = z0 and φ′(z0) = 1

then φ is linear.

Solution. Let f(z) = φ(z+ z0)− z0 for z ∈ Ω− z0. Then f(z) ∈ Ω− z0 and
f is linear iff φ is. Hence, we may assume WLOG that z0 = 0. Expanding
in a power series around 0, we have φ(z) = z + a2z

2 + . . . . Suppose an is
the first nonzero coefficient with n > 1. Then φ(z) = z + anz

n +O(zn+1).
By induction this implies that φk(z) = φ◦· · ·◦φ(z) = z+kanz

n+O(zn+1);
the base case k = 1 has been established, and if it is true for k it follows
that

φk+1(z) = (z+kanzn+O(zn+1))+an
(
z + kanz

n +O(zn+1)
)n

+O
((
z + kanz

n +O(zn+1)
)n+1

)
= z+(k+1)anzn+O(zn+1).

Now let r > 0 such that z ∈ Ω for |z| ≤ r. By the Cauchy estimates,∣∣∣(φk)(n)
(0)
∣∣∣ ≤ n!‖φk‖r

rn

where ‖φk‖r = sup|z|=r |φk(z)|. But φk(z) ∈ Ω which is bounded, so
‖φk‖r ≤ M for some constant M independent of n and k. Now (φk)(n) =
kn!an, so we have

kn!an ≤
Mn!
rn
⇒ an ≤

M

krn

for all k. Letting k → ∞, we have an = 0. Thus, there can be no nonzero
terms of order n > 1 in the power series expansion of φ, so φ is linear. �

Exercise 11: Let f be a holomorphic function on the disc DR0 centered at
the origin and of radius R0.
(a) Prove that whenever 0 < R < R0 and |z| < R, then

f(z) =
1

2π

∫ 2π

0

f(Reiφ)Re
(
Reiφ + z

Reiφ − z

)
dφ.

(b) Show that

Re
(
Reiγ + r

Reiγ − r

)
=

R2 − r2

R2 − 2Rr cos γ + r2
.

(Hint.)

Solution.
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(a) Starting with the RHS,

1
2π

∫ 2π

0

f(Reiφ)Re
(
Reiφ + z

Reiφ − z

)
dφ =

1
4π

∫ 2π

0

f(Reiφ)
(
Reiφ + z

Reiφ − z
+
Re−iφ + z̄

Re−iφ − z̄

)
dφ

=
1

4π

∫ 2π

0

f(Reiφ)
(

2
Reiφ

Reiφ − z
− 1 + 1− 2z̄

z̄ −Re−iφ

)
dφ

=
1

2πi

∫ 2π

0

f(Reiφ)
iReiφdφ

Reiφ − z
+

1
2π

∫ 2π

0

f(Reiφ)
z̄

z̄ −Re−iφ
dφ

=
1

2πi

∫ 2π

0

f(Reiφ)
iReiφdφ

Reiφ − z
+

1
2π

∫ 2πi

0

f(Reiφ)
iReiφ

Reiφ −R2/z̄
dφ.

The first integral is equal to f(z) by the Cauchy integral formula, and
the latter is equal to zero since f(ζ)

ζ−R2/w is analytic on and inside the
circle of radius R.

(b) By straightforward calculations,

Reiγ + r

Reiγ − r
=
R cos(γ) + r + iR sin(γ)
R cos(γ)− r + iR sin(γ)

=
(R cos(γ) + r + iR sin(γ))(R cos(γ)− r − iR sin(γ))

(R cos(γ)− r)2 +R2 sin2(γ)

=
R2 cos2(γ)− r2 +R2 sin2(γ) + i(stuff)

R2 − 2Rr cos(γ) + r2

=
R2 − r2

R2 − 2Rr cos(γ) + r2
+ (imaginary stuff).

�

Exercise 12: Let u be a real-valued function defined on the unit disc D.
Suppose that u is twice continuously differentiable and harmonic, that is,

∆u(x, y) = 0

for all x, y ∈ D.
(a) Prove that there exists a holomorphic function f on the unit disc such

that
Re(f) = u.

Also show that the imaginary part of f is uniquely defined up to an
additive (real) constant.

(b) Deduce from this result, and from Exercise 11, the Poisson integral
representation formula from the Cauchy integral formula: If u is har-
monic in the unit disc and continuous on its closure, then if z = reiθ

one has

u(z) =
1

2π

∫ 2π

0

Pr(θ − φ)u(φ)dφ

where Pr(γ) is the Poisson kernel for the unit disc given by

Pr(γ) =
1− r2

1− 2r cos γ + r2
.

Solution.
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(a) If we are allowed to import a little manifold theory, we can observe
that the 1-form −uydx+ uxdy is closed, because its differential is

(−uxydx− uyydy) ∧ dx+ (uxxdx+ uxydy) ∧ dy = (uyy + uxx)dx ∧ dy = 0.

Since the unit disc is simply connected, every closed form is exact.
Hence there exists a C2 function v such that

dv = −uydx+ uxdy.

But by definition, dv = vxdx+ vydy. Hence vx = −uy and vy = ux, so
the function f = u + iv satisfies the Cauchy-Riemann equations and
is therefore holomorphic.
However, it is not necessary to import external knowledge about man-
ifold theory here. By the equality of mixed partials,

∂

∂z̄

∂

∂z
=

1
4

(
∂2

∂x2
+

∂2

∂y2

)
so if we let g = 2∂u∂z , then ∂g

∂z̄ = 2 ∂
∂z̄

∂
∂zu = 0. Hence g is holomorphic.

By Theorem 2.1, ∃F with F ′ = g. Then ∂Re(F )
∂z = 1

2
∂F
∂z = 1

2g = ∂u
∂z by

Proposition 2.3 on page 12, so Re(F ) differs from u by a constant u0.
Then if f(z) = F (z)− u0, f is holomorphic and Re(f) = u.

(b) By Exercise 11,

u(z) + iv(z) =
1

2π

∫ 2π

0

(
u(eiφ) + iv(eiφ)

)
Re
(
eiφ + z

eiφ − z

)
dφ

so

u(reiθ) =
1

2π

∫ 2π

0

u(eiφ)Re
(
eiφ + reiθ

eiφ − reiθ

)
dφ

=
1

2π

∫ 2π

0

u(eiφ)Re
(
ei(φ−θ) + r

ei(φ−θ) − r

)
dφ

=
1

2π

∫ 2π

0

u(eiφ)
1− r2

1− 2r cos(θ − φ) + r2

=
1

2π

∫ 2π

0

Pr(θ − φ)u(eiφ)dφ.

�

Exercise 13: Suppose f is an analytic function defined everywhere in C and
such that for each z0 ∈ C at least one coefficient in the expansion

f(z) =
∞∑
n=0

cn(z − z0)n

is equal to 0. Prove that f is a polynomial.

Solution. First, we prove the following lemma:

Lemma 1. Let S ⊂ C be a subset of the plane with no accumulation points.
Then S is at most countable.
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Proof. For each x ∈ S, since x is not an accumulation point of S, ∃rx > 0
such that Brx ∩ S = {x}. Then {Brx/2(x) : x ∈ S} is a disjoint family
of open sets; since each contains a distinct rational point, it is at most
countable. But this set is bijective with S, so S is at most countable. �

Now suppose that f is not a polynomial. Then none of its derivatives can
be identically zero, because if f (n) were identically zero, then f (k) would be
zero for k ≥ n and f would be a polynomial of degree ≤ n − 1. Since the
derivatives of f are entire functions that are not everywhere zero, the set of
zeros of f (n) has no accumulation points, so it is at most countable by the
lemma. The set of zeros of any derivative of f must then be countable since
it is a countable union of countable sets. But by hypothesis, every point
z ∈ C is a zero of some derivative of f , since if f(z) =

∑
cn(z − z0)n and

ck = 0, then dk

dzk
f(z)

∣∣∣
z0

= 0. Since C is uncountable, this is a contradiction,

so f must be a polynomial. �

Exercise 14: Suppose that f is holomorphic in an open set containing the
closed unit disc, except for a pole at z0 on the unit circle. Show that if

∞∑
n=0

anz
n

denotes the power series expansion of f in the open unit disc, then

lim
n→∞

an
an+1

= z0.

Solution. By replacing z with z/z0, we may assume WLOG that z0 = 1.
Now let Ω be an open set containing D̄ such that f is holomorphic on Ω
except for a pole at 1. Then

g(z) = f(z)−
N∑
j=1

a−j
(z − 1)j

is holomorphic on Ω for some N and a−1, . . . , a−N , where N is the order
of the pole at 1. Next, we note that Ω must contain some disk of radius
1 + δ with δ > 0: the set {z : |z| ≤ 2} \ Ω is compact, so its image under
the map z 7→ |z| is also compact and hence attains a lower bound, which
must be strictly greater than 1 since the unit circle is contained in Ω. Now
since g converges on the disk |z| < 1 + δ, we can expand it in a power series∑∞
n=0 bnz

n on this disk, and we must have bn → 0. (This follows from the
fact that lim sup bn+1

bn
< 1 when the radius of convergence is greater than

1.) Now for |z| < 1, we have

∞∑
n=0

anz
n =

N∑
j=1

a−j
(z − 1)j

+
∞∑
n=0

bnz
n.

Using the fact that

1
(z − 1)j

=
(−1)j

(j − 1)!
dj−1

dzj−1

1
z − 1

=
(−1)j

(j − 1)!

∞∑
s=0

(s+ j − 1)!
s!

zs for |z| < 1,
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we can write

∞∑
n=0

anz
n =

∞∑
s=0

 N∑
j=1

(−1)ja−j
(j − 1)!

(s+ j − 1)!
s!

 zs +
∞∑
n=0

bnz
n ⇒ an = P (n) + bn

where P (n) is a polynomial in n of degree at mostN−1. Here the rearrange-
ments of the series are justified by the fact that all these series converge
uniformly on compact subsets of D. Since bn → 0, an

an+1
→ lim P (n)

P (n+1) = 1.

(Every polynomial P has the property that P (n)
P (n+1) → 1 since if the leading

coefficient is cknk, P (n)
P (n+1) ≈

cnk

c(n+1)k
= (1− 1

n+1 )k → 1.) �

Exercise 15: Suppose f is a non-vanishing continuous function on D̄ that is
holomorphic in D. Prove that if

|f(z)| = 1 whenever |z| = 1,

then f is constant.

Solution. Define

F (z) =

f(z) |z| ≤ 1
1

f( 1
z̄ )

else.

Then F is obviously continuous for |z| < 1 and |z| > 1; for |z| = 1 we
clearly have continuity from the inside, and if w → z with |w| > 1, then
1
w̄ →

1
z̄ = z and F (w) = 1

f̄( 1
w̄ )
→ 1

f̄(z)
= f(z) = F (z). Hence F is

continuous everywhere. It is known to be holomorphic for |z| < 1. For
|z| > 1 we can compute ∂f

∂z̄ = 0; alternatively, if Γ is any contour lying in
the region |z| > 1, let Γ′ be the image of Γ under the map w = 1

z . Then Γ′

is a contour lying in the region |w| < 1 and excluding the origin from its
interior (since the point at infinity does not lie within Γ), so∮

Γ

F (z)dz =
∮

Γ′

1
f(w̄)

−dw
w2

= 0

since 1

w2f(w̄)
is analytic on and inside Γ′. To show F is analytic at points on

the unit circle we follow the same procedure as with the Schwarz reflection
principle, by subdividing a triangle which crosses the circle into triangles
which either have a vertex on the circle or an edge lying ”along” the circle
(i.e. a chord of the circle). In the former case we may move the vertex by ε
to conclude that the integral around the triangle is zero. In the case where
a side of the triangle is a chord of the circle, we subdivide into smaller
triangles (take the midpoint of the circular arc spanned by the chord) until
the chord lies within ε of the circle and apply the same argument. The result
is that F is entire. But F is bounded since f(D̄) is a compact set which
excludes 0 and hence excludes a neighborhood of zero, so 1

f is bounded on
D. Since F is a bounded entire function, it is constant, so f is constant. �
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Chapter 2.7, Page 67

Problem 3: Morera’s theorem states that if f is continuous on C, and
∫
T
f(z)dz =

0 for all triangles T , then f is holomorphic in C. Naturally, we may ask if
the conclusion still holds if we replace triangles by other sets.
(a) Suppose that f is continuous on C, and∫

C

f(z)dz = 0

or every circle C. Prove that f is holomorphic.
(b) More generally, let Γ be any toy contour, and F the collection of all

translates and dilates of Γ. Show that if f is continuous on C, and∫
γ

f(z)dz = 0 for all γ ∈ F

then f is holomorphic. In particular, Morera’s theorem holds under
the weaker assumption that

∫
T
f(z)dz = 0 for all equilateral triangles.

Chapter 3.8, Page 103

Exercise 1: Using Euler’s formula

sinπz =
eiπz − e−iπz

2i
,

show that the complex zeros of sinπz are exactly at the integers, and that
they are each of order 1.

Calculate the residue of 1/ sinπz at z = n ∈ Z.

Solution. Let z = a+ bi and suppose sin(πz) = 0. Then

0 = 2i sin(π(a+ bi)) = (e−bπ − ebπ) cos(πa) + i(ebπ + e−bπ) sin(πa)

where we have used the formula eiθ = cos(θ) + i sin(θ) for real θ. Since
ebπ and e−bπ are both strictly positive, the imaginary part can only be
zero if sin(πa) = 0, which happens iff a ∈ Z. For the real part to be zero,
either cos(πa) = 0 or e−bπ = ebπ. But cos(πa) = ±1 when a ∈ Z, so
e−bπ = ebπ ⇒ b = 0. Hence z = a + bi ∈ Z. To find the order of the zero,
we note that

2i
d

dz

∣∣∣
z=n

sin(πz) = iπ(einπ + e−inπ) = 2iπeinπ 6= 0

so the zero is of order 1. Finally, the residue at n of 1
sin(πz) is

lim
z→n

(z − n)
1

sin(πz)
=

1
π cos(πn)

=
(−1)n

π

by L’Hôpital’s Rule. �

Exercise 2: Evaluate the integral∫ ∞
−∞

dx

1 + x4
.

Where are the poles of 1
1+z4 ?
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Solution. Since 1 + z4 = (z − ω)(z − ω3)(z − ω5)(z − ω7) where ω = 1+i√
2

is a primitive 8th root of unity, the poles of 1
1+z4 are at ω, ω3, ω5, and

ω7, of which ω and ω3 are in the upper half plane. The residues may be
calculated in various ways; the easiest is to note that if 1

f has a simple
pole at z0, the residue is 1

f ′(z0) . This follows from the observation that
if f(z) = (z − z0)h(z), then f ′(z0) = h(z0). In this case, the residues of
interest are

Res(f ;ω) =
1

4ω3
=
ω5

4
and

Res(f ;ω3) =
1

4ω
=
ω7

4
which add up to

ω5 + ω7

4
= −
√

2
4
i.

Now if we integrate f(z) = 1
1+z4 along a semicircular contour CR of radius

R, the Residue Theorem guarantees that∮
CR

f(z)dz = 2πi

(
−
√

2
4
i

)
=

π√
2
.

Since |1 + z4| ≥ |z|4 − 1, the integral over the curved part is at most πR
R4−1 ,

which tends to zero as R→∞. Hence∫ π

−π

dx

1 + x4
=

π√
2
.

�

Exercise 3: Show that∫ ∞
−∞

cosx
x2 + a2

dx = π
e−a

a
, for a > 0.

Solution. Let f(z) = eiz

z2+a2 . We integrate f around a semicircular contour
of radius R in the upper half plane. Along the curved part of the semicircle,
we note that |eiz| ≤ 1 for z in the UHP, so |f(z)| ≤ 1

|z2+a2| ≤
1

R2−a2 . Hence
the integral over the curved part is at most πR

R2−a2 → 0 as R→∞. Hence∫ ∞
−∞

f(z)dz = 2πi
∑

z∈UHP
Res(f ; z).

The residues of f are z = ±ai, so the only pole in the UHP is at ai with
residue

lim
z→ai

(z − ai) eiz

(z − ai)(z + ai)
=
e−a

2ai
.

Hence
∫∞
−∞ f(z)dz = π e

−a

a . Taking the real parts of both sides,∫ ∞
−∞

cosx
x2 + a2

dx = π
e−a

a
.

�
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Exercise 4: Show that∫ ∞
−∞

x sinx
x2 + a2

dx = πe−a, for all a > 0.

Solution. I’m getting rather fed up with the fact that this book doesn’t even
mention the Jordan lemma, so here it is, taken from page 216 of Gamelin
(in Gamelin’s lingo this is actually a corollary to Jordan’s lemma):

Lemma 2 (Jordan’s Lemma). If ΓR is the semicircular contour z(θ) =
Reiθ, 0 ≤ θ ≤ π, in the upper half-plane, and P (z) and Q(z) are polynomials
with degQ(z) ≥ degP (z) + 1, then

lim
R→∞

∫
ΓR

P (z)eiz

Q(z)
dz = 0.

Proof. By concavity, sin θ ≥ 2θ
π for 0 ≤ θ ≤ π

2 . Hence

|eiRe
iθ

| = e−R sin θ ≤ e−2θ/π

for 0 ≤ θ ≤ π
2 , and∫ π

0

e−R sin θdθ = 2
∫ π/2

0

e−R sin θdθ ≤ 2
∫ π/2

0

e−2Rθ/πdθ =
π

R
(1− e−R) <

π

R
.

Since |dz| = R, this implies
∫

ΓR
|eiz||dz| < π. Since |P (z)|

|Q(z)| = O( 1
R ),∫

ΓR

P (z)eiz

Q(z)
≤ O(

1
R

)
∣∣∣∣∫

ΓR

eizdz

∣∣∣∣ ≤ πO(
1
R

)→ 0.

�

Now back to our problem. Let f(z) = zeiz

z2+a2 and integrate f around a
semicircular contour of radius R. By Jordan’s lemma, the integral over the
curved part tends to 0 as R→∞. Hence∫ ∞

−∞
f(z)dz = 2πi

∑
z∈UHP

Res(f ; z).

The poles of f are at z = ±ai; the residue at ai is

lim
z→ai

(z − ai) eiz

(z − ai)(z + ai)
= aie−a2ai =

e−a

2
.

Hence
∫∞
−∞ f(z)dz = πie−a; taking imaginary parts,∫ ∞

−∞

x sinx
x2 + a2

dx = πe−a.

�

Exercise 5: Use contour integration to show that∫ ∞
−∞

e−2πixξ

(1 + x2)2
dx =

π

2
(1 + 2π|ξ|)e−2π|ξ|

for all ξ real.
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Solution. First, we note that if ξ > 0, substituting u = −x reveals that∫ ∞
−∞

e−2πixξ

(1 + x2)2
dx =

∫ −∞
∞

e−2πi(−u)ξ

(1 + u2)2
(−du) =

∫ ∞
−∞

e−2πiu(−ξ)

(1 + u2)2
du

so that we may assume WLOG that ξ ≤ 0. We integrate f(z) = e−2πizξ

(1+z2)2

along a semicircular contour of radius R. Since |e−2πizξ| ≤ 1 for z ∈ UHP
and ξ ≤ 0, the integral over the curved part is at most 2πR

(R2−1)2 → 0. Hence∫ ∞
−∞

f(z)dz = 2πi
∑

z∈UHP
Res(f ; z).

The only pole in the UHP is at z = i; because this is a double pole, the
residue is

lim
z→i

d

dz
(z − i)2f(z) = lim

z→i

(−2πiξ(z + i)− 2)e−2πizξ

(z + i)3
=

(2− 4πξ)e2πξ

8i
.

Hence∫ ∞
−∞

e−2πixξ

(1 + x2)2
dx = 2πi

(2− 4πξ)e2πξ

8i
=
π

2
(1 + 2|ξ|) e−2π|ξ|.

�

Exercise 6: Show that∫ ∞
−∞

dx

(1 + x2)n + 1
=

1 · 3 · 5 · · · (2n− 1)
2 · 4 · 6 · · · (2n)

· π.

Solution. Let f(z) = 1
(z2+1)n+1 . Then the pole of z in the UHP is at z = i;

because this is an (n+ 1)-fold pole, its residue is

1
n!

lim
z→i

dn

dzn
1

(z + i)n+1
=

1
n!

lim
z→i

(−n− 1)(−n− 2) . . . (−2n)
1

(z + i)2n+1

=
1
n!

lim
z→i

(−1)n(2n)!
n!

1
z + i

2n+1

=
(−1)n(2n)!

(n!)2

1
(2i)2n+1

=
(2n)!

(2nn!)2

1
2i

=
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)
1
2i
.

Integrating f around a semicircular contour of radius R, the integral over
the curved part is bounded by πR

(R2−1)n+1 → 0, so∫ ∞
−∞

f(z)dz = 2πiRes(f ; i) =
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)
π.

�

Exercise 7: Prove that∫ 2π

0

dθ

(a+ cos θ)2
=

2πa
(a2 − 1)3/2

, whenever a > 1.
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Solution. Letting z = eiθ turns this into a contour integral around the unit
circle C:∫ 2π

0

dθ

(a+ cos θ)2
=
∮
C

dz/iz(
a+

(
z+1/z

2

))2

=
∮
C

4zdz
i(z2 + 2az + 1)2

= 2πiRes
(

4z
i(z2 + 2az + 1)2

;−a+
√
a2 − 1

)
= 2πi lim

z→−a+
√
a2−1

d

dz

4z
i(z + a+

√
a2 − 1)2

= 2πi lim
z→−a+

√
a2−1

4(a+
√
a2 − 1− z)

i(z + a+
√
a2 − 1)3

= 2πi
8a

i(2
√
a2 − 1)3

= 2πa(a2 − 1)−3/2.

�

Exercise 8: Prove that∫ 2π

0

dθ

a+ b cos θ
=

2π√
a2 − b2

if a > |b| and a, b ∈ R.

Solution. Again, we convert into a contour integral around the unit circle
by substituting z = eiθ:∫ 2π

0

dθ

a+ b cos θ
=
∮
C

dz/iz

a+ b
(
z+1/z

2

)2

=
∮
C

2dz
i(bz2 + 2az + b)

= 4πRes

(
1

bz2 + 2az + b
;
−a+

√
a2 − b2
b

)

= 2π
1

2bz + 2a

∣∣∣
z=
−a+
√
a2−b2
b

= 2π
1

2
√
a2 − b2

=
π√

a2 − b2
.

�

Exercise 9: Show that∫ 1

0

log(sinπx)dx = − log 2.
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Solution. Consider the function f(z) = 1 − e2πiz = −2ieπiz sin(πz). (This
clever trick comes from Ahlfors, page 160.) We will integrate log f(z) along
the rectangular contour bounded by 0, 1, iY , and 1 + iY , with quarter-
circle indentations of radius ε at 0 and 1. On this region, eπiz is in the
upper half plane, and sin(πz) is in the right half plane. Hence, if we take
the principal branch Arg of the argument function, 0 ≤ Arg(eπiz) < π and
−π2 ≤ Arg(sin(πz)) < π

2 . Then

−π ≤ Arg(−2i) +Arg(eπiz) +Arg(sin(πz)))

⇒ Arg(f(z)) = Arg(−2i) +Arg(eπiz) + Log(sin(πz))

⇒ Log(f(z)) = Log(−2i) + Log(eπiz) + Log(sin(πz))

= log 2− π

2
i+ πiz + Log(sin(πz))

where Log is the principal branch of the logarithm function, corresponding
to the principal branch Arg of the argument function.

Returning to our contour integral, we note that the two vertical pieces
cancel out by the periodicity of the sine function. Moreover, the integral
over the upper half of the rectangle approaches zero as Y → ∞ since for
z = t+ iY with 0 ≤ t ≤ 1, e2πiz → 0⇒ f(z)→ 1⇒ log f(z)→ 0 as Y →
∞. What’s more, the integrals over the quarter-circle indentations also
approach zero: Since f(z) ≈ z for z near 0, log f(z) ≈ log z so the integral
over the quarter-circle near zero is O(ε| log ε)|)→ 0. Similar analysis holds
near π. Since Logf(z) is analytic on and inside our contour, we are left
with ∫ 1

0

Logf(z)dz = 0.

By our above comments concerning the branches of the logarithm, this
implies

0 =
∫ 1

0

(
log 2− π

2
i+ πiz + Log(sin(πz))

)
dz = log 2 +

∫ 1

0

log sin(πx)dx.

Hence ∫ 1

0

log sin(πx)dx = − log 2.

�

Exercise 10: Show that if a > 0, then∫ ∞
0

log x
x2 + a2

dx =
π

2a
log a.

Solution. We use the branch of the logarithm function with a branch cut
along the negative imaginary axis, corresponding to a branch of the argu-
ment function such that −π2 ≤ arg(z) < 3π

2 . We integrate f(z) = log z
z2+a2

around an indented semicircle of radius R and indentation radius ε. The
integral around the outer curved part is O(R logR

R2 ) → 0 and the integral
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around the indentation is O(ε| log ε|)→ 0. The integral along the axis is∫ −ε
−R

log x
x2 + a2

dx+
∫ R

ε

log x
x2 + a2

dx

=
∫ R

ε

(
log x
x2 + a2

+
log(−x)
x2 + a2

)
dx

= 2
∫ R

ε

log x
x2 + a2

dx+ iπ

∫ R

ε

1
x2 + a2

dx

LettingR→∞ and ε→ 0 and using the fact that
∫∞

0
dx

x2+a2 = 1
a arctan(x/a)|∞0 =

π
2a , ∫ ∞

0

log x
x2 + a2

=
1
2

(
2πi

∑
z∈UHP

Res(f ; z)− iπ2

2a

)
.

The only pole in the UHP is at z = ai with residue

lim
z→ai

log z
z + ai

=
log(ai)

2ai
=

π

4a
+

log a
2ai

.

Hence∫ ∞
0

log x
x2 + a2

dx =
1
2

(
2πi

(
π

4a
+

log a
2ai

)
− iπ2

2a

)
=
π log a

2a
.

�

Exercise 11: Show that if |a| < 1, then∫ 2π

0

log |1− aeiθ|dθ = 0.

Then, prove that the above result remains true if we assume only that
|a| ≤ 1.

Solution. For |a| < 1, 1− aeiz is in the right half-plane for z = θ + yi, 0 ≤
θ ≤ 2π, y ≥ 0. Hence the principal branch of log(1−aeiθ) is analytic on this
region. We integrate log(1 − aeiz) around a rectangular contour bounded
by 0, 2π, 2π + Y i, and Y i. The integrals over the vertical portions cancel
out, and the integral over the top tends to zero because 1 − aei(θ+Y i) =
1− ae−Y eiθ → 1 uniformly so log(1− aeiz)→ 0 uniformly in θ as Y →∞.
Hence

0 =
∫ 2π

0

log(1− aeiθ)dθ =
∫ 2π

0

log |1− aeiθ|dθ + i

∫ 2π

0

arg(1− aeiθ)dθ.

But the integral of the argument is 0 by symmetry, since arg(1−aei(θ+π)) =
− arg(1− aeiθ). Hence∫ 2π

0

log |1− aeiθ|dθ = 0

for |a| < 1. To get the same result for |a| = 1, I suppose some kind of
continuity argument is needed, but I don’t see it. �
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Exercise 12: Suppose u is not an integer. Prove that
∞∑

n=−∞

1
(u+ n)2

=
π2

(sinπu)2

by integrating

f(z) =
π cotπz
(u+ z)2

over the circle |z| = RN = N + 1/2 (N ≥ |u|), adding the residues of f
inside the circle, and letting N tend to infinity.

Solution. Just to be contrary, I’ll use a square rather than a circle. (Actu-
ally, the reason is that my solution is ripped off from Schaum’s Outline of
Complex Variables, page 188.) Specifically, let SN be the boundary of the
square lying inside the lines |x| = N + 1

2 and |y| = N + 1
2 in the complex

plane z = x+ iy. When |y| ≥ 1 we have

| cotπ(x+ iy)| = |e
πix−πy + e−πix+πy|
|eπix−πy − e−πix+πy|

≤ |e
πix−πy|+ |e−πix+πy|

||eπix−πy| − |e−πix+πy||

=
1 + e−2πy

1− e−2π|y|

≤ 1 + e−2π

1− e−2π
= C1.

Moreover, when |y| ≤ 1 then x = ±(N + 1
2 ) and

| cot(π(x+ iy))| = | cotπ
(
N +

1
2

+ iy

)
| = | tanh(y)| ≤ tanh

(π
2

)
= C2.

Hence, | cotπz| ≤ C on all such squares, where C = max(C1, C2) is a
universal constant. Since | 1

(z+u)2 | = O( 1
N2 ), and the length of the contour

is 8N + 4,

lim
N→∞

∮
SN

π cot(πz)
(z + u)2

dz = 0

by the ML estimate. The poles of f inside SN are at −n, . . . , n with
residues

lim
z→n

(z − n)π cos(πz)
sin(πz)(z + u)2

=
π cos(πn)
(n+ u)2

lim
z→n

z − n
sin(πz)

=
1

(n+ u)2

by L’Hôpital’s Rule, as well as the pole at −u with residue

lim
z→−u

d

dz
(z + u)2π cot(πz)

(z + u)2
= lim
z→−u

− π2 csc2(πz) = − π2

sin2(πz)
.

By the Residue Theorem,∮
SR

f(z)dz =
N∑

n=−N

1
(z + u)2

− π2

sin2(πz)
.
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As N →∞, the LHS approaches zero and we have

N∑
n=−N

1
(z + u)2

=
π2

sin2(πz)
.

�

Exercise 13: Suppose f(z) is holomorphic in a punctured disc Dr(z0)\{z0}.
Suppose also that

|f(z)| ≤ A|z − z0|−1+ε

for some ε > 0, and all z near z0. Show that the singularity of f at z0 is
removable.

Solution. Let g(z) = (z − z0)f(z). Then g is analytic in the punctured
disc and g(z) → 0 as z → z0; since g is bounded, the singularity at z0 is
removable, so we can take g to be analytic at z0. Since g is a holomorphic
function with g(z0) = 0, g(z) = (z − z0)h(z) in some neighborhood of z0,
where h is holomorphic at z0. Then f(z) = h(z) in a deleted neighborhood
of z0, so by defining f(z0) = h(z0) we can extend f to a holomorphic
function at z0. Thus the singularity is removable. �

Exercise 14: Prove that all entire functions that are also injective take the
form f(z) = az + b with a, b ∈ C and a 6= 0.

Solution. Define g : C\{0} → C by g(z) = f( 1
z ). Then g is holomorphic on

the punctured plane. It cannot have a removable singularity at 0, because
this would imply that f is bounded as |z| → ∞ and therefore constant
(so certainly not injective!) by Liouville’s theorem. Moreover, g cannot
have an essential singularity at 0: Suppose it did. Let z ∈ C \ {0} and
let r < |z| and r′ < |z| − r. By the Open Mapping Theorem, g(Br(z))
contains a neighborhood of g(z). But by the Casorati-Weierestrass theorem,
g(Br′(0) \ {0}) is dense and hence contains a point in said neighborhood of
g(z). This implies that g, and therefore f , is not injective. Thus, g must
have a pole at 0, so

g(z) =
am
zm

+ · · ·+ a1

z
+ h(z)

where h is analytic at zero. But then

f(z) = amz
m + · · ·+ a1z + h(

1
z

)

cannot be analytic unless h is constant. So f is a polynomial. The only
polynomials without multiple distinct roots are powers, so f(z) = a(z−z0)m

for some a, z0 ∈ C and m ∈ N. If m > 1 then f(z0 + 1) = f(z0 + e2πi/m) so
f is not injective. Hence m = 1 and f = a(z − z0). Note that we cannot
have a = 0 since then f is constant and obviously not injective. �

Exercise 15: Use the Cauchy inequalities or the maximum modulus principle
to solve the following problems:
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(a) Prove that if f is an entire function that satisfies

sup
|z|=R

|f(z)| ≤ ARk +B

for all R > 0, and for some integer k ≥ 0 and some constant A,B > 0,
then f is a polonymial of degree ≤ k.

(b) Show that if f is holomorphic in the unit disc, is bounded, and con-
verges uniformly to zero in the sector θ < arg z < φ as |z| → 1, then
f = 0.

(c) Let w1, . . . , wn be points on the unit circle in the complex plane. Prove
that there exists a point z on the unit circle such that the product of
the distances from z to the points wj , 1 ≤ j ≤ n, is exactly equal to 1.

(d) Show that if the real part of an entire function f is bounded, then f
is a constant.

Solution.
(a) By the Cauchy inequalities,

|f (n)(0)| ≤ n!(ARk +B)
Rn

.

For n > k, taking the limit as R → ∞ implies f (n)(0) = 0. Since f
is entire and all derivatives higher than k vanish, it is a polynomial of
degree at most k.

(b)
(c) Let f(z) = (z − w1) . . . (z − wn). Then |f(z)| is the product of the

distances from z to the points w1, . . . , wn. Now |f(0)| = 1 because
|wi| = 1 for all i. Because f is analytic, the maximum modulus prin-
ciple guarantees that |f(z0)| ≥ 1 for some z0 with |z0| = 1. Now
consider the restriction of f to the unit circle. Then |f(eiθ)| is a con-
tinuous function of θ which takes on the values 0 (at each of the wi)
and a value at least equal to 1 (at z0). By the intermediate value
theorem, it is exactly equal to 1 somewhere on the unit circle.

(d) In fact, it is sufficient for the real part of f to be bounded from one side
(WLOG above). Suppose Re(f) ≤ M everywhere. Let g(z) = ef(z).
Then g is entire, and |g| = eRe(f) ≤ eM . By Liouville’s theorem,
g(z) = c for some constant c. Then f(z) = log c everywhere. Although
there are multiple branches of the log function, they differ by 2πi and
f is continuous, so f must be constant.

�

Exercise 16: Suppose f and g are holomorphic in a region containing the
disc |z| ≤ 1. Suppose that f has a simple zero at z = 0 and vanishes
nowhere else in |z| ≤ 1. Let

fε(z) = f(z) + εg(z).

Show that if ε is sufficiently small, then
(a) fε(z) has a unique zero in |z| ≤ 1, and
(b) if zε is this zero, the mapping ε 7→ zε is continuous.

Solution.
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(a) Since the closed unit disc is compact and |g| is continuous, it attains a
maximum M on it. Similarly, |f | is continuous and nonzero on the unit
circle, so it has a minimum value m. Then for ε < m

M , |f(z)| > |εg(z)|
on the unit circle, so f and fε have the same number of zeros inside
the circle by Rouché’s theorem.

(b) Fix ε and zε. For r > 0, let Nr be the open neighborhood of zε
of radius r. Then |fε| ≥ δr on D \ Nr for some δr > 0, because
D \ Nr is compact and |fε| > 0 on D \ {zε}. Then for |ε′ − ε| < δr

M ,
|fε′(z)− fε(z)| = |ε′− ε||g(z)| < δr so fε′(z) 6= 0 for z ∈ D \Nr. Hence
zε′ ∈ Nr provided |ε′ − ε| < δr

M .
�

Exercise 17: Let f be non-constant and holomorphic in an open set contain-
ing the closed unit disc.
(a) Show that if |f(z)| = 1 whenever |z| = 1, then the image of f contains

the unit disc. (Hint.)
(b) If |f(z)| ≥ 1 whenever |z| = 1 and there exists a point z0 ∈ D such

that |f(z0)| < 1, then the image of f contains the unit disc.

Solution.
(a) By Rouché’s theorem, f(z) and f(z) − w0 have the same number of

zeros inside the unit circle provided |w0| < 1. Hence, if f has a zero,
its image includes the unit disc. If f is nonzero, then 1

f is holomorphic,

so
∣∣∣ 1
f(z)

∣∣∣ ≤ 1 for z ∈ D̄ by the maximum modulus principle. But then

|f(z)| ≥ 1 for z ∈ D̄, which contradicts the open mapping theorem.
(Pick any z with |z| = 1; then f(D̄) contains a neighborhood of f(z),
which includes points w with |w| < 1 since |f(z)| = 1.)

(b) Let w0 = f(z0) where |z0| < 1 and |w0| < 1. By Rouché’s theorem
again, f(z) and f(z)−w have the same number of zeros for all w with
|w| < 1. Since there exists a w (namely w0) for which f(z)− w has a
zero, it has a zero for all w ∈ D. So the image of f contains D.

�

Chapter 3.9, Page 108

Problem 3: If f(z) is holomorphic in the deleted neighborhood {0 < |z −
z0| < r} and has a pole of order k at z0, then we can write

f(z) =
a−k

(z − z0)k
+ · · ·+ a−1

(z − z0)
+ g(z)

where g is holomorphic in the disc {|z− z0| < r}. There is a generalization
of this expansion that holds even if z0 is an essential singularity. This is
a special case of the Laurent series expansion, which is valid even in a
more general setting.

Let f be holomorphic in a region containing the annulus {z : r1 ≤
|z − z0| ≤ r2} where 0 < r1 < r2. Then,

f(z) =
∞∑

n=−∞
an(z − z0)n
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where the series converges absolutely in the interior of the annulus. To
prove this, it suffices to write

f(z) =
1

2πi

∫
Cr2

f(ζ)
ζ − z

dζ − 1
2πi

∫
Cr1

f(ζ)
ζ − z

dζ

when r1 < |z− z0| < r2, and argue as in the proof of Theorem 4.4, Chapter
2. Here Cr1 and Cr2 are the circles bounding the annulus.

Chapter 5.6, Page 153

Exercise 1: Give another proof of Jensen’s formula in the unit disc using the
functions (called Blaschke factors)

ψα(z) =
α− z
1− ᾱz

.

Solution. We use the same proof as before to establish Jensen’s formula for
functions with no zeros in the unit disc. Now suppose f is analytic on the
unit disc and has zeros at z1, . . . , zN , counted with multiplicity. Then the
function

g(z) =
f(z)

ψ1(z) · · ·ψN (z)

is analytic on the unit disc and has no zeros, where we use the notation
ψk(z) = ψzk(z). Hence

log
∣∣∣∣ f(0)
ψ1(0) · · ·ψN (0)

∣∣∣∣ =
1

2π

∫ 2π

0

log
∣∣∣∣ f(eiθ)
ψ1(eiθ) · · ·ψN (eiθ)

∣∣∣∣ dθ
⇒ log |f(0)| −

N∑
k=1

log |ψk(0)| = 1
2π

∫ 2π

0

log |f(eiθ)|dθ − 1
2π

N∑
k=1

∫ 2π

0

log |ψk(eiθ)|dθ.

Since ψk(0) = zk and

|ψk(eiθ)| =

∣∣∣∣∣ zk − eiθ

−eiθ(zk − eiθ)

∣∣∣∣∣ = 1,

this becomes

log |f(0)| =
N∑
k=1

log |zk|+
1

2π

∫ 2π

0

log |f(eiθ)|

as desired. �

Exercise 3: Show that if τ is fixed with Im(τ) > 0, then the Jacobi theta
function

Θ(z|τ) =
∞∑

n=−∞
eπin

2τe2πinz

is of order 2 as a function of z.
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Solution. Let τ = s+ it with s, t ∈ R; by hypothesis, t > 0. Then

|Θ(z|τ)| ≤
∞∑

n=−∞
|eπin

2τ ||e2πinz|

≤
∞∑

n=−∞
e−πn

2te2π|n||z|

= 1 + 2
∞∑
n=1

e−πn
2te2πn|z|

= 1 + 2
b4|z|/tc∑
n=0

e−πn
2t+2πn|z| + 2

∞∑
n=b4|z|/tc+1

e−πn
2t+2πn|z|.

For n > 4|z|/t, −πn2t+ 2πn|z| < −πn2t/2, so the second sum is less than

∞∑
n=b4|z|/tc+1

e−πn
2t/2 ≤

∞∑
n=1

e−πn
2t/2 = C ′.

In the first sum, there are at most 4|z|/t terms, each of which is at most
e2π·4|z|/t·|z| = e8π|z|2/t, so we have

|Θ(z|τ)| ≤ C1 + C2|z|eC3|z|2

for constants C1, C2, C3. This implies |Θ(z|τ)| ≤ CεeBε|z|
2+ε

for any ε > 0,
so Θ has order at most 2. �

Exercise 4: Let t > 0 be given and fixed, and define F (z) by

F (z) =
∞∏
n=1

(1− e−2πnte2πiz).

Note that the product defines an entire function of z.
(a) Show that |F (z)| ≤ Aea|z|2 , hence F is of order 2.
(b) F vanishes exactly when z = −int + m for n ≥ 1 and n,m integers.

Thus, if zn is an enumoration of these zeros we have

∑ 1
|zn|2

=∞ but
∑ 1
|zn|2+ε

<∞.

Solution.
(a) Given z, let c > 1

t and let N = bc|z|c. Let

F1(z) =
N∏
n=1

(1− e−2πnte2πiz), F2(z) =
N∏

n=N+1

(1− e−2πnte2πiz).
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Since e−2π(N+1)te2π|z| ≤ 1
2 by our choice of N (assuming |z| sufficiently

large), and since | log(1 + y)| ≤ 2|y| for |y| ≤ 1
2 , we have

| logF2(z)| =

∣∣∣∣∣
∞∑

n=N+1

log(1− e−2πnte2πiz)

∣∣∣∣∣
≤

∞∑
n=N+1

| log(1− e−2πnte2πiz)|

≤
∞∑

n=N+1

2|e−2πnte2πiz|

≤ 2
∞∑

n=N+1

e−2πnte2π|z|

= 2e−2π(N+1)t+2π|z|
∞∑
k=0

e−2πkt

≤
∞∑
k=0

e−2πkt

= C

so |F2(z)| is bounded by a constant. Moreover, for any n,

|1− e−2πnte2πiz| ≤ 1 + e2π|z| ≤ 2e2π|z|.

Since F1 is the product of N such terms, we have

|F1(z)| ≤ (2e2π|z|)N = 2Ne2πN |z| ≤ 2c|z|e2πc|z|2 ≤ ec
′|z|2

for an appropriate choice of c′. Hence F1 (and therefore F because
F = F1F2 and F2 is bounded) is of order at most 2.

(b) By Proposition 3.1 the product F (z) is zero exactly when, for some
integer n ≥ 1,

e−2π(nt+iz) = 1⇒ z = −int+m

for some integer m. Thus, if zk is an enumeration of these zeros,

∑ 1
|zk|2+ε

<∞
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by Theorem 2.1. However,∑ 1
|zk|2

=
∞∑

m=−∞

∞∑
n=1

1
m2 + t2n2

=
π2

6t2
+ 2

∞∑
m,n=1

1
m2 + n2t2

≥ 2
∞∑

m,n=1

1
m2 + n2t2

≥ 2
∫ ∞

1

∫ ∞
1

1
x2 + t2y2

dxdy

=
2
t2

∫ ∞
1

∫ ∞
1

1
x2 + u2

dxdu

=
2
t2

∫ 2π

0

∫ ∞
1

1
r2
rdrdθ

=
4π
t2

∫ ∞
1

dr

r

=∞,

where the rearrangement of the double sum is allowed because all
terms are nonnegative, and the sum-integral relation follows from the
fact that 1

x2+y2 is decreasing in both x and y.
�

Exercise 8: Prove that for every z the product below converges, and

cos(z/2) cos(z/4) cos(z/8) · · · =
∞∏
k=1

cos(z/2k) =
sin z
z

.

Solution. First, to show that the product converges, we note that |1 −
cos(t)| ≤ t2 for sufficiently small |t|; this follows from the Taylor series
expansion for cosine. Thus, for large enough k we have |1 − cos(z/2k)| ≤
(z/2k)2 = z2/4k, and since

∑
1/4k converges, Proposition 3.1 guarantees

that
∏

cos(z/2k) converges as well. Now let F (z) =
∏∞
k=1 cos(z/2k). Using

the trigonometric identity sin z = 2 cos(z/2) sin(z/2) repeatedly, we have

sin z = 2 cos(z/2) sin(z/2)

= 4 cos(z/2) cos(z/4) sin(z/4)
= . . .

= 2N sin(z/2N )
N∏
k=1

cos(z/2N )

for each N = 1, 2, . . . . If we take the limit as N → ∞, the product ap-
proaches F (z), and since sin(t) ≈ t for small |t|, we end up with

sin z = zF (z)⇒ F (z) =
sin z
z

.

�
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Exercise 9: Prove that if |z| < 1, then

(1 + z)(1 + z2)(1 + z4) · · · =
∞∏
k=0

(1 + z2k) =
1

1− z
.

Solution. We first note that the product is convergent; indeed, it converges
uniformly on the compact subdisk |z| ≤ R < 1 by Proposition 3.2 since∑

|z|2
k

≤
∑

R2k <
∑

Rk =
1

1−R
<∞.

We next prove by induction that

(1)
N∏
k=0

(1 + z2k) =
2N+1−1∑
j=0

zj .

The base case N = 0 is obvious. The inductive step is
N+1∏
k=0

(1 + z2k) = (1 + z2N+1
)
N∏
k=0

(1 + z2k)

= (1 + z2N+1
)

2N+1−1∑
j=0

zj

=
2N+1−1∑
j=0

zj + z2N+1
2N+1−1∑
j=0

zj

=
2N+1−1∑
j=0

zj +
2N+2−1∑
j=2N+1

zj

=
2N+2−1∑
j=0

zj .

Since a subsequence of a convergent sequence converges to the same limit,

lim
N→∞

2N+2−1∑
j=0

zj = lim
M→∞

M∑
j=0

zj =
1

1− z
.

Thus, taking the limit of both sides of (1),

∞∏
k=0

(1 + z2k) = lim
N→∞

N∏
k=0

(1 + z2k) = lim
N→∞

2N+1−1∑
j=0

zj =
1

1− z
.

�

Exercise 11: Show that if f is an entire function of finite order that omits
two values, then f is constant. This result remains true for any entire
function and is known as Picard’s little theorem.

Solution. Suppose f is never equal to a. Then f(z)−a is an entire function
which is nowhere zero; by Theorem 6.2 of Chapter 3, this implies f(z)−a =
eg(z) for an entire function g. If f has finite order ρ, then |g(z)| ≤ |z|ρ,
which implies g is a polynomial. Every nonconstant polynomial takes on



27

all complex values, so either g is constant (in which case f is as well) or
it takes on every complex value, which implies eg takes on every nonzero
value and f takes on every value other than a.

(Note: In case it’s not obvious that |g(z)| ≤ |z|ρ implies g is a polynomial,
write g(z) = p(z) + zkh(z) for a polynomial p, entire function h, and power
k > ρ. Then h is entire and bounded, hence constant.) �

Exercise 13: Show that the equation ez−z = 0 has infinitely many solutions
in C.

Solution. Suppose the equation has finitely many solutions a1, . . . , aN , where
we allow the possibility N = 0. Since ez − z has order 1, Hadamard’s the-
orem tells us that ez − z = p(z)eaz+b for some constants a, b, where

p(z) =
N∏
n=1

(1− z/an).

Now for the equation ez − z = p(z)eaz+b to be true for large real values
of z, we must have a = 1, and since eb is a constant we can rewrite this
as ez − z = p(z)ez ⇒ p(z) = 1 − ze−z, a contradiction. Hence ez − z has
infinitely many zeros.

Just for fun, let’s also give a semi-constructive, real-variables proof. Let
z = x+ iy; then the equation ez = z becomes

ex+iy = x+ iy ⇒ ex cos y + iex sin y = x+ iy ⇒ ex cos y = x and ex sin y = y.

We will narrow our search to solutions with x, y > 0. In this case the above
equations are equivalent to the system of equations x2+y2 = e2x, yx = tan y.
From this we see that y =

√
e2x − x2 and tan

√
e2x − x2 =

√
e2x/x2 − 1.

This in turn implies

(2)
√
e2x − x2 = arctan

√
e2x

x2
− 1 + kπ

for some integer k. Now
√
e2x − x2 is equal to 1 at x = 0 and tends to

infinity as x→∞. On the other hand, for k ≥ 0 the right hand side of (2)
is greater than 1 at x = 0, but is bounded. Hence, the intermediate value
theorem guarantees at least one solution of (2) for each k = 0, 1, 2, . . . .
Given any such solution x, we can let y =

√
e2x − x2, and x+ iy will be a

solution of ez = z. �

Exercise 14: Deduce from Hadamard’s theorem that if F is entire and of
growth order ρ that is non-integral, then F has infinitely many zeros.

Solution. If F is entire and has finitely many zeros, Hadamard’s theorem
implies that F (z) = P1(z)eP2(z) for some polynomials P1 and P2. But then
F would have order degP2, an integer, because |P1(z)| ≤ Cεe

|z|ε for any
ε > 0. Thus, if the order of F is not an integer, F must have infinitely
many zeros. �

Exercise 15: Prove that every meromorphic function in C is the quotient
of two entire functions. Also, if {an} and {bn} are two disjoint sequences
having no finite limit points, then there exists a meromorphic function in
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the whole complex plane that vanishes exactly at {an} and has poles exactly
at {bn}.

Solution. Let f be a meromorphic function on C. Let an be the poles of
f counted with multiplicity. By the Weierstrass product theorem, there
exists an entire function g with zeros exactly at an. Then the product fg
is an entire function h, so f = h/g where h and g are both entire. Now
let an and bn be two sequences with no finite limit points. Let F and G
be entire functions with zeros precisely at the an and the bn, respectively;
such functions exist by the Weierstrass product theorem. Then the quotient
F/G has zeros exactly at the an and poles exactly at the bn. �

Exercise 16: Suppose that

Qn(z) =
Nn∑
k=1

cnkz
k

are given polynomials for n = 1, 2, . . . . Suppose also that we are given a
sequence of complex numbers {an} without limit points. Prove that there
exists a meromorphic function f(z) whose only poles are at {an}, and so
that for each n, the difference

f(z)−Qn
(

1
z − an

)
is holomorphic near an. In other words, f has prescribed poles and principal
parts at each of these poles. This result is due to Mittag-Leffler.

Solution. (Solution adapted from Gamelin, Complex Analysis, p. 348.) Let
Km = Bm(0) = {z ∈ C : |z| ≤ m}. Let

fm(z) =
∑

ak∈Km+1\Km

Qk

(
1

z − ak

)
.

This is a finite sum, so fm is well-defined for z 6= a1, a2, . . . . By the Runge
approximation theorem (Theorem 5.7 of Chapter 2), there exist polynomials
gm(z) such that |fm(z)− gm(z)| ≤ 1

2m on Km. Let

f(z) =
∞∑
m=1

(
fm(z)− gm(z)

)
.

This sum converges uniformly on compact subsets of C, by the Weierstrass
M -test. Hence f is well-defined on C and is meromorphic. Moreover, on
Km the tail

∑∞
j=m(fj(z) − gj(z)) is analytic, whereas fk(z) − gk(z) for

k < m has poles precisely at those aj in Kk+1 \ Kk, with the prescribed
principal parts; thus, the poles of f lying in Km are precisely the ak within
Km, with the correct principal parts, for each m. Hence f has the desired
properties. �
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Chapter 5.7, Page 156

Problem 1: Prove that if f is holomorphic in the unit disc, bounded, and
not identically zero, and z1, z2, . . . are its zeros (|zk| < 1), then∑

n

(1− |zn|) <∞.

Solution. By Jensen’s formula, we have for each R < 1

∑
|zk|<R

log
∣∣∣∣Rzk
∣∣∣∣ =

∫ 2π

0

log |f(Reiθ)| dθ
2π
− log |f(0)|.

Because f is bounded, the right-hand side is bounded above by some con-
stant M as R varies. Suppose now we fix R and let R′ > R be variable.
We get

(3)
∑
|zk|<R

log
∣∣∣∣R′zk

∣∣∣∣ ≤ ∑
|zk|<R′

log
∣∣∣∣R′zk

∣∣∣∣ < M

since the first sum is a partial sum of the second and all terms are positive.
Since the first sum in (3) is finite, we can let R′ → 1 and get

∑
|zk|<R

log
∣∣∣∣ 1
zk

∣∣∣∣ ≤M.

This is true for all R < 1, so letting R→ 1 we have

∑
k

log
∣∣∣∣ 1
zk

∣∣∣∣ ≤M.

(If all the partial sums are at most M , the infinite sum is as well.) Now
1− x ≤ − log x for all real x > 0, so

∑
k

1− |zk| ≤
∑
k

log
∣∣∣∣ 1
zk

∣∣∣∣ ≤M <∞.

�

Chapter 6.3, Page 174

Exercise 1: Prove that

Γ(s) = lim
n→∞

nsn!
s(s+ 1) · · · (s+ n)

whenever s 6= 0,−1,−2, . . . .
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Solution.

1
Γ(s)

= seγs
∞∏
n=1

(
1 +

s

n

)
e−s/n

= s
(

lim
N→∞

es(
∑N
n=1 1/n−logN)

)(
lim
N→∞

N∏
n=1

(
1 +

s

N

)
e−s/n

)

= lim
N→∞

sN−s
N∏
n=1

es/n
N∏
n=1

(
n+ s

n

)
e−s/n

= lim
N→∞

sN−s
N∏
n=1

(
n+ s

n

)
= lim
N→∞

s(s+ 1) · · · (s+N)
NSN !

.

�

Exercise 3: Show that Wallis’s product formula can be written as

√
π

2
= lim
n→∞

22n(n!)2

(2n+ 1)!
(2n+ 1)1/2.

As a result, prove the following identity:

Γ(s)Γ(s+ 1/2) =
√
π21−2sΓ(2s).

Solution. Wallis’ product formula says

π

2
= lim
n→∞

n∏
k=1

(2k)2

(2k + 1)(2k − 1)
.
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Now
n∏
k=1

(2k − 1)(2k + 1) =
n∏
k=1

(2k − 1)
n∏
k=1

(2k + 1)

=

2n−1∏
j=1

j

j odd


2n+1∏

j=1

j

j odd



= (2n+ 1)

2n−1∏
j=1

j odd

j


2

= (2n+ 1)

 (2n)!∏2n
j=1 j

j even


2

= (2n+ 1)
(

(2n)!∏n
k=1 2k

)2

= (2n+ 1)
(

(2n)!
n!2n

)2

whereas
n∏
k=1

(2k)2 = 22n
n∏
k=1

k2 = 22n(n!)2.

Hence

π

2
= lim
n→∞

22n(n!)2

(2n+ 1) ((2n)!)2

(n!)222n

= lim
n→∞

24n(n!)4

(2n+ 1)((2n)!)2
= lim
n→∞

24n(n!)4(2n+ 1)
((2n+ 1)!)2

and the result follows by taking square roots of both sides.
Using the result of Problem 1,

Γ(2s)
Γ(s)Γ(s+ 1/2)

= lim
s(s+ 1) · · · (s+ n)

nsn!
lim

(s+ 1/2) · · · (s+ 1/2 + n)
ns+1/2n!

lim
(2n+ 1)2s(2n+ 1)!

(2s)(2s+ 1) · · · (2s+ 2n+ 1)

= lim
s(s+ 1/2)(s+ 1)(s+ 3/2) · · · (s+ n+ 1/2)(2n+ 1)2s(2n+ 1)!

n2s+1/2(n!)2(2s)(2s+ 1) · · · (2s+ 2n+ 1)

= lim
2s(2s+ 1) · · · (2s+ 2n+ 1)

22n+2

(2n+ 1)2s(2n+ 1)!
n2s+1/2(n!)22s(2s+ 1) · · · (2s+ 2n+ 1)

= lim
(

2n+ 1
n

)2s
√

2n+ 1
n

(2n+ 1)!
22n+2(n!)2

√
2n+ 1

= 22s
√

2
1
4

√
π

2
= 22s−1

√
π.

�
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Exercise 5: Use the fact that Γ(s)Γ(1− s) = π/ sinπs to prove that

|Γ(1/2 + it)| =
√

2π
eπt + e−πt

, whenever t ∈ R.

Solution. Using the trigonometric identity sin(θ + π/2) = cos(θ),

Γ(1/2 + it)Γ(1/2− it) =
π

sinπ(1/2 + it)
=

π

cos(πit)
=

π

coshπt
=

2π
eπt + e−πt

.

Using the fact that Γ(z) = Γ(z̄), which follows from the meromorphicity of
Γ,

|Γ(1/2 + it)|2 = Γ(1/2 + it)Γ(1/2− it) =
2π

eπt + e−πt

and the result follows by taking square roots of both sides. �

Exercise 7: The Beta function is defined for Re(α) > 0 and Re(β) > 0 by

B(α, β) =
∫ 1

0

(1− t)α−1tβ−1dt.

(a) Prove that B(α, β) = Γ(α)Γ(β)
Γ(α+β) .

(b) Show that B(α, β) =
∫∞

0
uα−1

(1+u)α+β du.

Solution.
(a)

Γ(β)Γ(α) =
(∫ ∞

0

xβ−1e−xdx

)(∫ ∞
0

yα−1e−ydy

)
=
∫ ∞

0

∫ ∞
0

xβ−1yα−1e−(x+y)dxdy.

Making the change of variables u = x + y, v = x
x+y , we have x = uv

and y = u(1− v), so

∂(x, y)
∂(u, v)

=
∣∣∣∣ v u
1− v −u

∣∣∣∣ = −u,

so

Γ(α)Γ(β) =
∫ ∞

0

∫ 1

0

(uv)β−1(u(1− v))α−1e−uudvdu

=
(∫ ∞

0

uα+β−1e−udu

)(∫ 1

0

vβ−1(1− v)α−1dv

)
= Γ(α+ β)B(α, β).

(b) We make the change of variables u = 1
t − 1, so t = 1

u+1 , 1− t = u
u+1 ,

and dt = − du
(u+1)2 . Then

B(α, β) =
∫ 1

0

(1− t)α−1tβ−1dt

=
∫ 0

∞

(
u

u+ 1

)α−1( 1
u+ 1

)β−1 −du
(u+ 1)2

=
∫ ∞

0

uα−1

uα+β
du.

�
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Exercise 9: The hypergeometric series F (α, β, γ; z) was defined in Exercise
16 of Chapter 1. Show that

F (α, β, γ; z) =
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0

tβ−1(1− t)γ−β−1(1− zt)−αdt.

Solution.

Γ(γ)
Γ(β)Γ(γ − β)

∫ 1

0

tβ−1(1− t)γ−β−1(1− zt)−αdt

=
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0

tβ−1(1− t)γ−β−1

(
1 +

∞∑
n=1

(−α)(−α− 1) · · · (−α− n− 1)
n!

(−zt)n
)
dt

=
Γ(γ)

Γ(β)Γ(γ − β)

(
B(β, γ − β) +

∞∑
n=1

∫ 1

0

tβ−1(1− t)γ−β−1α(α+ 1) · · · (α+ n− 1)
n!

zntndt

)

= 1 +
∞∑
n=1

Γ(γ)
Γ(β)Γ(γ − β)

B(n+ β, γ − β)
α(α+ 1) · · · (α+ n− 1)

n!
zn

= 1 +
∞∑
n=1

Γ(γ)Γ(n+ β)
Γ(β)Γ(n+ γ)

α(α+ 1) · · · (α+ n− 1)
n!

zn

= 1 +
∞∑
n=1

Γ(γ)β(β + 1) · · · (β + n− 1)Γ(β)
Γ(β)γ(γ + 1) · · · (γ + n− 1)Γ(γ)

α(α+ 1) · · · (α+ n− 1)
n!

zn

= 1 +
∞∑
n=1

α(α+ 1) · · · (α+ n− 1)β(β + 1) · · · (β + n− 1)
n!γ(γ + 1) · · · (γ + n− 1)

zn

= F (α, β, γ; z)

where the sum and integral can be interchanged because all terms are non-
negative; here we have used the identity Γ(s + 1) = sΓ(s) as well as the
properties of the beta function derived in Exercise 7. Since (1 − w)−α is
holomorphic for w in the plane slit along the ray [1,∞), Theorem 5.4 of
Chapter 2 guarantees that the integral representation above is holomor-
phic for z in the same slit plane, yielding an analytic continuation of the
hypergeometric function. �

Exercise 10: An integral of the form

F (z) =
∫ ∞

0

f(t)tz−1dt

is called a Mellin transform, and we shall write M(f)(z) = F (z). For
example, the gamma function is the Mellin transform of the function e−t.
(a) Prove that

M(cos)(z) =
∫ ∞

0

cos(t)tz−1dt = Γ(z) cos
(
π
z

2

)
for 0,Re(z) < 1,

and

M(sin)(z) =
∫ ∞

0

sin(t)tz−1dt = Γ(z) sin
(
π
z

2

)
for 0 < Re(z) < 1.
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(b) Show that the second of the above identities is valid in the larger strip
−1 < Re(z) < 1, and that as a consequence, one has∫ ∞

0

sinx
x

dx =
π

2
and

∫ ∞
0

sinx
x3/2

dx =
√

2π.

Solution.
(a) Let CR be the contour in the first quadrant bounded by the quarter-

circles of radius R and 1/R and the axes. Let f(w) = e−wwz−1. In
evaluating this integral we will use the fact that |wz−1| ≤ C||w|z−1|;
this follows from writing z − 1 = x + iy and w = Reiθ, from which
|wz−1| = Rxe−θy ≤ CRx = C||w|z−1| where C = eπ/2|Im(z)|. The
integral of f around the quarter-circle of radius 1/R tends to 0 since
|f(w)| ≤ e−Re(w)C|w|Re(z)−1 ≤ Ce1/RR1−α on this segment, where
α = Re(z). The length of the segment is π

2R , so by theML estimate the
integral is at most Cπe1/R

2Rα , which tends to 0 as R → ∞. The integral
over the outer quarter-circle also tends to zero by the Jordan lemma.
Since Stein and Shakarchi, annoyingly enough, never mention the Jor-
dan lemma, I’ll prove it from scratch all over again, just like I did a
half-dozen times last quarter in the section on contour integrals. On
the outer quarter circle, |f(w)| ≤ CRα−1|e−Reiθ | = CRα−1e−R cos θ.
Now − cos θ ≥ 2

π θ − 1 for 0 ≤ θ ≤ π
2 , so∣∣∣∣∣

∫ π/2

0

f(Reiθ)Reiθdθ

∣∣∣∣∣ ≤
∫ π/2

0

|f(Reiθ)Reiθ|dθ

≤ CRα−1

∫ π/2

0

e−R cos θRdθ

≤ CRα
∫ π/2

0

eR(2θ/π−1)dθ

= CRαe−R
πe2Rθ/π

2R

∣∣∣π/2
0

= CRα
π

2R
(
1− e−R

)
which tends to 0 as R → ∞ since α < 1. Now f is analytic on and
inside the contour, so we’re left with

0 =
∫ ∞

0

e−ttz−1dt+
∫ 0

∞
e−iu(iu)z−1idu

⇒ Γ(z) =
∫ ∞

0

(cosu− i sinu)uz−1izdu

⇒ i−zΓ(z) =
∫ ∞

0

(cosu− i sinu)uz−1du

⇒
(

cos
(πz

2

)
− i sin

(πz
2

))
Γ(z) =M(cos)(z)− iM(sin)(z).

For real z, we can compare real and imaginary parts to conclude that

M(cos)(z) = Γ(z) cos
(πz

2

)
and M(sin)(z) = Γ(z) sin

(πz
2

)
.
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By analytic continuation, these relations both hold for z in the strip
0 < Re(z) < 1.

(b) The right-hand side of the above equation for M(sin) is analytic for
−1 < Re(z) < 1 because the zero of sine cancels the pole of Γ at the
origin. The left-hand side is also analytic on this strip by Theorem
5.4 of chapter 2; the integral converges near 0 because sin t ≈ t and
converges at ∞ because Re(z) < 1. Hence, by analytic continuation,

M(sin)(z) = Γ(z) sin
(πz

2

)
for − 1 < Re(z) < 1.

Letting z = 0 we get

M(sin)(0) =
∫ ∞

0

sin t
t
dt = Γ(0) sin

π · 0
2
.

In order to evaluate the right-hand side we rearrange the functional
equation of Γ to read

π

Γ(1− s)
= Γ(s) sin(πs) = 2Γ(s) sin(πs/2) cos(πs/2)⇒ Γ(s) sin(πs/2) =

π

2Γ(1− s) cos(πs/2)
.

This equals π
2 when s = 0, so

∫∞
0

sin t
t dt = π

2 .
Letting z = −1/2 in the Mellin transform,∫ ∞
0

sin t
t3/2

dt = Γ
(

1
2

)
sin
(
−π
4

)
= (−2

√
π)
(
− 1√

2

)
=
√

2π.

�

Exercise 13: Prove that

d2 log Γ(s)
ds2

=
∞∑
n=0

1
(s+ n)2

whenever s is a positive number. Show that if the left-hand side is inter-
preted as (Γ′/Γ)′, then the above formula also holds for all complex numbers
s with s 6= 0,−1,−2, . . . .

Solution. For positive s we can take the logarithm of the Hadamard fac-
torization

1
Γ(s)

= seγs
∞∏
n=1

(
1 +

s

n

)
e−s/n

to obtain

− log Γ(s) = log s+ γs+
∞∑
n=1

(
log
(

1 +
s

n

)
− s

n

)
.

Differentiating,

−d log Γ(s)
ds

=
1
s

+ γ +
∞∑
n=1

(
1

n+ s
− 1
n

)
where the termwise differentiation is justified because the differentiated sum
converges uniformly on compact intervals for s. Differentiating again,

−d
2 log Γ(s)
ds2

= − 1
s2

+
∞∑
n=1

−1
(n+ s)2

= −
∞∑
n=0

1
(n+ s)2

.
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The right-hand side defines an analytic function of s on the region s 6=
0,−1,−2, . . . because the sum converges uniformly on compact subsets of
this region. Moreover, for positive s the second derivative on the left is
equal to (Γ′/Γ)′, which is analytic on the same region since Γ is analytic
and nonzero there. Hence the above relation holds throughout this region
by analytic continuation. �

Exercise 14: This exercise gives an asymptotic formula for log n!. A more
refined formula for Γ(s) as s→∞ (Stirling’s formula) is given in Appendix
A.
(a) Show that

d

dx

∫ x+1

x

log Γ(t)dt = log x, for x > 0,

and as a result∫ x+1

x

log Γ(t)dt = x log x− x+ c.

(b) Show as a consequence that log Γ(n) ∼ n log n as n → ∞. In fact,
prove that log Γ(n) ∼ n log n+O(n) as n→∞.

Solution.
(a) By the Fundamental Theorem of Calculus,

d

dx

∫ x+1

x

log Γ(t)dt = log Γ(x+ 1)− log Γ(x) = log
Γ(x+ 1)

Γ(x)
= log x.

Integrating both sides with respect to x,∫ x+1

x

log Γ(t)dt = x log x− x+ c.

(b) Since Γ(t) is increasing for t ≥ 2,

log Γ(n) ≤
∫ n+1

n

log Γ(t)dt ≤ log Γ(n+ 1) = log n+ log Γ(n)

⇒ (n− 1) log n− n+ c ≤ log Γ(n) ≤ n log n− n+ c.

Thus, log Γ(n) = n log n− n+ o(log n).
�

Exercise 15: Prove that for Re(s) > 1,

ζ(s) =
1

Γ(s)

∫ ∞
0

xs−1

ex − 1
dx.
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Solution. Using the geometric series 1
ex−1 = e−x 1

1−e−x =
∑∞
n=1 e

−nx, we
have ∫ ∞

0

xs−1

ex − 1
dx =

∫ ∞
0

xs−1
∞∑
n=1

e−nxdx

=
∞∑
n=1

∫ ∞
0

xs−1e−nxdx

=
∞∑
n=1

∫ ∞
0

(
t

n

)s−1

e−t
dt

n

=
∞∑
n=1

1
ns

∫ ∞
0

ts−1e−tdt

= Γ(s)ζ(s).

Here the sum and integral can be interchanged because all terms are non-
negative. �

Chapter 7.3, Page 199

Exercise 1: Suppose that {an}∞n=1 is a sequence of real numbers such that
the partial sums

An = a1 + · · ·+ an

are bounded. Prove that the Dirichlet series
∞∑
n=1

an
ns

converges for Re(s) > 0 and defines a holomorphic function in this half-
plane.

Solution. Using summation by parts,

N∑
n=1

an
ns

=
AN
Ns
−

N∑
n=1

An

(
1

(n+ 1)s
− 1
ns

)
.

Taking the limit as N →∞, the first term on the right vanishes and
∞∑
n=1

an
ns

= −
∞∑
n=1

An

(
1

(n+ 1)s
− 1
ns

)
.

To prove that this converges, we note that by hypothesis |An| ≤ M for
some constant M . Now∣∣∣∣ 1

(n+ 1)s
− 1
ns

∣∣∣∣ =
∣∣∣∣∫ n+1

n

−1
sts+1

dt

∣∣∣∣
≤ |(n+ 1)− n| max

x∈(n,n+1)

∣∣∣∣ 1
sts+1

∣∣∣∣
≤ 1
σnσ+1
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where σ = Re(s). Thus, the tails of the series are dominated by
∞∑
n=N

M

σnσ+1

which converges, so the series converges. In addition, this shows that the
convergence is uniform on closed half-planes σ ≥ σ0 > 0, so the series
defines a holomorphic function on the right half-plane. �

Exercise 2: The following links the multiplication of Dirichlet series with the
divisibility properties of their coefficients.
(a) Show that if {am} and {bk} are two bounded sequences of complex

numbers, then( ∞∑
m=1

am
ms

)( ∞∑
k=1

bk
ks

)
=
∞∑
n=1

cn
ns

where cn =
∑
mk=n

ambk.

The above series converges absolutely when Re(s) > 1.
(b) Prove as a consequence that one has

(ζ(s))2 =
∞∑
n=1

d(n)
ns

and ζ(s)ζ(s− a) =
∞∑
n=1

σa(n)
ns

for Re(s) > 1 and Re(s − a) > 1, respectively. Here d(n) equals the
number of divisors of n, and σa(n) is the sum of the ath powers of
divisors of n. In particular, one has σ0(n) = d(n).

Solution.
(a) For σ = Re(s) > 1, the two sums on the left both converge absolutely

since
∞∑
m=1

∣∣∣am
ms

∣∣∣ ≤ ∞∑
m=1

A

mσ
<∞

where A is a bound for |am|. Thus, Fubini’s theorem allows us to write
the product as the double sum∑

m,k

am
ms

bk
ks

=
∑
m,k

ambk
(mk)s

where the terms can be summed in any order. In particular, we can
group them according to the product mk to obtain

∞∑
n=1

∑
m,k

mk=n

ambk
ns

=
∞∑
n=1

cn
ns
.

(b) If we let am = bk = 1 for all k,m above, then cn,k =
∑
mk=n 1 = d(n)

and we have

(ζ(s))2 =

( ∞∑
m=1

1
ms

)( ∞∑
k=1

1
ks

)
=
∞∑
n=1

d(n)
ns

.

Assuming Re(a) > 0 (which presumably was intended in the problem
statement) and Re(s− a) > 1, we can replace s with s− a in part (a)
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and let am = m−a, bk = 1. The result is

ζ(s)ζ(s− a) =

( ∞∑
m=1

m−a

ms−a

)( ∞∑
k=1

1
ks−a

)
=
∞∑
n=1

cn
ns−a

=
∞∑
n=1

nacn
ns

where cn =
∑
mk=nm

−a = 1
na

∑
mk=n k

a = σa(n).
�

Exercise 3: In line with the previous exercise, we consider the Dirichlet series
for 1/ζ.
(a) Prove that for Re(s) > 1,

1
ζ(s)

=
∞∑
n=1

µ(n)
ns

,

where µ(n) is the Möbius function defined by

µ(n) =


1 if n = 1,
(−1)k if n = p1 · · · pk, and the pj are distinct primes,
0 otherwise.

Note that µ(nm) = µ(n)µ(m) whenever n and m are relatively prime.
(b) Show that ∑

k|n

µ(k) =

{
1 if n = 1,
0 otherwise.

Solution.
(a) Consider the finite product

N∏
n=1

(
1− 1

psn

)
.

Applying the distributive law, this is equal to

∞∑
n=1

µN (n)
ns

where µN (n) =


1 n = 1
(−1)k n = p1 · · · pk and 1, 2, . . . , k ≤ N
0 else.

Note that µN (n) = µ(n)χN (n) where χN (n) = 1 if n has no prime fac-
tors larger than pN , and 0 otherwise. Hence, this sum is a (rearranged)
partial sum of

∑∞
n=1

µ(n)
ns . Because this latter sum is absolutely con-

vergent for σ > 1, we can take the limit as N →∞ to obtain

1
ζ(s)

=
∞∏
n=1

(
1− 1

psn

)
=
∞∑
n=1

µ(n)
ns

.

An alternate proof uses the fact that
∑
d|n µ(d) = 0 for n > 1. One

way to establish this is as follows: Let p1, . . . , pk be the distinct prime
factors of n. For each j = 1, ,̇k, there will be

(
k
j

)
squarefree divisors of
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n which have j distinct prime factors, and µ(d) = (−1)j if d is any of
these divisors. Hence the sum of µ over all divisors is

k∑
j=0

(
k

j

)
(−1)j = (1− 1)k = 0

by the binomial theorem. Given this, we can use the previous exercise
to write ( ∞∑

m=1

1
ms

)( ∞∑
k=1

µ(k)
ks

)
=
∞∑
n=1

cn
ns

where

cn =
∑
mk=n

µ(k) =

{
1 n = 1
0 else.

Thus,

ζ(s)
∞∑
n=1

µ(n)
ns

= 1⇒
∞∑
n=1

µ(n)
ns

=
1
ζ(s)

.

(b) This was already proved in part (a) using the binomial theorem. Al-
ternatively, if (a) was established using the Euler product, then mul-
tiplying the series for ζ and 1/ζ using Exercise 2 yields part (b) as a
result. Thus, one can use (b) (proved using the binomial theorem) and
Exercise 2 to establish (a), or one can use (a) (proved using the Euler
product) and Exercise 2 to establish (b).

�

Exercise 5: Consider the following function

ζ̄(s) = 1− 1
2s

+
1
3s
− · · · =

∞∑
n=1

(−1)n+1

ns
.

(a) Prove that the series defining ζ̄(s) converges for Re(s) > 0 and defines
a holomorphic function in that half-plane.

(b) Show that for s > 1 one has ζ̄(s) = (1− 21−s)ζ(s).
(c) Conclude, since ζ̄ is given as an alternating series, that ζ has no zeros

on the segment 0 < σ < 1. Extend this last assertion to σ = 0 by
using the functional equation.

Solution.
(a) We rewrite the series as

ζ̄(s) =
∞∑
n=1

(
1

(2n− 1)s
− 1

(2n)s

)
.
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Now ∣∣∣∣ 1
(2n− 1)s

− 1
(2n)s

∣∣∣∣ =
∣∣∣∣∫ 2n

2n−1

d

dt
t−sdt

∣∣∣∣
≤
∫ 2n

2n−1

∣∣(−s)t−s−1
∣∣ dt

= |s|
∫ 2n

2n−1

t−σ−1dt

≤ |s|(2n− 1)−σ−1.

Since
∞∑
n=1

|s|(2n− 1)−σ−1

converges for σ > 0 and converges uniformly on closed sub-half-planes
σ ≥ σ0 > 0, the series defining ζ̄ defines a holomorphic function on
the right half-plane. (To complete the proof we should also note that
the individual terms (−1)n+1

ns tend to 0.)
(b) For s > 1,

21−sζ(s) = 2
∞∑
n=1

2−sn−s = 2
∑
n even

1
ns

and the absolute converge of the series for ζ on closed half-planes
σ ≥ σ0 > 1 allows us to rearrange terms and obtain

(1− 21−s)ζ(s) =
∑
n

1
ns
− 2

∑
n even

1
ns

=
∑
n

(−1)n+1

ns
= ζ̄(s).

(c) I assume the problem statement intends to say 0 < s < 1 (i.e. s
real), since otherwise the zeros of ζ in the critical strip would create a
contradiction. For real s the terms(

1
(2n− 1)s

− 1
(2n)s

)
are all strictly positive, so the sum cannot be zero. Taking the limit
of both sides of the equation ζ̄(s) = (1− 21−s) as s→ 0, the left-hand
side becomes the alternating series

ζ̄(0) = 1− 1
2

+
1
3
− · · · = log 2,

so the right-hand side cannot be zero.
�

Exercise 10: In the theory of primes, a better approximation to π(x) (instead
of x/ log x) turns out to be Li(x) defined by

Li(x) =
∫ x

2

dt

log t
.

(a) Prove that

Li(x) =
x

log x
+O

(
x

(log x)2

)
as x→∞,
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and that as a consequence

π(x) ∼ Li(x) as x→∞.

(b) Refine the previous analysis by showing that for every integer N > 0
one has the following asymptotic expansion

Li(x) =
x

log x
+

x

(log x)2
+ 2

x

(log x)3
+ · · ·+ (N − 1)!

x

(log x)N
+O

(
x

(log x)N+1

)
Solution.
(a) Substituting u = 1

log t and v = t in the definition of Li(x) and inte-
grating by parts,

Li(x) =
∫ x

2

dt

log t
=

t

log t

∣∣∣x
2

+
∫ x

2

dt

(log t)2
=

x

log x
− 2

log 2
+
∫ x

2

dt

(log t)2
.

We will estimate the latter integral in two pieces, one from 2 to
√
x

and one from
√
x to x. The graphs of the functions f(t) = (log t)2

and g(t) = (log
√
x)2

√
x−1

(t − 1) both pass through the points (1, 0) and
(
√
x, (log

√
x)2; by concavity, f ≥ g for 1 ≤ t ≤

√
x. Taking recipro-

cals,

1
(log t)2

≤ (
√
x− 1)

(log
√
x)2

1
t− 1

⇒
∫ x

2

1
(log t)2

dt ≤
∫ x

2

(
√
x− 1)

(log
√
x)2

1
t− 1

dt =
(
√
x− 1) log(

√
x− 1)

(log
√
x)2

∼
√
x

log
√
x

= O

(
x

(log x)2

)
.

For the integral from
√
x to x it suffices to approximate the integrand

by a constant:∫ x

√
x

dt

(log t)2
≤ (x−

√
x)

1
(log
√
x)2
∼ x(

1
2 log x

)2 = O

(
x

(log x)2

)
.

Putting the pieces together, we have∫ x

2

dt

log t
=

x

log x
− 2

log 2
+O

(
x

(log x)2

)
=

x

log x
+O

(
x

(log x)2

)
.

(b) Integrating by parts with the same substitution as above, we have
more generally∫ x

2

dt

(log t)2
=

t

(log t)k

∣∣∣∣∣
x

2

+ k

∫ x

2

dt

(log t)k+1
.

This plus an easy induction yields

Li(x) =
N∑
k=1

(k − 1)!
t

(log t)k

∣∣∣∣∣
x

2

+
∫ x

2

dt

(log t)N+1

for each N = 1, 2, . . . . Evaluation at the lower terms yields a constant,
so we can write this as

Li(x) = CN +
N∑
k=1

(k − 1)!
x

(log x)k
+
∫ x

2

dt

(log t)N+1
.
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We can estimate this integral in the same manner as before. By con-
cavity,

(log t)N+1 ≥ (log
√
x)N+1

√
x− 1

(t− 1) for 1 ≤ t ≤
√
x

⇒ 1
(log t)N+1

≤
√
x− 1

(log
√
x)N+1

1
t− 1

for 1 ≤ t ≤
√
x

⇒
∫ √x

2

dt

(log t)N+1
≤

√
x− 1

(log
√
x)N+1

∫ √x
2

dt

t− 1
=

(
√
x− 1) log(

√
x− 1)

(log
√
x)N+1

= O

(
x

(log x)N+1

)
.

Also,∫ x

√
x

dt

(log t)N+1
≤ (x−

√
x)

1
(log
√
x)N+1

= O

(
x

(log x)N+1

)
so that∫ x

2

dt

(log t)N+1
= O

(
x

(log x)N+1

)
⇒ Li(x) =

N∑
k=1

(k−1)!
x

(log x)k
+O

(
x

(log x)N+1

)
.

�

Chapter 8.5, Page 248

Exercise 5: Prove that f(z) = − 1
2 (z + 1/z) is a conformal map from the

half-disc {z = x+ iy : |z| < 1, y > 0} to the upper half-plane.

Solution. Clearly f is holomorphic on the upper half-disc U . To show it is
injective, consider that if f(z) = f(z′) = w, then z and z′ are both roots of
the equation t2 + 2tw + 1 = 0; the product of the roots of this equation is
1, so only one of the roots can have norm less than 1. So f is injective on
U . It maps U into the upper half-plane H because if z ∈ U , then

Im(−(z + 1/z)) = −Im(z)− Im(1/z) = −Im(z)− 1
|z

Im(z) =
(

1
|z|
− 1
)

Im(z),

and since |z| < 1 this is positive. Finally, f is surjective from U onto H
because for any w ∈ H, the equation w = − z+1/z

2 , equivalent to z2+2zw+1,
has two roots with product 1, so one is inside the disc and one outside.
(They cannot both be on the disc because z + 1/z is real for |z| = 1.) Let
z0 be the root inside the disc. Then

Im(w) =
(

1
|z0|
− 1
)

Im(z0) > 0⇒ Im(z0) > 0

so z0 is in U . �

Exercise 8: Find a harmonic function u in the open first quadrant that ex-
tends continuously up to the boundary except at the points 0 and 1, and
that takes on the following boundary values: u(x, y) = 1 on the half-lines
{y = 0, x > 1} and {x = 0, y > 0}, and u(x, y) = 0 on the segment
{0 < x < 1, y = 0}.
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Solution. We follow the outline given in Figure 11. Define F1 : FQ →
UHD, where FQ is the (open) first quadrant and UHD the upper half-
disc, by F1(z) = z−1

z+1 . This is the inverse of the map in Example 3 on
page 210. The boundary is mapped as follows: {y = 0, x > 1} is mapped
to the positive real axis, {0 < x < 1, y = 0} to the negative real axis,
and {x = 0, y > 0} to the semicircular part of the boundary. Next, define
F2 : UHD → LHS, where LHS is the left half-strip {x < 0, 0 < y < π}
by F2(z) = log z, using the principal branch. Here the positive real axis is
mapped to the negative real axis, the negative real axis to the line {x <
0, y = iπ}, and the semicircular part to the segment of the imaginary axis
from 0 to iπ. Next, we take the map F3 : LHS → UHS, where UHS
is the upper half-strip {−π/2 < x < π/2, y > 0}, where F3(z) = z

i −
π
2 .

This takes the imaginary segment to the real segment, upper and lower
boundaries of the strip to the left and right boundaries respectively. Next,
define F4 : UHS → U , where U is the upper half-plane, by F4(z) = 1+sin(z)

2 ,
which is conformal on this domain by Example 8 on page 212. This takes
the real segment to the segment between 0 and 1, and the left and right
boundaries to the rays {x < 0, y = 0} and {x > 1, y = 0} respectively.
Finally, let F5 : U → U be defined by F5(z) = z − 1. Now since 1

π arg(z) is
harmonic on U and equals 0 on the positive real axis and 1 on the negative
real axis, the composition z 7→ 1

π arg(F5(F4(F3(F2(F1(z)))))) is harmonic
on the first quadrant and has the desired boundary values. �

Exercise 9: Prove that the function u defined by

u(x, y) = Re
(
i+ z

i− z

)
and u(0, 1) = 0

is harmonic in the unit disc and vanishes on its boundary. Note that u is
not bounded in D.

Solution. The real part of an analytic function is harmonic, and i+z
i−z is

analytic on the open unit disc, so u is harmonic in D. Moreover, on the
boundary points other than (0, 1), write z = cos θ + i sin θ; then

i+ z

i− z
=

cos θ + i(1 + sin θ)
− cos θ + i(1− sin θ)

· −cosθ + i(sin θ − 1)
−cosθ + i(sin θ − 1)

=
−2i cos θ

cos2 θ + (1− sin θ)2

is pure imaginary, so its real part is zero. �

Exercise 10: Let F : H → C be a holomorphic function that satisfies

|F (z)| ≤ 1 and F (i) = 0.

Prove that

|F (z)| ≤
∣∣∣∣z − iz + i

∣∣∣∣ for all z ∈ H.

Solution. Define G : D→ D by

G(w) = F

(
i
1− w
1 + w

)
.
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Then G is holomorphic and G(0) = F (i) = 0. By the Schwarz lemma,
|G(w)| ≤ |w| for all w ∈ D. Then for any z ∈ H,

|F (z)| =
∣∣∣∣G( i− zi+ z

)∣∣∣∣ ≤ ∣∣∣∣z − iz + i

∣∣∣∣ .
�

Exercise 11: Show that if f : D(0, R)→ C is holomorphic, with |f(z)| ≤M
for some M > 0, then∣∣∣∣∣ f(z)− f(0)

M2 − f(0)f(z)

∣∣∣∣∣ ≤ |z|
MR

.

Solution. For z ∈ D, let g(z) = f(Rz)
M . Since Rz ∈ D(0, R), |f(Rz)| ≤ M

so g(z) ∈ D. Thus g : D → D and is holomorphic. Let α = g(0) = f(0)
M .

Then ψα ◦ g : D→ D satisfies ψα(g(0)) = 0, where ψα(w) = α−w
1−ᾱw . By the

Schwarz lemma,

|ψα ◦ g(ζ)| ≤ |ζ| (ζ ∈ D)

⇒
∣∣∣∣ α− g(ζ)
1− ᾱg(ζ)

∣∣∣∣ ≤ |ζ|
⇒

∣∣∣∣∣
f(0)
M − f(Rζ)

M

1− f(0)
M

f(Rζ)
M

∣∣∣∣∣ ≤ |ζ|
⇒M

∣∣∣∣∣ f(0)− f(Rζ)
M2 − f(0)f(Rζ)

∣∣∣∣∣ ≤ |ζ|
⇒

∣∣∣∣∣ f(0)− f(z)
M2 − f(0)f(z)

∣∣∣∣∣ ≤ |z|
MR

where z = Rζ ∈ D(0, R). �

Exercise 13: The pseudo-hyperbolic distance between two points z, w ∈
D is defined by

ρ(z, w) =
∣∣∣∣ z − w1− w̄z

∣∣∣∣ .
(a) Prove that if f : D→ D is holomorphic, then

ρ(f(z), f(w)) ≤ ρ(z, w) for all z, w ∈ D.

Moreover, prove that if f is an automorphism of D then f preserves
the pseudo-hyperbolic distance

ρ(f(z), f(w)) = ρ(z, w) for all z, w ∈ D.

(Hint.)
(b) Prove that

|f ′(z)|
1− |f(z)|2

≤ 1
1− |z|2

for all z ∈ D.

Solution.
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(a) Let

ψα(z) =
z − α
1− ᾱz

.

Then it is easy to check that ψα is an automorphism of D; in fact, its
inverse can be explicitly computed as

ψ−1
α (z) =

z + α

1 + ᾱz
.

Now let g = ψf(w) ◦ f ◦ ψ−1
w . Then

g(0) = ψf(w)

(
f
(
ψ−1
w (0)

))
= ψf(w) (f (w)) = 0

and since g is the composition of three functions which map D into D,
so it also maps D into D. By the Schwarz Lemma, |g(y)| ≤ |y| for all
y ∈ D. In particular, if y = ψw(z) we have

|g(y)| ≤ |y|∣∣ψf(w)(f(ψ−1
w (y)))

∣∣ ≤ |ψw(z)|∣∣ψf(w)(f(z))
∣∣ ≤ ∣∣∣∣ z − w1− w̄z

∣∣∣∣∣∣∣∣∣ f(z)− f(w)
1− f(w)f(z)

∣∣∣∣∣ ≤
∣∣∣∣ z − w1− w̄z

∣∣∣∣
ρ(f(z), f(w)) ≤ ρ(z, w)

as desired. Moreover, if f is an automorphism of D then by Theorem
2.2,

f(z) = eiθ
α− z
1− ᾱz

for some θ ∈ R and α ∈ D. Then

ρ(f(z), f(w)) =

∣∣∣∣∣ f(z)− f(w)
1− f(w)f(z)

∣∣∣∣∣
=

∣∣∣eiθ ( α−z
1−ᾱz −

α−w
1−ᾱw

)∣∣∣∣∣∣1− eiθ α−w1−ᾱwe
iθ α−z

1−ᾱz

∣∣∣
=

∣∣∣ (z−w)(1−|α|2)
(1−ᾱz)(1−ᾱw)

∣∣∣∣∣∣ (1−|α|2)(1−w̄z)
(1−αw̄)(1−ᾱz)

∣∣∣
=
|z − w|
|1− w̄z|

= ρ(z, w)

so f preserves pseudo-hyperbolic distance.
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(b) By a simple rearrangement,

ρ(f(w), f(z)) ≤ ρ(w, z)

⇒ |f(w)− f(z)|
|1− f(w)f(z)

≤ |w − z|
1− w̄z

⇒
∣∣∣∣f(w)− f(z)

w − z

∣∣∣∣ ≤ |1− f(w)f(z)|
1− w̄z|

.

Taking the limit as w → z, we have

|f ′(z)| ≤ 1− |f(z)|2

1− |z|2
⇒ |f ′(z)|

1− |f(z)|2
≤ 1

1− |z|2
.

�

Exercise 14: Prove that all conformal mappings from the upper half-plane
H to the unit disc D take the form

eiθ
z − β
z − β̄

, θ ∈ R and β ∈ H.

Solution. Let g : H → D be a conformal mapping. Let φ : D → H be the
conformal mapping defined by

z = φ(w) = i
1− w
1 + w

.

As shown in section 1.1, φ is a conformal mapping with inverse w = ψ(z) =
i−z
i+z . Then g ◦ φ : D → D is a conformal automorphism of the disc, so by
Theorem 2.2 there exist µ ∈ R and α ∈ D such that

g(z) = g

(
i
1− w
1 + w

)
= eiµ

α− w
1− ᾱw

= eiµ
α− i−z

i+z

1− ᾱ i−zi+z

= eiµ
z(1 + α)− i(1− α)
z(1 + α)− i(1− ᾱ)

= eiµ
z − i 1−α

1+α

z 1+ᾱ
1+α + i 1−ᾱ

1+α

= eiµ
z − β

eiγ(z − β̄)

= eiθ
z − β
z − β̄

where θ = µ − γ ∈ R, eiγ = 1+ᾱ
1+α has unit length because conjugation

preserves norm, and β = i 1−α
1+α ∈ H because β = φ(α) and α ∈ D. �

Exercise 15: Here are two properties enjoyed by automorpisms of the upper
half-plane.
(a) Suppose Φ is an automorphism of H that fixes three distinct points on

the real axis. Then Φ is the identity.



48

(b) Suppose (x1, x2, x3) and (y1, y2, y3) are two pairs of three distinct
points on the real axis with

x1 < x2 < x3 and y1 < y2 < y3.

Prove that there exists (a unique) automorphism Φ of H so that
Φ(xj) = yj , j = 1, 2, 3. The same conclusion holds if y3 < y1 < y2 or
y2 < y3 < y1.

Solution.
• (a) By Theorem 2.4, there exist a, b, c, d ∈ R with ad− bc = 1 and

Φ(z) =
az + b

cz + d
.

Suppose Φ fixes x ∈ R. Then

x =
ax+ b

cx+ d
⇒ cx2 + (d− a)x− b = 0.

If c 6= 0 this equation has at most 2 distinct solutions; if c = 0 but
a 6= d it has only one. For it to have three or more both of these
conditions must fail, so c = 0 and a = d; the equation then becomes
b = 0, and the condition ad − bc = 1 then implies a = d = ±1, so
Φ(z) = ±z

±1 = z.
(b) Let xi and yi be so chosen. The system of equations

axi + b

cxi + d
= yi ⇔ axi + b = cxiyi + dyi, i = 1, 2, 3

can be written as the vector equation

a~x− c ~xy − d~y = b

1
1
1

 ,

where ~xy =

x1y1

x2y2

x3y3

. We want to show that this equation has a unique

solution, up to multiplying a, b, c, d by a common factor. Consider
three cases:

(i) ~x, ~y, and ~xy are linearly independent. In this case,

1
1
1

 can

be written as a unique linear combination of them, which yields
our solution for a, b, c, d and hence our automorphism of H.

(ii) ~x and ~y are linearly dependent, say ~y = λ~x, where λ 6= 0. Then∣∣∣∣∣∣
1 1 1
x1 x2 x3

x1y1 x2y2 x3y3

∣∣∣∣∣∣ = λ

∣∣∣∣∣∣
1 1 1
x1 x2 x3

x2
1 x2

2 x2
3

∣∣∣∣∣∣
is a Vandermonde determinant and hence nonzero for distinct
x1, x2, x3. This implies that span(~x, ~y, ~xy) is 2-dimensional and

that

1
1
1

 does not lie in it, so that the only solution to our
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equation is b = 0 and a, b, c determined by the (projectively)
unique dependence relation of ~x, ~y, ~xy.

(iii) ~x and ~y are linearly dependent, and ~xy is a linear combination
of them. I haven’t figured out how to do this case; it’s worth
noting that this must be where the hypotheses x1 < x2 < x3

and y1 < y2 < y3 come into play, since so far I’ve only used that
they’re distinct without using their cyclic order.

�

Exercise 16: Let

f(z) =
i− z
i+ z

and f−1(w) = i
1− w
1 + w

.

(a) Given θ ∈ R, find real numbers a, b, c, d such that ad− bc = 1, and so
that for any z ∈ H

az + b

cz + d
= f−1

(
eiθf(z)

)
.

(b) Given α ∈ D find real numbers a, b, c, d so that ad − bc = 1, and so
that for any z ∈ H

az + b

cz + d
= f−1(ψα(f(z))),

with ψα defined in Section 2.1.
(c) Prove that if g is an automorphism of the unit disc, then there exist

real numbers a, b, c, d such that ad− bc = 1 and so that for any z ∈ H
az + b

cz + d
= f−1 ◦ g ◦ f(z).

Solution.
(a)

f−1(eiθf(z)) = f−1

(
eiθ

i− z
i+ z

)
= i

1− eiθ i−zi+z

1 + eiθ i−zi+z

= i
i+ z − ieiθ + eiθz

i+ z + ieiθ − eiθz

=
i(1 + eiθ)z + i(1− eiθ)
(1− eiθ)z + i(1 + eiθ)

=
2ieiθ/2 e

iθ/2+e−iθ/2

2 z + 2eiθ/2 e
iθ/2−e−iθ/2

2i

−2ieiθ/2 eiθ/2−e−iθ/22i z + 2ieiθ eiθ/2+e−iθ/2

2

=
i cos(θ/2)z + sin(θ/2)
−i sin(θ/2)z + i cos(θ/2)

.

The determinant here is ad−bc = − cos2(θ/2)+i sin2(θ/2) 6= 0, so they
can all be scaled by an appropriate amount to make the determinant
equal 1.
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(b)

f−1(ψα(f(z))) = f−1

(
ψα

(
i− z
i+ z

))
= f−1

(
α− i−z

i+z

1− ᾱ i−zi+z

)

= f−1

(
αi+ αz − i+ z

i+ z − ᾱi+ ᾱz

)
= f−1

(
(1 + α)z + i(α− 1)
(1 + ᾱ)z + i(1− ᾱ)

)

= i
1− (1+α)z+i(α−1)

(1+ᾱ)z+i(1−ᾱ)

1 + (1+α)z+i(α−1)
(1+ᾱ)z+i(1−ᾱ)

= i
(1 + ᾱ)z + i(1− ᾱ)− (1 + α)z + i(1− α)
(1 + ᾱ)z + i(1− ᾱ) + (1 + α)z + i(α− 1)

= i
(ᾱ− α)z + i(2− α− ᾱ)
(2 + α+ ᾱ)z + i(α− ᾱ)

=
bz + (a− 1)
(a+ 1)z − b

where α = a + bi. The determinant is −b2 − (a2 − 1) = 1 − |α|2 6= 0,
so it can be made 1 by an appropriate scaling.

(c) Let Rθ(z) = eiθz. Then g = Rθ ◦ ψα for some θ ∈ R and α ∈ D, so

f−1 ◦ g ◦ f = f−1 ◦Rθ ◦ ψα ◦ f
= f−1 ◦Rθ ◦ f ◦ f−1 ◦ ψα ◦ f
= (f−1 ◦Rθ ◦ f) ◦ (f−1 ◦ ψα ◦ f)

is the composition of two Möbius transformations of determinant 1,
by parts (a) and (b); this is another Möbius transformation of deter-
minant 1, so we’re done.

�

Chapter 8.6, Page 254

Problem 2: Prove that a real-differentiable function f : Ω→ C with Jf (z0) 6=
0 is holomorphic with f ′(z0) 6= 0 iff f preserves angles at z0.

Solution. If γ : [0, 1]→ C and η : [0, 1]→ C are two curves passing through
z0 with tangent vectors γ′ and η′, then the tangents to f ◦γ and f ◦ η at z0

are Jfγ′ and Jfη
′ by the Chain Rule. For these always to have the same

angle as γ′ and η′, it is necessary and sufficient that Jf be a nonzero multiple
of a unitary matrix (this is a standard theorem from linear algebra), i.e.
JTf Jf = C · Id where C 6= 0 and Id is the 2× 2 identity matrix. Now

JTf Jf =
(
ux vx
uy vy

)(
ux uy
vx vy

)
=
(

u2
x + u2

y uxvx + uyvy
uxvx + uyvy v2

x + v2
y

)
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so the condition for f to preserve angles is that u2
x + u2

y = v2
x + v2

y and
uxvx + uyvy = 0. We will show that these are equivalent to the Cauchy-
Riemann equations. Clearly if ux = vy and uy = −vx then u2

x+u2
y = v2

x+v2
y

and uxvx + uyvy = 0. Conversely, if the latter two equations are true, and
f ′ 6= 0, choose some nonzero component of u or v; WLOG ux 6= 0. Then
vx = −uyux vy so

v2
y

(
1 +

u2
y

u2
x

)
= v2

x + v2
y = u2

x + u2
y = u2

x

(
1 +

u2
y

u2
x

)
⇔ vy = ±ux.

If vy = ux then we immediately have vx = −uy as well, so the Cauchy-
Riemann equations are satisfied. The possibility vy = −ux is impossible
because it would imply that det(Jf ) < 0 which is impossible for a multiple
of a unitary matrix (in an even number of dimensions). Hence, f preserving
angles is equivalent to f being analytic for Jf 6= 0. �

Problem 7: Applying ideas of Carathéodory, Koebe gave a proof of the Rie-
mann mapping theorem by constructing (more explicitly) a sequence of
functions that converges to the desired conformal map.

Starting with a Koebe domain, that is, a simply connected domain K0 ⊂
D that is not all of D, and which contains the origin, the strategy is to find
an injective function f0 such that f0(K0) = K1 is a Koebe domain “larger”
than K0. Then, one iterates this process, finally obtaining functions Fn =
fn ◦ · · · ◦ f0 : K0 → D such that Fn(K0) = Kn+1 and limFn = F is a
conformal map from K0 to D.

The inner radius of a regionK ⊂ D that contains the origin is defined by
rK = sup{ρ ≥ 0 : D(0, ρ) ⊂ K}. Also, a holomorphic injection f : K → D
is said to be an expansion if f(0) = 0 and |f(z)| > |z| for all z ∈ K−{0}.
(a) Prove that if f is an expansion, then rf(K) ≥ rK and |f ′(0)| > 1.

Suppose we begin with a Koebe domain K0 and a sequence of expansions
{f0, f1, . . . , fn, . . . }, so that Kn+1 = fn(Kn) are also Koebe domains. We
then define holomorphic maps Fn : K0 → D by Fn = fn ◦ · · · ◦ f0.
(b) Prove that for each n, the function Fn is an expansion. Moreover,

F ′n(0) =
∏n
k=0 f

′
k(0), and conclude that limn→∞ |f ′n(0)| = 1.

(c) Show that if the sequence is osculating, that is, rKn → 1 as n → ∞,
then a subsequence of {Fn} converges uniformly on compact subsets
of K0 to a conformal map F : K0 → D.

To construct the desired osculating sequence we shall use the automor-
phisms ψα = (α− z)/(1− ᾱz).
(d) Given a Koebe domain K, choose a point α ∈ D on the boundary

of K such that |α| = rK, and also choose β ∈ D such that β2 = α.
Let S denote the square root of ψα on K such that S(0) = 0. Why
is such a function well defined? Prove that the function f : K → D
defined by f(z) = ψβ ◦ S ◦ ψα is an expansion. Moreover, show that
|f ′(0)| = (1 + rK)2

√
rK.

(e) Use part (d) to construct the desired sequence.

Solution.
(a) Since f is a holomorphic injection, it is a homeomorphism, so it maps
K0 to a simply connected domain. Let ρ < rK and consider the image
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under f of C(0, ρ). This curve is mapped to another curve all of
whose points are at least ρ away from the origin; since the image
under f of K0 is simply connected and includes the origin, it includes
the interior of this curve. In particular, it contains D(0, ρ). Thus,
D(0, ρ) ⊂ K ⇒ D(0, ρ) ⊂ f(K). Taking suprema, rf(K) ≥ rK .
Since f is holomorphic on K0 and f(0) = 0, we can write f(z) = zg(z)
on a neighborhood of 0, where g is holomorphic. Then f ′(0) = g(0).
Now g 6= 0 since |g(z)| = |f(z)|

|z| > 1 for z 6= 0 and g is continuous.
Thus, by the Minimum Modulus Principle applied to a small circle
near the origin, since |g| > 1 on the circle, |g(0)| > 1. (The Minimum
Modulus Principle is just the Maximum Modulus Principle applied to
1
g , which is valid since g 6= 0 in the region under consideration.)

(b) Since each fi fixes the origin, so does Fn. Moreover, it is easy to
see by induction that |Fn(z)| > |z| since |Fn(z)| = |fn(Fn−1(z))| >
|Fn−1(z)| > |z| by the induction hypothesis. By the Chain Rule,

F ′n(0) = (fn ◦ Fn−1)′(0) = f ′n(Fn−1(0))F ′n−1(0) = f ′n(0)F ′n−1(0)

so by another easy induction we have F ′n(0) =
∏n
k=1 f

′
k(0). However,

if we let ρ = rK0/2, then D(0, ρ) ⊂ Kn for all n, so we can define
Gn(z) : D→ D by Gn(z) = Fn(ρz). Then by the Schwarz Lemma,

ρ|F ′n(0)| = |G′n(0)| < 1⇒ |F ′n(0)| < 1
ρ
.

Thus, the sequence {|F ′n(0)|} is bounded above. This implies that
|f ′k(0)| → 1 as otherwise the product would be infinite.

(c) Since each Fn maps into D, the sequence {Fn} is uniformly bounded.
By Montel’s theorem, there is a subsequence Fnk that converges uni-
formly on all compact subsets K ⊂ K0. The limit function F : K0 → D
must be holomorphic because the uniform limit of holomorphic func-
tions is holomorphic (and K0 is the union of its compact subsets).
Then F is injective by Proposition 3.5 (it cannot be constant because
then it would be everywhere zero, and for z ∈ K \ {0}, |fnk(z)| > |z|
for all n ⇒ |F (z)| = lim |fnk(z)| ≥ |z| > 0). Thus F is an injective
holomorphic function, hence a homeomorphism, so F (K0) is simply
connected. I claim that rF (K0) ≥ rFN (K0) for all N . To see this,
let ρ < rFN (K0). For nk ≥ N , if w ∈ C(0, ρ), then |Fnk(w)| > ρ.
This implies |F (w)| ≥ ρ. Hence F maps C(0, ρ) to a smooth closed
curve whose points are all at least ρ from 0; since the image of F is
simply connected, it contains the image of this curve, so it contains
D(0, ρ). Taking suprema yields rF (K0) ≥ rFN (K0). Since rFN (K0) → 1
as N → ∞, this implies rF (K0) ≥ 1. Hence D(0, ρ) ⊂ F (K0) for all
ρ < 1, so F is surjective. So F is a conformal map from K0 to D.
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